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Severe Neuro-COVID is associated with
peripheral immune signatures,
autoimmunity and neurodegeneration: a
prospective cross-sectional study
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Growing evidence links COVID-19 with acute and long-term neurological dys-
function. However, the pathophysiological mechanisms resulting in central
nervous system involvement remain unclear, posing both diagnostic and
therapeutic challenges. Here we show outcomes of a cross-sectional clinical
study (NCT04472013) including clinical and imaging data and corresponding
multidimensional characterization of immune mediators in the cerebrospinal
fluid (CSF) andplasmaof patients belonging todifferentNeuro-COVID severity
classes. The most prominent signs of severe Neuro-COVID are blood-brain
barrier (BBB) impairment, elevated microglia activation markers and a poly-
clonal B cell response targeting self-antigens and non-self-antigens. COVID-19
patients show decreased regional brain volumes associating with specific CSF
parameters, however, COVID-19 patients characterized by plasma cytokine
storm are presenting with a non-inflammatory CSF profile. Post-acute COVID-
19 syndrome strongly associates with a distinctive set of CSF and plasma
mediators. Collectively, we identify several potentially actionable targets to
prevent or intervene with the neurological consequences of SARS-CoV-2
infection.

The prevalence of neurological symptoms (NS) after severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, alto-
gether termed “Neuro-COVID”, differs significantly between studies
and can rarely be explained by direct virus effects1,2. In support of a
detrimental immune response, neuropathological evidence of

hyperactive microglia has been provided3, and postmortem studies
postulate activatedmicroglia as a dominant immune cell population
in coronavirus disease 2019 (COVID-19) brains. In autoptic single cell
RNA sequencing studies, COVID-19 brains display dysregulated
astrocytic and microglial signatures4, accompanied by deranged
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choroid plexus cell types5,6. Additionally, the formation of microglia
and T-cell nodules were detected across brain compartments as a
site of greatest T cell and microglia activation1. Accordingly, specific
immune alterations in the cerebrospinal fluid (CSF) of Neuro-COVID
patients featured an increase of exhausted T cells, probably due to
repetitive stimulation. Hence, these observations indicate a com-
promised antiviral response pointing towards immune-mediated
mechanisms responsible for severe Neuro-COVID2,7.

There is strong evidence of brain-related pathologies in COVID-19.
Schwabenland et al.1 confirmed the presence of amyloid precursor
protein deposits in COVID-19 brains, suggesting axonal damage as a
result of immune activation. Accordingly, Douaud et al.8 identified a
reduction in gray matter thickness in primary olfactory cortex regions,
and a reduction in brain size in a longitudinal study of COVID-19-related
brain pathologies. However, SARS-CoV-2 RNA has rarely been detected
in the CSF of COVID-19 patients, even in those displaying NS2,9,10.
Moreover, new-onset humoral autoimmunity, including antineuronal
antibodies, in COVID-19 individuals has been observed, even in the
absence of increased conventional inflammatory CSF parameters and
lacking evidence of inflammation upon neuroimaging11,12. Yet, it still
remains controversial whether these alterations represent specific
central nervous system (CNS) infection or are bystander effects of
systemic COVID-19.

Here, we perform an in-depth characterization of immune med-
iators in the CSF and plasma of clinically well-characterized Neuro-
COVID patients and correlate these findings with brain imaging data
and a 13-month follow-up. A vigorous microglia reactivity, a dysfunc-
tional blood-brain barrier (BBB) and CNS ingressing B cells mainly
characterized severe Neuro-COVID. We observe a plasma cytokine
storm combined with a non-inflammatory CSF profile, even in severe
Neuro-COVID. However, particular CSF and plasma inflammatory
parameters are associated with decreased regional brain volumes in
COVID-19 patients and post-acute COVID-19 syndrome. These findings
may be addressed to prevent COVID-19 related neurological impair-
ment in the future.

Results
Clinical characteristics of the study cohorts and study
interventions
In total, we screened 310 patients in order to reach a target study
population of 40 (mean [SD] age, 54 [20] years; 17 women [42%])
participants (Fig. 1a). One patient did not meet our inclusion criteria
(≥18 years, non-pregnant, positive PCR test) due to pregnancy. The
other 269 screened patients declined participation, mostly because of
fearof lumbarpuncture (LP) side effects. In 5/40 (12.5%) cases, LP failed
to deliver sufficient CSF amounts, precluding further downstream
analysis. Within these patients, 1 suffered frommultiple sclerosis (MS),
which in consequence did not influence our CSF analysis.

Patient characteristics, main NS and follow-up details per severity
class are summarized in Table 1. COVID-19 patients (n = 40; mean [SD]
age, 54 [20] years; 17 women (42%)) were clinically classified into
absent or mild (n = 18), moderate (n = 7) and severe (n = 15) Neuro-
COVID classes I, II and III based on the severity of their NS at pre-
sentation (Fig. 1a, Table 1). Neurological symptom severity was asses-
sed (1) according to Fotuhi et al.13 and (2) on our clinical experience.
Class I was defined by absent/mild NS, including headache, dizziness,
anosmia and ageusia. Class II encompassed moderate NS, including
fatigue, acute peripheral neuropathy and myopathy, whereas class III
was specified by severe NS, including seizures, stroke or intracranial
hemorrhage, encephalopathy, coma or death. Additionally, we asses-
sed COVID-19 severity (not focusing on NS) using the WHO clinical
progression score14. Accordingly, patients’ clinical COVID-19 severity
was scored from 0 (uninfected) to 10 (dead, Table 1).

Control groups consisted of biobanked, age- and sex-matched
paired CSF and plasma samples from non-MS inflammatory control

disorders (“CNS inflammatory controls”) (n = 25;mean [SD] age, 54 [19]
years; 12 women [48%]) and healthy donors (n = 25; mean [SD] age, 52
[18] years; 12 women [48%]). CNS inflammatory controls consisted
mostly of infectious conditions, including herpetic infections, viral
meningitis and meningoencephalitis, eosinophilic or tuberculous
meningoencephalitis, neuroborreliosis, neurosarcoidosis, Susac’s
syndrome, and one patient with autoimmune encephalitis and Ras-
mussen’s encephalitis (Supplementary Table 1).

Study interventions are summarized in Fig. 1b–d. Thirty-two
patients underwent contrast-enhanced brain MRI imaging followed by
standard and algorithm-based image analysis. However, not all
patients (5 out of 40) were MRI scanned because of the complex
logistics, staffing and medical surveillance issues during the COVID-19
pandemic. Therefore, 5 patients underwent cranial computed tomo-
graphy (CT) instead, whereas one patient was imaged with both brain
MRI and cranial CT. For volumetric imaging analysis, we created a
modified cohort ofCOVID-19patients (n = 35), consistingof 22patients
out of the main study cohort and additional 13 patients undergoing
brain MRI during their COVID-19 infection.

Class III patients have an impaired BBB and a polyclonal B-cell
response
In class III patients, CSF protein and lactate levels were significantly
increased compared to class I and II (Fig. 2a). In contrast, CSF leuko-
cytes were not elevated in COVID-19 patients, which signified CNS
inflammatory controls. Importantly, CSF glucosewas increased even in
class I and II versus (vs) healthy controls, and was a significant dis-
criminator between class III and CNS inflammatory controls (Fig. 2a).
However, the CSF/blood glucose ratio of class III was significantly
higher in class III compared to class I/II patients, although diabetic
patients weremore prevalent in this group (class I: 11.1%; class II: 14.3%;
class III: 53.3%, (Fig. 2a, Table 1).

Routine CSF parameters are described in Supplementary Table 2
and Supplementary Data 1. In tendency, the CSF/plasma albumin ratio
(Fig. 2a), as well as the total CSF IgG levels (Supplementary Fig. 1b),
were higher in class III patients.

In line with recent research2, SARS-CoV-2 RNA was not detectable
in the CSF. However, we were able to detect SARS-CoV-2 Spike (S)
protein antibodies in 12 plasma and 3 CSF samples (Fig. 2c), yet the
antibody index (AI) pointed to a peripheral synthesis of these intra-
thecal antibodies (Supplementary Data 1).

Next, we determined the presence of autoreactive antibodies in
both CSF and plasma and represented them by non-metric multi-
dimensional scaling (NMDS) plots. While the plasma antibody profiles
of class III and CNS inflammatory controls segregated, their CSF pro-
files overlapped (Fig. 2b).

We could not detect reactivities against known CNS myelin anti-
gens in the plasma (Supplementary Fig. 1a), but found elevated anti-
dsDNA-IgG/IgA and anti-gut microbiota IgA responses in the CSF of
class III compared to class I patients and also to CNS inflammatory
controls (Fig. 2c). This was paralleled by an elevated anti-BSA reactiv-
ity. The AI pointed towards a peripheral antibody production. Plasma
anti-dsDNA-, anti-BSA- and anti-gutmicrobiota responses didnotdiffer
significantly across groups (Supplementary Fig. 1b).

Of note, we identified similar total levels of plasma antibodies in
all classes (Supplementary Fig. 1c), whereas class III patients depicted a
significantly higher total antibody concentration in the CSF (Supple-
mentary Fig. 1d).

To evaluate the B-cell response of patients having mild or
severe symptoms, we sequenced Ig heavy chain CDR3 (com-
plementarity determining region 3) in RNA isolated from peripheral
blood mononuclear cells (PBMC) of four class I and class III patients
each (Supplementary Table 3). First, we found a significantly higher
number of plasma B-cell clones in class I compared to class III. The
number of B-cell clones correlated with increased plasma IgG levels
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suggesting that the number of unique B cells in the blood might be
an indicator of high IgG production (Fig. 3a). There was no sig-
nificant difference in Shannon diversity and evenness between
cohorts15. Both groups had an evenness value close to 1 indicating a
polyclonal distribution of B-cell clones15 (Fig. 3b). Indeed, only two
patients from class I had B-cell clones accounting for more than 5%
of all B-cell clones. In contrast, all class III patients showed a more

polyclonal distribution without an expanded high frequency B-cell
clone (Fig. 3c). B-cell clones of both class I and class III patients
showed a similar Gaussian CDR3 length distribution with a similar
mean CDR3 length (Fig. 3d). Taken together, BCR sequencing ana-
lysis revealed a more specific antibody response in class I patients,
whereas in class III patients the response was more diverse due to
polyclonality.

Assessed for eligibility (n=310)

Excluded (n=270)
Declined to participate (n=269)
Not meeting inclusion criteria (n=1)

Enrolled (n=40)

Class I (n=18)
Lumbar puncture (n=16)
Blood withdrawal (n=18)
Brain MRI (n=15)
Cranial CT (n=1)

Class II (n=7)
Lumbar puncture (n=5)
Blood withdrawal (n=7)
Brain MRI (n=6)

Class III (n=15)
Lumbar puncture (n=14)
Blood withdrawal (n=15)
Brain MRI (n=11)
Cranial CT (n=5)

Non-MS inflammatory control cohort (n=25)
CSF samples (n=25)
Plasma samples (n=25)

Volumetric brain imaging cohort (n=35)
COVID-19 patients from main study group (n=22)
Additional COVID-19 patients (n=13)

Healthy control volumetric brain 
imaging cohort (n=36)

Healthy control cohort (n=25)
CSF samples (n=25)
Plasma samples (n=25)

a

b

c d
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Targeted proteomic analysis of CSF and plasma reveals a robust
peripheral immune response in Neuro-COVID and a class III-
specific signature
To further elucidatemechanisms associatedwithNeuro-COVID, and to
identify class-specific secretome patterns, we performed targeted
soluble CSF and plasma proteomics. We identified predominant
plasma secretionof a largenumber of soluble proteins inNeuro-COVID
class III patients compared to controls (Fig. 4a, Supplementary Fig. 2a),
suggesting a Neuro-COVID class-dependent plasma signature. Class I
and II patients had an increased plasma secretome compared to con-
trols, in linewith the previously described peripheral cytokine storm in
COVID-1916. The CSF protein pattern was different: while class I and II
depicted relatively similar profiles as healthy controls, a Neuro-COVID
class III-specific signature with differences to CNS inflammatory con-
trols emerged (Fig. 4a, Supplementary Fig. 2b). Notably, CSF total
protein levels progressively increased from class I to III, indicating a
correlation between CSF proteomics and NS (Fig. 4a).

In non-metric multidimensional scaling (NMDS) plots of plasma
proteins, class II and III segregated fromhealthy andCNS inflammatory
controls, whereas the secretome in class I partially overlapped with
class II and III and also the control cohorts (Fig. 4b, Supplementary
Data 2). In the CSF, protein patterns did mostly overlap and a clear
segregation was not observable. However, class III patients tended to
display a similar pattern as CNS inflammatory controls, while, in ten-
dency, healthy controls, class I and class II patients showed a likewise
pattern diverging from class III and CNS inflammatory controls
(Fig. 4b, Supplementary Data 2).

Next, we investigated the relative concentration of eachmolecule
between CSF and plasma (log2 normalized CSF/plasma index) to
ascertain whether they result from intrathecal or peripheral synthesis.
We found that most proteins were intrathecally (CSF/plasma ratio >0)
secreted in CNS inflammatory controls, whereas proteins in COVID-19
patients were mainly peripherally synthesized (CSF/plasma ratio <0).
Of note, TRANCE/RANKL was the only intrathecally synthesized pro-
tein in class III compared to CNS inflammatory controls (Supplemen-
tary Fig. 3, rose plots, Supplementary Fig. 4, heatmaps, Supplementary
Data 3, 4).

Neuro-COVID class III features are manifestations of microglia
regulation, neurodegeneration and BBB disruption
Next, we analyzed individual analytes across all study groups to deci-
pher potential discriminative markers (Supplementary Data 5).

As reported previously, plasma IL-6, IL-8, EN-RAGE, HGF, VEGFA,
PD-L1 and TNFRSF12A levels were associated with Neuro-COVID
severity17 and distinct from CNS inflammatory controls (Fig. 5a),
which lacked peripheral inflammation. Furthermore, plasma
TNFRSF11B, EZR and CCL23 were increased in class III vs. CNS inflam-
matory controls (Fig. 5a). In contrast, plasma levels of neurotrophic
and neuroprotective factors such as BMP-4, CLEC10A, CNTN5, GDF-8,
NTRK2, ROBO2 andGDNFRα3 were lower in class III compared to both
CNS inflammatory controls and class I patients (Fig. 5b)18–25. Compared
to CNS inflammatory controls, class III patients displayed higher
plasma 4E-BP1 levels (Fig. 5c). HAGH was the only protein displaying
higher plasma levels in class I vs. class III (Fig. 5d).

Fig. 1 | CONSORT diagram and schemes illustrating the project design.
aConsortflowdiagram. Patients who tested positive for SARS-CoV-2 were assessed
for eligibility (n = 310), of which 269 declined to participate and 1 failed to meet
inclusion criteria. Enrolled patients (n = 40) were allocated to different severity
classes of Neuro-COVID according to Fotuhi et. al.13 with 18 in class I, 7 in class II and
15 in class III. Schemes illustrating the studydesign:bPaired cerebrospinalfluid (CSF)
and plasma samples were collected from 40 COVID-19 patients. Paired CSF and
plasma samples from healthy (n = 25) and non-MS inflammatory neurological dis-
ease controls (n = 25) were retrospectively obtained. c In 37 of the COVID-19

patients, a contrast-enhanced MRI or CT scan was conducted and evaluated by a
board-certified neuroradiologist. d Brain volumetric analysis was performed in 35
COVID-19 patients. This cohort included 22 patients of the main study cohort from
whom Magnetization prepared—rapid gradient echo (MPRAGE) pulse sequences
and paired CSF and plasma samples were obtained (light blue) and an additional 13
patients who underwent brain MRI during COVID-19 infection (dark blue). A cohort
of 36 healthy age and sex-matched individuals served as the control group. b–d
Created with Biorender.com.

Table 1 | Characteristics of COVID-19 patients

Class I
(n = 18)

Class II
(n = 7)

Class III
(n = 15)

Age, years, mean (SD) 48 (21) 49 (19) 62 (17)

Range, years 22–80 23–73 22–98

Sex

Female, n (%) 8 (44.4%) 3 (42.9%) 6 (40.0%)

Male, n (%) 10 (55.6%) 4 (57.1%) 9 (60.0%)

Delay, d, mean (SD)

Diagnosis to LP 3 (3) 3 (2) 4 (4)

Range, d (0–8) (1–5) (0–11)

Diagnosis to blood withdrawal 3 (3) 3 (2) 4 (4)

Range, d (0–8) (0–7) (0–15)

Diagnosis to MRI/CT 4 (3) 4 (4) 6 (7)

Range, d (1–11) (0–11) (0–12)

Past medical history

Arterial hypertension, n (%) 4 (22.2%) 1 (14.3%) 7 (46.7%)

Type 2 diabetes, n (%) 2 (11.1%) 1 (14.3%) 8 (53.3%)

Dyslipidemia, n (%) 4 (22.2%) 0 (0%) 2 (13.3%)

Chronic kidney disease, n (%) 2 (11.1%) 0 (0%) 4 (26.7%)

Coronary artery disease, n (%) 4 (22.2%) 1 (14.3%) 1 (6.7%)

Cancer of any type, n (%) 0 (0%) 1 (14.3%) 2 (13.3%)

COPD, n (%) 0 (0%) 0 (0%) 0 (0%)

Pre-existing neurological disorder

Multiple sclerosis, n (%) 1 (5.6%) 0 (0%) 0 (0%)

Underwent LP, n 0 – –

Underwent blood withdrawal, n 1 – –

Myasthenia gravis, n (%) 0 (0%) 1 (14.3%) 0(0%)

Underwent LP, n – 0 –

Underwent blood withdrawal – 1 –

Main neurological symptom/syndrome

Headache/Dizziness, n (%) 11 (61.1%) 0 (0%) 0 (0%)

Loss of smell/taste, n (%) 7 (38.9%) 0 (0%) 0 (0%)

Acute peripheral neuro-
pathy, n (%)

0 (0%) 2 (28.6%) 0 (0%)

Myopathy, n (%) 0 (0%) 5 (71.4%) 0 (0%)

Seizures, n (%) 0 (0%) 0 (0%) 1 (6.7%)

Cerebrovascular disease, n (%) 0 (0%) 0 (0%) 2 (13.3%)

Encephalopathy, n (%) 0 (0%) 0 (0%) 12 (80%)

Clinical evolution

ICU, n (%) 0 (0%) 0 (0%) 11 (73.3%)

Hospital ward, n (%) 13 (72.2%) 7 (100%) 4 (26.7%)

Outpatient clinics, n (%) 5 (27.8%) 0 (0%) 0 (0%)

WHOclinical progression scale
(0–10), mean

3.2 3.9 8.2

Range 2–5 2–5 4–10

Demographics, outcomes, clinical and paraclinical characteristics of different Neuro-COVID
class patients (n = 40). Patients could have more than 1 pre-existing illness in past medical
history.
SD standard deviation, LP lumbar puncture, MRI magnetic resonance imaging, CT computed
tomography, COPD chronic obstructive pulmonary disease, CSF cerebrospinal fluid.
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Several CSF soluble protein levels, particularly some deemed
involved in microglia regulation, neurodegeneration and blood-brain
barrier (BBB) disruption, including IL-8, MSR1, 4E-BP1, CD200R1,
TNFRSF12A and EZR were increased in class III compared to class I
(Fig. 5e)18,19. However, only TNFRSF11B levels were both discriminating
class III from CNS inflammatory controls and gradually increasing
among Neuro-COVID classes (Fig. 5f).

Mediators involved in microglia regulation, tissue damage and
blood–brain barrier disruption are associated with a high WHO
clinical progression scale score
Next, we assessed the association of CSF/plasma proteins with COVID-
19 severity14. We used a complement of four models, consisting of a
backward-ordinal-, forward-ordinal-, best linear- and most-regularized
ordinal models, and cross-referenced the results to provide a robust
set of biomarkers associated with COVID-19 severity.
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Fig. 2 | Routine inflammatory CSF parameters and B-cell response in Neuro-
COVID patients. a Box plot representation of routine cerebrospinal fluid (CSF)
parameters including glucose (mmol/L), glucose CSF/plasma ratio (log2 scale),
lactate (mmol/L), albumin CSF/plasma ratio (log2 scale), total protein (mg/L,
log10 scale) and leukocytes (cell count × 106/L− log10 scale) (center line at the
median, upper bound at 75th percentile, lower bound at 25th percentile) with
whiskers at minimum and maximum values. Patients that were excluded from the
analysis are indicated in violet. Statistics: The data for each parameter, except the
leukocyte count, was marginalized on sex and age. Statistics: The data for each
parameter was marginalized on sex and age. Two-sided Mann–Whitney-U test was
applied, p value correction was performed with Benjamin-Hochberg (BH)-proce-
dure (adjusted p: *<0.05; **<0.01; ***<0.001; if not otherwise indicated: not sig-
nificant).bNon-metricmultidimensional scaling (NMDS)plots ofmerged anti-BSA-,
anti-dsDNA- and anti-gut bacteria antibodies in the CSF (left plot) and plasma (right

plot) of each class. Data points are colored by category. Each point represents one
patient. Patients with amore similar antibody composition are closer together and,
conversely, those that were more dissimilar depict a greater distance. The ellipses
represent the 95% confidence interval within subgroups. c Box plot representation
of CSF levels (OD450; optical density at 450 nm) of anti-BSA, anti-dsDNA-and anti-
gut bacteria (RePOOPulate)-IgG/IgA per patient and control group. Patients with
anti-SARS-CoV-2 Spike protein antibodies in the CSF indicated in red, those with
intrathecal IgG or IgA production in orange, respectively. Statistics: The data for
each parameter except the IgG data was marginalized on sex and age. Two-sided
Mann–Whitney-U test was applied, p value correction was performed with
Benjamin-Hochberg (BH)-procedure (adjusted p: *<0.05; **<0.01; ***<0.001; if not
otherwise indicated: not significant). Source data of (a, c) are provided as a Source
Data file.

Fig. 3 | B-cell receptor sequencing reveals a more specific antibody response
and a higher B-cell clone number in class I patients, whereas class III patients
depicted a more diverse response due to polyclonality. a Box plot representa-
tion of B-cell clone number in class I (n = 4) and class III patients (n = 4) respectively.
B-cell clone number was significantly higher in the blood of class I patients com-
pared to class III (Mann–Whitney-U test: p: =0.02857, spearman’s rank correlation
test: R =0.738, p =0.04583). Class I patients (n = 4) had higher plasma IgG levels
which correlated with the number of B-cell clones in the blood. b Box plot repre-
sentation of Shannon Diversity and Evenness in class I (n = 4) and class III (n = 4)
patients. Diversity analysis showed that therewasno significant difference between
class I and II. cRepresentation of all B-cell clones fromeach class clustered together
and ranked according to their total frequency (relative abundance) in the immune
repertoire of a patient. Then, top 10 highest frequency clones from each class

selected, grouped together and ranked again according to the total frequency. As
indicated in the dot plot, the clones making up more than 5% of BCR immune
repertoire belonged to class I patients (n = 4). Only two B-cell clones of class III
patientswere in the top 10.dB-cell immune repertoireof both classes (class I and III
patients: n = 8) showed a similar Gaussian distribution in CDR3 nucleotide length
and same median CDR3 nucleotide length. Each bar represents the number of B
cells having a specific CDR3 nucleotide length. Boxplots indicatemedian and lower
(25th)–upper (75th) quartile and whiskers show the minimum-maximum values.
Each dot represents individual samples. Statistics: Two-sided Wilcoxon rank-sum
test and spearman’s rank correlation were applied (adjusted p: *<0.05; if not
otherwise indicated: not significant,R Spearmancorrelation coefficient). BCRB-cell
receptor.
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Of note, several proteins with significantly higher CSF and plasma
levels in class III Neuro-COVID patients were additionally associated
with COVID-19 severity14, emphasizing the association of these med-
iators with COVID-19 severity (Fig. 6a). High plasma levels of MSR1, as
well as high CSF TNFRSF12A and IL-8 levels demonstrated the most
robust associationwithCOVID-19 severity19,22,26,27. Furthermore, plasma
IL-8, IL-6, TNFRSF11B, and CSF EZR levels were allied to severe COVID-
19 using the ordinal backward and best linear model21,22,27–29, whereas
plasma 4E-BP1 and CSF levels of PD-L1, BMP-4, CLEC10A and ROBO2
withstanded using one model only30–34. Taken together, mediators
involved in pro-inflammatory cascades, BBB disruption, microglia and
astrocyte activation, and tissue damage displayed the strongest asso-
ciation to COVID-19 severity.

CSF-plasma correlations identify a neuronal damage signature
in class III, encompassing predictive markers for severe
Neuro-COVID
We then measured correlations between each CSF and plasma med-
iator, and ranked them by correlation strength. Since plasma samples
are routinely obtained for diagnostics, we focused on predictive pro-
teins with a strong CSF-plasma correlation to identify biomarkers
associated with severe Neuro-COVID.

Assuming a cut-off of >0.45 in the Kendall-Tau correlationmatrix,
class-specific CSF-plasma correlations were noted and ranked (Sup-
plementary Fig. 5a, Venn diagram). CNS inflammatory controls and
healthy controls were characterized only by few strong CSF-plasma
correlations compared to the Neuro-COVID groups.

We observed a gradual change in correlations from class I to
class III. Only a few overlapping soluble proteins with strong cor-
relations were detected, whereas 10-12 individual class-defining
proteins were identified (Supplementary Fig. 5a, b, Venn diagram
and UpSet plot). In class I, the strongest correlations (value >0.55)
were characterized by a myeloid/eosinophil pro-inflammatory sig-
nature exemplified by SIGLEC1, MCP2, IL-8 and CLM120–23 (Supple-
mentary Fig. 5c, heatmap). In class II, an activated T cell-mediated
signature prevailed, defined by CCL25, CD8A, GZMA, TNFRSF9 and
IL2-RB, while myeloid correlations overlapped between class I and
II24,25,35. In class III, the pattern with the strongest CSF-plasma
correlations shifted to a chronic inflammatory and neuronal
damage signature encompassing CTSC, KYNU, TNFRSF12A, and
CXCL918,19,36,37, potentially implicating T-cell exhaustion during dis-
ease progression, whereas an adequate T-cell function could be
preserved in class II.

By ranking mediators based on their AUC-ROC score to dis-
criminate class I and II vs. class III, nine analytes (4 CSF and 5 plasma
proteins) displayed a score of >0.85, suggesting a high predictive
power for class III development (Fig. 6b, Supplementary Data 6).
Among these, TNFRSF12A additionally depicted a strong CSF-plasma
correlation (class III: 0.56; class II: −0.4; class I: 0.2), validating it as a
predictive biomarker for severe Neuro-COVID that could be routinely
used in clinics.

Multivariate analysis revealed that plasma IL-8, TNFRSF12A, MCP-
3, PVR, and CSF CD200R1 ranked high in both AUC-ROC and random
forest importance scores (Fig. 6c).

b
Plasma

CSF

Plasma

CSF

a

Fig. 4 | Neuro-COVID patients display a vigorous peripheral immune response
and specific CSF alterations including analytes with high predictive value for
class III development and strong CSF-plasma correlation. a Rose plots repre-
senting Z-scores of marginalized normalized protein expression (NPX) of
192 soluble proteins in CSF and plasma. For better visualization, analytes have been
grouped into ‘inflammatory’ (left panels) and ‘neurological’ (right panels) proteins.

b Non-metric multidimensional scaling (NMDS) plots of 192 examined soluble
proteins in CSF and plasma. Each patient is presented by one dot, and colored
according to healthy controls, CNS inflammatory controls or Neuro-COVID class
I-III. The ellipses represent the 95% confidence interval within subgroups. Source
data are provided as a Source Data file.
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Plasma IL-8, CSF TNFRSF12A and EZR were strongly associated
with both Neuro-COVID class III development and WHO COVID-19
severity, highlighting their importance as potential predictive bio-
markers (Fig. 6d)19,22,27–29. The most likely immune cell sources of
plasma and CSF proteins associated with both severe COVID-19 and
severe Neuro-COVID development are illustrated in Supplemen-
tary Fig. 6.

Neuro-COVID class III patients feature striking findings on brain
imaging while most class I and II patients lack evidence of
neuroinflammation
Exemplary brain images of each class (obtained during COVID-19) are
depicted in Fig. 7a–c. Detailed imaging findings are presented in
Supplementary Data 7. The most frequent MRI findings were bilateral,
multifocal hyperintense signal abnormalities on fluid-attenuated
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inversion recovery (FLAIR)/T2-weighted (T2w) imaging (n = 18, 56.3%;
class I: n = 5, 33.4%; class II: n = 5, 83.4%; class III: n = 11, 72.7%). These
signal abnormalities werepredominantly located in the periventricular
region (13 patients, 40.6%) and the semioval center (16 patients, 50%).
Additional FLAIR/T2w signal abnormalities were observable in the
corpus callosum (9 patients, 28.1%) and in the brain stem (7 patients,
21.9%). In one class III patient, bilateral thalamic signal hyperintensities
were present on T2w imaging (Fig. 7c). Furthermore, diffusion-
weighted imaging (DWI) changes were present in 4 patients (12.5%): 1
class I/II, and 2 class III patients. Black blood and/or timeof flight (TOF)
imaging was acquired in 4 patients, in 2 of which (both from class III)
focal vessel wall enhancement was visible, indicative of cerebral vas-
culitis (Fig. 7c). No signal changes were detected in the olfactory bulb.
In 3 CT-scanned class III patients, we found 1 infratentorial or supra-
tentorial infarction, 1 thrombosis of the sigmoid sinus with intracer-
ebral hemorrhage and 1 bifrontal subarachnoid hemorrhage (Fig. 7c).

Within our study cohort, we identified 6 patients with pre-existing
MRI scans (3 class I, 3 class III patients), whereas one class III patient
had a brain MRI followed by CT 1 week later during COVID-19. 3/6
patients had imaging alterations compared to their pre-COVID-19MRIs
(Fig. 7d–f). In one class I patient, we detected hyperintense signal
alterations in the left cerebellar hemisphere (Fig. 7d) and in the left
frontal juxtacortical region on DWI (Fig. 7e), suggesting small territory
acute diffusion restriction. The other two patients’ brain scans
demonstrated nonspecific white matter hyperintensities on FLAIR/
T2w imaging (Fig. 7f). In the class III patient with MRI and subsequent
CT scan, the MRI scan was unremarkable, whereas the CT depicted
right sided cerebellar infarction (Fig. 7c).

Lower GMVs in olfactory pathway structures in Neuro-COVID
patients are negatively correlated to inflammatory CSF
parameters
To identify implications of the deranged protein landscape to brain
integrity, we assessed GMVs in different brain areas and their asso-
ciation to routine and experimental CSF andplasmaparameters. There
were no significant differences between the Neuro-COVID group and
the imaging control group in age, sex and global brain variables
(Supplementary Table 5).

After false discovery rate (FDR) correction, we identified 16 spe-
cific brain regions that were negatively correlated to the CSF leukocyte
count, protein levels and the CSF/plasma albumin ratio (p < 0.05)
(Fig. 7g–j, Supplementary Table 6). Thereof, 81% corresponded to the
olfactory and gustatory cortex’s telencephalic connections, including
the amygdala, entorhinal cortex, basal ganglia, cingulate gyrus and
orbitofrontal areas (Fig. 7g–j).

Alternatively, we investigated the correlation of CSF and plasma
mediators with decreased regional GMVs. For instance, high plasma
levels of BMP-4 and GDF-8 were associated with preserved regional
GMVs (Supplementary Fig. 7), whereas PD-L1 and HGF were associated
with decreased GMVs in specific brain regions (Supplementary Fig. 8).

Additional proteins associated with GMV alterations are depicted in
Supplementary Fig. 9. However, none of the p values were significant
after BH procedure, highlighting the need for larger sample sizes and
targeted analysis of these plasma proteins.

Long-COVID is more prevalent in severe Neuro-COVID patients
and associated with specific CSF and plasma parameters
We further investigated the potential of CSF and plasma proteins to
predict long-COVID in a 13months follow-up. Long-COVIDwas defined
according to the WHO consensus definition38. Deceased patients were
not taken into account for the long-COVID prediction analysis.

Detailed results of the 13 months follow-up are described in
Table 1. Due to the high mortality rate and patients lost to follow-up
within class III (5/15 patients deceased, 7 lost to follow-up), we per-
formed only 3 follow-ups in this group. Out of the deceased patients,
three died during their hospital stay and 2 during the follow-up period.
Class II and III patients were more often affected by long-COVID
compared to class I. In class I, 11/18 patients recovered without long-
term deficits, whereas 6/7 class II and 3/3 patients in class III had long-
COVID. Furthermore, the death of a class I patient 3 months after
COVID-19 was caused by known end-stage heart failure.

Using an AUC cut-off of >0.75, high single plasma CLM-6
(CD300c), MCP-339,40, and low RGMA41 levels were predictive for
long-COVID (Fig. 8a). Furthermore, confusion matrix analysis of
plasma proteins revealed high predictive power of a signature of EZR,
RGMA, FcRL2 and ST1A1 for long-COVID forecast28,29,41–43 (Fig. 8a).

Within CSF, low levels of TRANCE (RANKL), as well as high
TNFRSF9 and IFN-γ levels were the best single protein predictors for
long-COVID1,2,44–46 (Fig. 8b). Confusion matrix analysis of CSF analytes
revealed high predictive power of a pattern composed of TRAIL, IFN-γ
and TNFRSF912,44,47–49 (Fig. 8b).

Discussion
We identified Neuro-COVID-specific CSF and plasma alterations, pro-
viding insights into pathomechanisms underlying COVID-19-related
neurological sequelae. Compared to previous analyses, we studied the
associations of peripheral inflammation, neuroinflammation and NS
multidimensionally within prospectively stratified Neuro-COVID clas-
ses and COVID-19 severity degrees.

Class III patients display anon-inflammatoryCSFprofile, signsof
blood-brain barrier disruption and a polyclonal antibody
response in the CSF, potentially caused by systemic immune
dysregulation
In line with other studies, we found elevated CSF glucose and lactate
levels in class III patients. Indeed, patients suffering fromdiabetes type
II were more prevalent in class III (Table 1). Nonetheless, the CSF/
plasma glucose ratio was significantly higher in class III patients com-
pared to class II patients, pointing towards not only diabetes-related
causes of elevated CSF glucose levels. The elevated lactate levels in

Fig. 5 | IndividualCSFandplasmaanalytes discriminatingdifferent groups.Box
plot representations (center line at the median, upper bound at 75th percentile,
lower bound at 25th percentile) of marginalized normal protein expression (NPX)
of individual analytes significantly discriminating selected groups with whiskers at
minimum and maximum values. Each dot represents one participant a Plasma,
increasing NPX from class I (n = 18) to III (n = 15), and higher than in controls (n = 50):
IL-6 (class III vs. I: p =0.007, class III vs. infl. ctrl: p =0.001), IL-8 (class III vs. I:
p =0.003, class III vs. infl. ctrl: p =0.0002), HGF (class III vs. I: p =0.04, class III vs.
infl. ctrl: p =0.0007), VEGFA (class III vs. I: p =0.01, class III vs. infl. ctrl: p =0.0005),
EN-RAGE (class III vs. I:p =0.003, class III vs. infl. ctrl: p =0.0002), TNFRSF12A (class
III vs. I: p =0.006, class III vs. infl. ctrl: p =0.002), PD-L1 (class III vs. I: p =0.04, class
III vs. infl. ctrl: p =0.002), CCL23 (class III vs. infl. ctrl: p =0.01), EZR (class III vs. infl.
ctrl: p =0.002), TNFRSF11B (class III vs. infl. ctrl: p =0.049). b Plasma, decreasing
NPX from class I (n = 18) to III (n = 15), higher in controls (n = 50) than in COVID-19

patients (n = 40): BMP-4, CLEC10A, CNTN5, GDF-8, NTRK2, GDNFRalpha, ROBO2.
c Plasma, class-independent, higher NPX in COVID-19 (n = 35) than in controls
(n = 50): 4E-BP1 (class III vs infl. ctrl: p = 0.007). d Plasma, higher NPX in COVID-19
(n = 40) than in controls (n = 50), decreasing from class I (n = 18) to III (n = 15): HAGH
(class III vs. I: p =0.008). e Cerebrospinal fluid (CSF), increasing NPX from class I
(n = 16) to III (n = 14): IL-8 (class III vs. I: p =0.012), MSR1 (class III vs. I: p =0.016), 4E-
BP1 (class III vs. I:p =0.02), CD200R1 (class III vs. I:p =0.04), TNFRSF12A (class III vs.
I: p =0.008), EZR (class III vs. I: p =0.01). fCSF, increasing NPX from class I (n = 16) to
III (n = 14), and higher in class III than in inflammatory controls (n = 25): TNFRSF11B
(class III vs. I: p =0.04, class III vs. infl. ctrl: p =0.02). Source data are provided as a
Source Data file. Statistics (a–f): statistical significance was calculated using two-
sided Mann–Whitney-U test and p values were adjusted using Benjamin-Hochberg
(BH)-procedure (p: *<0.05; **<0.01; ***<0.001, if not otherwise indicated: not
significant).
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class III potentially hint at cerebral hypoxia. For instance, class III
patients had putative COVID-19-induced stroke or intracerebral
hemorrhage, which may explain this finding.

Notably, we identified a class III-specific humoral CSF immune
response encompassing enrichment of (total) IgG/IgA against self-
(dsDNA) and non-self (BSA) antigens. This finding is corroborated by

distinct plasma B-cell clusters and CSF antibody reactivity profiles
previously reported12. Certainly, antibody production predominantly
tookplace in theplasma, pointing to an ingress of peripherally activated
B cells and antibodies. In linewith recent findings identifying new-onset
autoantibodies in patients with COVID-19, our identification of elevated
anti-dsDNA IgG, which are associated with cardiovascular symptoms in
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systemic lupus, may provide a potential pathophysiological rationale
for cardiovascular risk factors in severe COVID-1911,12,35,50–52. Indeed, two
out of four class lll patients with vascular complications had increased
levels of anti-dsDNA IgG in the CSF.

Our observation of elevated anti-gut microbial IgA antibodies
supports the evidence for gut barrier dysfunction in severe COVID-19
that may necessitate containment of gut microbiota translocated to
the circulation and possibly the CSF53–55. In that regard, underlying
conditions for microbiota dysbiosis, such as increased age, hyperten-
sion and diabetes have been observed in our class III cohort (Table 1).
Alternatively, trafficking of commensal-reactive regulatory B cells to
sites of neuroinflammation as recently described may underlie these
findings56,57. Our observations shed new light on mucosal barrier dis-
ruption as amodulator of the peripheral host immune response.While
we cannot exclude that the differences in class III are due to pre-
existing antibody profiles, the class-dependent increase in polyclonal
antibody responses argues for a COVID-19-related pathophysiology
and is corroborated by recent findings identifying new-onset auto-
antibodies in patients with COVID-1911.

Intriguingly, total CSF antibody levels were significantly higher in
class III compared to class I/II patients (Supplementary Fig. 1d),
representing a severity-dependent, compartmentalized B-cell
response, likely induced by BBB disruption.

Based on the results of our BCR sequencing, patients producing
moreB-cell clones in the peripherymaydevelopmilder disease for two
reasons: First, these patients produced higher levels of total IgG, which
might be protective, and second, the expanded clones producedmore
specific antibodies in comparison to severely affected patients. In class
III patients, the antibody response might be more diverse due to
enhanced polyclonality, reflecting an unspecific and dysregulated
immune activation, as seen in autoimmune diseases12,58.

Cytokine-induced blood-brain barrier disruption might lead to
heightened polyreactive antibody ingress to the CNS
Higher CSF protein, albumin, CSF/plasma ratio and IgM, IgG and IgA
levels, and intrathecal detection of peripherally produced SARS-CoV-2
S-antibodies underscored BBB impairment in class III patients. Of note,
SARS-CoV-2 S-antibody levels increase with a decreasing viral load59,
explaining our low detection rate.

In line with prior research16,17, we observed a class-incremental
cytokine storm in plasma, but less prominent in the CSF. Intriguingly,
class III patients displayed a unique CSF protein pattern highlighting
BBB disruption, microglia regulation and neuronal tissue damage.
TNFRSF12A displayed a high CSF-plasma correlation and predictive
value for class III development, rendering it a predictive biomarker for
severe Neuro-COVID given its involvement in BBB disruption during
CNS immune cell recruitment60,61. Further, IL-8, VEGFA and EN-RAGE
promoted class III inherent BBB impairment, reinforcing ingress of
polyreactive antibodies into the CSF22,27,62–64.

Notably, several of the proteins with higher CSF and plasma levels
in class III patientswereassociatedwithCOVID-19 severity14. Plasma4E-

BP1, MSR1, IL-8 and IL-6 as well as CSF TNFRSF12A, TNFRSF11B,
CLEC10A, PD-L1 and EZR were associated with COVID-19 severity and
Neuro-COVID, highlighting the role of the previously described
cytokine storm, the innate immune system, particularly microglia
overactivation, and a dysfunctional BBB in progressive COVID-
1918,19,22,27,45,46,65.

Microglia overstimulation affects cerebral integrity in COVID-19
Exploiting microglia, neuronal markers and neuroimaging, we inves-
tigated consequences of COVID-19-induced BBB impairment on cere-
bral integrity. TNFRSF11B, a decoy receptor for TRANCE (RANKL), was
the sole CSF discriminant between class III and CNS inflammatory
controls, leading to microglia overstimulation45. Importantly, we
detected concurring elevated TRANCE (RANKL) CSF/plasma ratios in
class III, which underscores the relevance of increased TNFRSF11B
levels. Targeting TNFRSF11B, e.g., by TRANCE (RANKL)mimics46, could
attenuate microglia activity in Neuro-COVID. Another relay of propa-
gating the peripheral inflammation to the brain is represented by
elevatedMSR1 levels66 followed by elevated CD200R1 levels in class III.
Altogether, this suggests microglial activation and its possible con-
sequences in severe Neuro-COVID.

Structural brain imaging alterations dominate in class III
patients
Brain imaging revealed findings in class III patients, whilemost class I/II
patients lacked evidence of profound alterations. Findings in class I/II
patients mainly consisted of white matter FLAIR/T2w abnormalities,
which have a broad spectrum of differential diagnoses, and are com-
mon in the elderly52,67,68. Therefore, we cannot deduct a causality of
COVID-19 and unspecific brain imaging changes, which necessitates
pre-COVID-19 scans. However, 3/6 patients with pre-COVID scans from
our cohort had novel alterations, pointing towards a possible asso-
ciation with the disease. Further, COVID-19 has been postulated to
cause endothelial dysfunction, microangiopathy and a prothrombotic
state, possibly explaining the impressive pathologies observed in our
class III patients52,69. Nonetheless, the underlying pathomechanisms
resulting in brain imaging abnormalities and the direct implication of
SARS-CoV-2 remain unsolved. Further, particularly longitudinally
designed studies assessing pre- and post-COVID-19 brain scans could
help identify potential pathomechanisms related to SARS-CoV-2.

Standard CSF parameters associate with reduced olfactory
GMVs in COVID-19 patients
Recently, a large scale, longitudinal volumetric brain imaging study of
COVID-19 patients reported results in line with our findings8. However,
the authors did not report associations of volumetric brain alterations
with particular CSF and plasma biomarkers. In our cohort, GMVs of
olfactory pathway regions were negatively correlated with the CSF/
plasma albumin ratio, CSF leukocytes and protein levels in COVID-19
patients. The pattern of decreased GMVs, particularly in olfactory
pathway structures, is consistent with reports of decreased glucose

Fig. 6 | Specific CSF and plasma analytes correlate with COVID-19 severity and
have predictive value for class III development. a Venn diagram representing
cerebrospinal fluid (CSF) and plasma mediators associated with COVID-19 severity
assessed with the WHO progression scale. The association of protein sets and
COVID-19 severity was assessed using a complement of four models (ordinal
backward, ordinal-forward, best linear, most-regularized ordinal). Results of each
model were finally cross-referenced to provide robust data sets of mediators
associated with severe COVID-19. Plasma MSR1 and CSF TNFRSF12A and IL-8
represent the most robust set of proteins associated with COVID-19 severity (high
association in each model used). Plasma IL-8 and IL-6, TNFRSF11B and EZR CSF
levels depicted strong association using two models, whereas plasma 4E-BP1 and
CSF PD-L1, BMP-4, CLEC10A and ROBO2 were strongly associated with COVID-19
severity in one model only. b ROC-AUC analysis of class I and II vs. class III. Five

predictive plasmamarkers, including IL-8, EN-RAGE, TNFRSF12A, MCP-3, and 4 CSF
markers, including 4E-BP1, EZR, TNFRSF12A, MSR1, emerged for the prediction of
class III development. The Y-axis represents the sensitivity, the X-axis represents
the 1-specificity (represented for IL-8, plasma). The names of relevant proteins in
the study are compiled in Supplementary Data 4. c Plot representing the ROC-AUC
values on the Y-axis vs. the random forest importance score on the X-axis. Relative
importance of each single protein is represented by a high random forest impor-
tance score. Red points: plasma proteins, light blue points: CSF proteins d Venn
diagram representing CSF and plasmamediators associatedwith COVID-19 severity
assessed with the WHO progression scale (COVID-19 severity) and mediators with
high predictive value for class III development (Neuro-COVID severity). Plasma IL-8,
CSF TNFRSF12A and CSF EZR depicted a high predictive value for severe COVID-19
and also class III development. lm linear model, RMSE root mean squared error.
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metabolism in fronto-parietal and temporal regions8. Maybe, the
higher CSF glucose levels and CSF/plasma glucose ratios in severe
Neuro-COVID can be explained by a lower glucose turnover of the
brain, particularly in regions where GMVs were negatively associated
with inflammatory CSF parameters. Likewise, some of these regions
with decreasedGMVs have overlapping olfactory- andmemory-related
functions, whichmay explain long-term neurological sequelae, such as
memory or concentration problems after COVID-198.

COVID-19 severity associated biomarkers could impact GMVs in
particular brain regions
In line with previous research, high PD-L1 and HGF plasma levels
were associated with COVID-19 severity17,30. Potentially, PD-L1
blockade would counteract the previously described immune
dysregulation30. Conversely, HGF, reported to mediate tissue-
regenerative responses in COVID-19-induced lung damage17, might
serve as a counter-regulatory factor promoting neuroregeneration
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upon neuronal tissue damage. Also, high PD-L1 and HGF plasma
levels were associated with decreased GMVs in particular brain
regions in other contexts17,30, whereas BMP-4 and GDF-8 were
associated with preserved volumes32,70,71. However, the results were
not significant, which could be explained by the low number of
patients providing both CSF/plasma and required MRI sequences
for brain volumetric analysis. Associating PD-L1 and HGF levels with
volumetric brain changes in a larger patient population could pro-
vide new actionable targets to prevent short- and long-term neu-
rological sequelae. Recently, work from ref. 72 pointed at the
impact of CCL-11 on neuronal damage and microglia activation in
COVID-19, corroborating the impact of peripheral cytokines on
neuronal and microglial pathology in COVID-19.

Long-COVID is predicted by a peripheral and CNS innate
immune dysregulation
Our long-term follow-up suggests that class II and III patients continued
to be more frequently affected by long-COVID compared to class I
patients. Furthermore, we identified CSF levels of pro-inflammatory
proteins (TNFRSF9, IFN-γ) and lacking anti-inflammatory mediators
(TRANCE(RANKL), TRAIL) to be predictive for long-COVID, whereas
plasma CLM-6, MCP-3 and ST1A1 revealed potential for long-COVID
forecast39,40. The association of particular pro-inflammatory cytokines
and long-COVID, amongst others IFN-γ, have been previously described
by Phetsouphanh et al.73 and is in line with our finding of elevated CSF
IFN-γ levels in long-COVID.

MCP-3 is crucial for efficient macrophage infiltration into the
CNS40,74, disclosing a dominant role of the innate immune system in
COVID-19-related long-term NS. Furthermore, CLM-6 upregulation
reflects a pronounced monocyte activation, underscoring the
connection of innate immune effectors with long-COVID
development39. Strikingly, ST1A1 was upregulated in an experi-
mental autoimmune encephalitis model42, pointing at autoimmune
mechanisms in COVID-19, and aligning with autoreactive antibodies
in severe COVID-19 and Neuro-COVID. Recently, work from Su et al.
pointed at the association of atypical memory B cells, exhibiting
lower levels of somatic hypermutation and enhanced BCR and IFN
signaling in long-COVID, sharing pathomechanisms with systemic
lupus. This observation is in line with our finding of elevated med-
iators of autoimmunity and emphasizes the involvement of auto-
immune mechanisms in long-COVID development.

Certainly, our analysis has limitations. Although prospectively
designed, we do not provide longitudinal follow-up data of assessed
parameters. However, we provide a 13 months questionnaire-based
follow-up confirming long-term neurological sequelae and higher
mortality rates in class III.

Moreover,we recruited a relatively lownumber of class II patients,
precluding us from characterizing this class to the same extent as class
I and III.

Only unvaccinated patients were included since we recruited
before the roll-out of COVID-19 vaccinations. Studies on the impact of
vaccinations on reported findings might be of clinical relevance.

We provide a multiparametric framework of Neuro-COVID
severity classifiers. The main determinants of severe Neuro-COVID
are: (1) peripherally induced cytokine derangements, followed by
(2) impaired BBB with ingressing polyreactive autoantibodies, (3)
microglia reactivity and neuronal damage resulting in (4) potential
GMV loss, possibly explaining short- and long-term COVID-19-
related neurological impairment (Fig. 9). Collectively, these data
identified several possible targets which should be further investi-
gated to potentially prevent COVID-19-related long- and short-term
neurological sequelae.

Methods
Ethics oversight, patient recruitment, follow-up and reporting
of data
This research project complies with all relevant ethical regulations.
The study and all uses of human material was approved by the Ethics
Committee of Northwestern and Central Switzerland (clinicaltrials.gov
NCT04472013, IRB approval EKNZ 2020-01503). The trial protocol can
be found in the Supplementary Information. Patients (n = 40) were
recruited during a period from August 2020 to April 2021 at two sites,
the University Hospitals Basel and Zurich. Patients were recruited at
the COVID-19 test center, the hospital ward or at the intensive care
unit. For each participant, written informed consent was obtained. If
the participant was not able to provide written informed consent,
written informed consent was obtained by their relatives. For their
additional hospital visit, patients recruited at the test center were paid
200 Swiss Francs.

Inclusion criteria were age ≥18 years and a real-time quantitative
PCR (qRT-PCR)-positive SARS-CoV-2 infection. The only applied
exclusion criteria was pregnancy. A 13 months patient reported out-
come follow-upwasperformedusing themodifiedCOVID-19Yorkshire
Rehabilitation Screening (C19-YRS).

We confirm that our study fully complies with the STROBE
statement and the STARD guidelines.

CSF and plasma sampling
All uses of human material have been approved by the Ethics
Committee of Northwestern and Central Switzerland (clinical-
trials.gov NCT04472013, IRB approval EKNZ 2020-01503). Out of 40
COVID-19 patients (mean [SD] age, 54 [20] years; 17 women (42%)

Fig. 7 | Routine brain imaging, regional GMVs and association with inflamma-
tory CSF parameters. a–c Conventional brain MRI and CT scans depicting
exemplary imaging findings. Scale bar 15mm (MRI) and 15.4mm (CT). a Class I:
Axial FLAIR images of the same class I patient show multifocal hyperintensities in
the right precentral gyrus (top left), semioval center, left frontal cortex (top right),
deep white matter, periventricular region (bottom left), right temporal lobe, left
parietalwhitematter (bottom right).bClass II: Axial FLAIR images of a class II patient
depict multifocal hyperintensities in the left frontal superior gyrus (top left), white
matter of left frontal lobe (top right), left parahippocampal white matter (bottom
left), rightmesial temporal region (bottom right). cClass III: Axial FLAIR image shows
bilateral thalamic hyperintensities (top left). Axial T1-weighted image depicts left
middle cerebral artery (M2-segment) enhancement in the insular cistern (top right).
Coronal CT scans demonstrate right cerebellar infarction (bottom left) and right
temporo-occipital intracerebral hemorrhage (bottom right) (secondary to throm-
bosis of the right sigmoid sinus). d–f Conventional pre-COVID-19 MRIs (left) and
MRIs during COVID-19 (right). d, e Axial DWI of the same class I patient depicts
hyperintense signal alterations during COVID-19 (right sided MRI scans, orange

arrows) in the left cerebellar hemisphere (d) and frontal juxtacortical region (e).
f Axial FLAIR imaging demonstrates bilateral hyperintense signal alterations in
the cerebellar peduncles (right sided MRI scan, orange arrows) of a class III patient.
g–i Map (g) and 3D view (h, i) of the 16 brain regions with significant correlation
values of gray matter volume (GMV) and clinical variables in the Neuro-COVID
group after multiple comparison correction (FDR). These regions are represented
in different colors on a T1-weighted template. j shows a matrix representing the
association significance (significant p-corrected <0.05 in red squares). Associations
between regional volumes and clinical measures were assessed using partial cor-
relation, allowing to calculate the linear partial correlation between variables of
interest adjusting for different covariates (age, sex, age*sex interaction, MRI mag-
netic field strength, total intracranial volume (TIV)). Statistical analysis was per-
formed using the JASP software (https://jasp-stats.org/). MRIcroGL software was
used to generate this figure (https://www.nitrc.org/projects/mricrogl). Source data
of (g–j) are provided as a Source Data file. L left, R right, leuk leukocytes, prot
protein, albR Albumin CSF-plasma ratio.
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Fig. 8 | Specific CSF and plasma mediators have high predictive value to fore-
cast long-COVID. ROC-AUC analysis of CSF and plasma parameters and long-
COVID. The Y-axis represents the sensitivity, the X-axis represents the 1-Specificity
(represented for plasma MCP-3). a Assuming an AUC cut-off of >0.75 for single
mediators, high MCP-3 and CLM-6, as well as low RGMA plasma levels were pre-
dictive for long-COVID. Confusion matrix analysis of predictive plasma proteins

revealed high predictive value of a plasmamediator signature consisting of RGMA,
EZR, FcRL2 and ST1A1. b Assuming an AUC cut-off of >0.75, three single CSF pro-
teins emerged for the prediction of long-COVID development. Low CSF levels of
TRANCE, as well as high TNFRSF9 and IFN-γ levels were the best predictors. Con-
fusionmatrix of CSF proteins revealed high predictive power of amediator pattern
composed of TNFRSF9, IFN-γand TRAIL.
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patients, 35 donated paired blood and CSF samples, whereas 5
participants donated only blood samples. Lumbar puncture (LP)
and blood withdrawal were performed concomitantly, on an aver-
age latency period of 4 days after the first positive SARS-CoV-2 qRT-
PCR test result. LP was performed under sterile conditions using a
20 gauge needle under local anesthesia on lumbarmidline levels L4/
5. Patients were monitored for positional headache or signs of CSF
leakage for 24 h after puncture. Fresh CSF and EDTA-treated blood
samples were processed into CSF supernatant and plasma. CSF
samples were processed within 30min post collection. After cen-
trifugation at 1000 × g for 10min, cell-free supernatant was
removed, aliquoted and stored at −80 °C. Whole blood was first
centrifuged at 2000 × g for 10min to separate plasma and blood
cells. The isolated plasma was then centrifuged at 1000 × g for
10min to remove residual blood cells, aliquoted and stored at
−80 °C and subsequently liquid N2. Retrospectively biobanked, age-
and sex-matched paired CSF and plasma samples from patients with
non-MS inflammatory neurologic disorders (n = 25; mean [SD] age,
54 [19] years; 12 women [48%]) and healthy donors (n = 25; mean
[SD] age, 52 [18] years; 12 women [48%]) (Supplementary Table 1)
served as controls and were obtained from J.K. and J.O., Neurology
Department, University Hospital Basel.

Antibody assays. The COVID-19 cohort (mean [SD] age, 54 [20] years;
17 women (42%) and control samples (CNS inflammatory controls:
n = 25; mean [SD] age, 54 [19] years; 12 women [48%], and healthy
donors: n = 25; mean [SD] age, 52 [18] years; 12 women [48%]) were
always analyzed together in the same batch. Laboratory personnel

were unable to make a difference between COVID-19 patient samples
and control samples.

Quantification of total immunoglobulins and SARS-CoV-2 spike
antibodies
Immunoglobulin (Ig) levels and anti-SARS-CoV-2 spike (S) protein IgG
in plasma and CSF were quantified using nephelometric and ELISA
assays and AI indices were calculated as part of the clinical routine
diagnostic.

Anti-MOG and anti-NF155 antibody assays
Paired plasma and CSF supernatant samples from COVID-19
patients, healthy and CNS inflammatory controls were examined
for IgG reactivities against conformational human myelin oligo-
dendrocyte glycoprotein (hMOG) and neurofascin-155 (NF155)50,75–77

using cell-based assays as previously described. In brief, stably
transfected TE cells expressing full-length MOG, NF155 or the
respective empty vector control were incubatedwith plasma (1:100)
or CSF (1:5) and antibody binding was detected using secondary
anti-human IgG-PE (Jackson). Humanized MOG- (h818C5; 0.2 μg/
mL) or NF155-specific (A12/18.1; 0.6 μg/mL) monoclonal antibodies
were included as positive controls, respectively. Live cells were
measured on a CytoFLEX flow cytometer and data analysis was
performed in FlowJo (FlowJo 10.6.2, Becton Dickinson and Com-
pany). The ratio of the geometric mean fluorescence intensity (MFI)
of the transfected cell line divided by the MFI of the control cell line
was calculated. The cut-off was set to 3 standard deviations above
the mean of a healthy control cohort.

Fig. 9 | Overview of proposed pathomechanisms leading to Neuro-COVID. The
proposed main determinants of severe Neuro-COVID are: (1) peripherally induced
cytokine derangements, followed by (2) impaired BBB with ingressing polyreactive

autoantibodies, resulting in (3) microglia reactivity and neuronal damage. Created
with Biorender.com.
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Commensal bacteria and polyreactivity ELISA
Human gut commensal bacteria, comprising 33 commensal bacteria
strains (RePOOPulate)56, double-stranded DNA (UltraPure Salmon
Sperm DNA, Thermo Fisher) and bovine serum albumin (BSA, Sigma-
Aldrich) were coated on a MaxiSorp ELISA plate (Nunc) in PBS in tri-
plicates and incubated overnight at 4 °C as recently reported56. Plates
were washed and blocked with 3% BSA in PBS for 2 h at RT before
incubation with plasma (1:100) or CSF (1:5) for 1 h. After incubation
with anti-human IgG or IgA horseradish peroxidase (Jackson Immu-
noResearch) for 1 h, the assay was developed with TMB peroxidase
substrate (Seracare). A polyclonal polyreactive IgG antibody (ED-38;
undiluted transfection supernatant) was used as a positive assay
control67. Triplicates with a coefficient of variation (CV) greater than
15% were corrected for by excluding one value. Corrected duplicates
with a CV above 15% were excluded from the analysis (n = 4). Negative
control signals (secondary antibodies only) were subtracted in a plate-
specific manner.

RNA extraction, library preparation and BCR sequencing
Total RNA was extracted from peripheral blood mononuclear cells
(PBMC) of exemplary class I (n = 4; mean [SD] age, 64 [10] years; 2
women [50%]) and class III (n = 4;mean [SD] age, 64 [13] years; 1woman
[25%]) patients using the AllPrep DNA/RNA Mini Kit (Qiagen, 80204)
following the vendor’s instructions. RNA concentration was measured
with Qubit RNA HS Assay Kit (ThermoFisher, Q32852). cDNA was
synthesized from 25ng total RNA by Ion Torrent NGS Reverse Tran-
scription Kit (ThermoFisher, A45003). Library preparation was done
with Oncomine BCR IGH SR RNA Assay (ThermoFisher, A45484).
Amplified and barcode ligated libraries were purified with AMPure XP
Reagent (BeckmanCoulter, A63880) and quantified with Ion Universal
Library Quantitation Kit (ThermoFisher, A26217). Library pool was
prepared by combining equal volumes of libraries at 50pmol/L con-
centration and loaded into Ion 550™ Chip (ThermoFisher, A34537).
The libraries were sequenced with Ion GeneStudio S5 Prime Sequen-
cer, ThermoFisher). All clones used for BCR sequencing are depicted in
Supplementary Data 8.

BCR sequencing data analysis
The BCR sequencing analysis was done by Ion Reporter Software
Version 5.18 (ThermoFisher). Global immune repertoire metrics such
as B-cell clone number (richness), Shannon diversity index and even-
ness (normalized Shannon’s diversity index) were calculated to
describe the diversity of the B-cell clones in the blood. Shannon
diversity index calculation takes into account the total clone number
(richness) and evenness of the clones. Evenness measures the relative
clonal abundancy and it has a value between 0 and 1. When the even-
ness approaches 0, it shows an unbalanced clone distribution with
high frequency clones in the population, or vice versa evenness close
to 1 means an even distribution of clones. CDR3 nucleotide length of
each clone was calculated and CDR3 length distribution was plotted
with R Studio Version 4.1.2. ggplot 2.

Multiplexed secreted protein assays from CSF and plasma. A total
of 192 analytes, including chemokines, soluble cell membrane pro-
teins and cytokines, were measured in 85 paired plasma and CSF
supernatant samples and additional 5 COVID-19 plasma samples,
acquired from COVID-19 patients (n = 40; mean [SD] age, 54 [20]
years; 17 women (42%), healthy controls (n = 25; mean [SD] age, 52
[18] years; 12 women [48%]) and patients with non-COVID-19
non-MS inflammatory neurological disorders (n = 25; mean [SD]
age, 54 [19] years; 12 women [48%]). The Olink 96 target neurology
(https://www.olink.com/products-services/target/neurology-panel/)
and Olink 96 target inflammation (https://www.olink.com/products-
services/target/inflammation/) panels were used. The measurements
were performed by the Olink Analysis Service at Olink laboratories

(SIAF, Davos, Switzerland). The assay used oligonucleotide-labeled
antibody pairs allowing for pair-wisebinding to target proteins. Briefly,
when antibody pairs bound target antigens, corresponding oligonu-
cleotides hybridized and were extended by polymerases and formed a
unique barcode, allowing the quantification of protein analytes by
high-throughput RT-PCR. Data are presented as normalized protein
expression values, Olink Proteomics’ arbitrary unit on a log2 scale.
Missing data were associated with a lower median expression. They
were imputed as either half the molecule detection threshold or such
that the sum of all imputed values for a molecule is 0.1 of the sum of
the molecule’s expressions, whichever was the smallest.

Analysis of multiplexed protein expression data. The COVID-19
cohort and control samples were always analyzed together in the same
batch. Laboratory personnel were unable to make a difference
between COVID-19 patient samples and control samples.

Handling of missing data/imputation
All values below the molecule-specific detection thresholds provided
with the experimental results were treated asmissing data which were
imputed as either half the detection threshold or such that the sum of
all imputed values on the column is 0.1 of the column values sum,
whichever was the smallest.

Marginalization of age and sex
To account for discrepancies in the distribution of age and sex
between the different groups, we used a linear model on the normal-
ized protein expression (NPX) values, and marginalized individual
observations for the median age and the female sex. Marginalization
reports for each molecule are documented and available in the Sup-
plementary Material.

Single cytokine analysis
Across all measured molecules, only a minority followed the assump-
tion of normality. Consequently, we relied on the Mann–Whitney-U
test to detect significant differences in marginalized NPX values
between our study cohorts. The test p values were corrected using a
BH procedure to control the FDR.

CSF/plasma ratio analysis
We investigated the relative concentration of each molecule between
CSF and plasma (CSF/plasma index) to investigate whether they result
from intrathecal or peripheral synthesis. We first performed a median
normalization of each molecule’s NPX value. Significant differences in
average ratios between groups were assessed using a Mann–Whitney-
U test with a BH correction to control for the FDR.

Association of the WHO progression scale with soluble proteins
We assessed the association between soluble proteins and COVID-19
severity based on the WHO progression scale14 using a complement
of four models. The first two models corresponded to ordinal regres-
sion models with an L1 norm, respectively with a backward and
forward formulation, as implemented in the glmnetcr R package
[https://cran.r-project.org/web/packages/glmnetcr/citation.html]. The
lambda hyper-parameter (corresponding to the strength of the reg-
ularization term), was selected to minimize the Bayesian Information
Criterion, or the Akaike Information Criterionwhen the BIC pointed to
the null model. While this modeling approach is appropriate to the
nature of the data, the absence of several categories from our sample
as well as the poor predictive performance of the predictive model led
us to complement this approach with simple linear regressionmodels.
WefittedGaussian linearmodelswith an L1 norm, using a 10-fold cross-
validation, as implemented in the glmnet R package [https://cran.r-
project.org/web/packages/glmnet/citation.html]. We kept the model,
which minimized the cross-validated mean squared error and the
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most-regularized model such that the cross-validated error is within
one standard error of the minimum. We assessed the assumptions of
these Gaussianmodels and found them appropriate. Finally, we cross-
referenced the results from each of the four models (backward-ordi-
nal, forward-ordinal, best linear,most-regularizedordinal) to provide a
robust modeling choice of sets of molecular markers of COVID-19
severity.

CSF-plasma and brain volumetric correlation analysis
The correlations between plasma and CSF measurements (between
fluid correlations)weremeasured, for eachCOVID-19 class and control
group, using the Kendall rank correlation coefficient (Kendall’s tau).

To correlate between CSF or plasma molecules and brain region
volumes, we selected the brain regions and molecules, which differed
significantly between COVID-19 and control patients. A Spearman-rank
correlation test was performed to assess the association between
regional brain volumes and marginalized protein expression levels in
CSF and plasma. The BH procedure was used for FDR control.

ROC-AUC analysis and random forest approach
We ranked molecules by the ROC-AUC score of their marginalized
data to discriminate against either: class I vs. III, class II vs. III, class
I + II vs. III (Supplementary Data 3). Across all molecules, only a
minority was normally distributed. Consequently, we relied on the
nonparametric Mann–Whitney-U test to detect significant differ-
ences between each group. Individual p values were corrected using
the BHprocedure, controlling for an FDRof 0.05. Complementary to
this univariate approach, we assessed the relative importance of
each molecule in a multivariate approach by training a random
forest. Hyper-parameters were optimized using leave-one-out cross-
validation. We performed this procedure twice: once with both CSF
and plasma measurements, and once with only the plasma mea-
surements. In both cases, the best random forest was able to predict
the training set with perfect accuracy. We wish to remark explicitly
that given our sample size, we kept the entirety of the data as a
training set and report the testing set.

Association of long-COVID with soluble proteins
We ranked molecules by the AUC-ROC score of their marginalized
data to discriminate between patients who developed long-COVID
and patients who did not. Subsequently, we trained logistic
regressionmodels with, respectively, the plasma and CSFmolecules
whose individual AUC-ROC was above 0.75. The logistic regression
models were reduced using backward selection in order to limit
overfitting and provide minimal sets of molecules sufficient to
predict long-COVID. AUC-ROC cut-offs applied for minimal sets of
predictive molecules were 0.7. The reduced model contained 4
plasma and 3 CSF molecules. Given our sample size, we kept the
entirety of the data as a training set and reported the testing set.
However, we assessed the robustness of our reduced sets of mole-
cular markers using 5-Fold cross-validation.

Brain imaging. All uses of prospectively obtained brain scans have
been approved by the Ethics Committee of Northwestern and Central
Switzerland (clinicaltrials.govNCT04472013, IRB approval EKNZ2020-
01503). Written informed consent has been provided by each partici-
pant. If participants were not able to provide consent their relatives
provided informed written consent. Imaging studies were conducted
on a 1.5 Tesla (T) MAGNETOM Siemens Avanto Fit and a 3 T MAGNE-
TOM Siemens Skyra Scanner. MRI sequences included 3D T1-weighted
(T1w) +/− gadolinium, fluid-attenuated inversion recovery (FLAIR),
diffusion-weighted imaging (DWI), susceptibility-weighted imaging
(SWI) and T2-weighted (T2w) sequences to document signs of neu-
roinflammation. For standardization of MRI interpretation, an assess-
ment protocol was created (Supplementary Data 9). Anatomical T1w

MPRAGE pulse sequences were acquired for brain volumetric analysis.
CT scans were assessed according to clinical standards. Two neuror-
adiologists (J.M.L. and M-N.P.) reviewed the images, blinded to clinical
and laboratory patient data.

Brain volumetric analysis
Participants and imaging data acquisition. Among the 40 enrolled
COVID-19 patients (mean [SD] age, 54 [20] years; 17 women (42%), 22
were selected based on the 3D high-resolution T1w anatomical image
quality. To generate a bigger sample size, 13 additional patients who
underwent brain MRI during their acute phase of COVID-19 were ret-
rospectively added. These patients were not included in the main
study cohort, undergoing CSF and plasma analysis. Consequently, the
COVID-19 volumetric imaging cohort consisted of 35 participants
(mean [SD] age, 52 [20] years; 21 women (60%).

As a control cohort, 36 healthy, age- and sex-matched individuals
were selected (mean [SD] age, 54 [24] years; 23 women (64%). This
control group served only for the imaging analyses and was a different
group than the healthy controls for the CSF and plasma comparison.
The control groups’ demographic and clinical information can be
found in Supplementary Table 5. The acquisition of prospectively
collected brain scans was approved by the Ethics Committee of
Northwestern and Central Switzerland (clinicaltrials.gov
NCT04472013, IRB approval EKNZ 2020-01503). For retrospectively
obtained brain scans, the general research consent under local hos-
pital regulations was acquired.

The 3D high-resolution T1w anatomical images were acquired
using twoMRI scanners (scanner 1: 1.5 T Siemens Avanto Fit; scanner
2: 3 T Siemens Skyra). An MPRAGE pulse sequence covering the
whole brain was used in both MRI scanners with the following
parameters. Scanner 1: 160 contiguous slices of 1mm thickness in
sagittal orientation; in-plane FOV = 256 × 256mm2, and matrix size
256 × 256 yielding an in-plane spatial resolution of 1 × 1mm2 and
voxel size of 1 × 1 × 1mm3. The echo (TE), repetition (TR), and
inversion (TI) times were set to TE/TR/TI = 2.8ms/2400ms/900ms
with a flip angle FA = 8°. Scanner 2: 160 contiguous slices of 1mm
thickness in sagittal orientation; in-plane FOV = 256 × 240mm2, and
matrix size 256 × 240 yielding an in-plane spatial resolution of
1 × 1mm2 and voxel size of 1 × 1 × 1 mm3. The echo, repetition, and
inversion times were set to TE/TR/TI = 2.98ms/2300ms/900ms
with a flip angle FA = 9°. For the association analysis with the brain’s
regional volume, we included routine diagnostic CSF parameters
(leukocytes, lactate, protein, and CSF/blood albumin ratio). These
variables were available for the main COVID-19 study cohort, which
was under CSF and plasma evaluation.

Data pre-processing: brain global, regional gray matter and
choroid plexus volume computation
The anatomical T1w images were automatically parcellated into 132
brain regions based on Neuromorphometrics atlas using the Neuro-
morphometrics toolbox. The atlasing methodology consists of two
main steps. First, each image is segmented into three different brain
tissue classes (CSF, graymatter, andwhitematter) using the “Segment”
(unified segmentation) tool in SPM12 (Statistical Parametric Mapping
Toolbox), which includes registration to the MNI (Montreal Neurolo-
gical Institute) space. Second, the probabilistic atlas of each of the
anatomical structures is spatially registered with the extracted gray
and white matter tissue maps using the “Shoot” tool in SPM12, based
on a nonlinear advanced registration algorithm78. Rules of probability
are used to combine the previous images to obtain a probabilistic label
map for each brain structure. At every gray matter voxel (in subject
space), the probability of belonging to a specific anatomical structure
is provided. From above, maximum probability label maps are calcu-
lated at all gray matter voxels (in subject space) which are labeled
according to the structure of maximumprobability. Finally, mean gray
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matter volume (GMV) values are calculated across voxels belonging to
each structure label (Supplementary Data 10). The total intracranial
volume (TIV) was computed as the sum of gray and white matter and
cerebrospinal fluid volumes in cm3. Normalized GMV is defined as the
ratio between GMV and TIV. To control for head size, we adjusted the
statistical models for TIV measured by SPM12.

Statistical analyses
We checked the normal distributions of all variables using Shapiro-
Wilk tests and visual inspection of the histograms. To test the equality
of variances, Levene’s test was applied. Clinical and demographic
variables were compared between groups with Independent t-test,
Mann–Whitney-U test, orChi-square tests where appropriate. Regional
volumes were compared between groups using a linear regression
model. The additional covariates were age, sex, age*sex interaction,
MRI magnetic field strength, and TIV. Choroid plexus volume (CPV)
was adjusted for TIV and was compared by Mann–Whitney-U test. We
checked whether the dependent variable’s variance is equal between
the groups by performing Levene’s test of equal variances. The p
values were adjusted for multiple comparisons using FDR. The asso-
ciations between brain regional volume and clinical measures were
assessed using partial correlation. The method allows calculating the
linear partial correlation betweenour variables of interest adjusting for
different covariates. Our covariates were: age, sex, age*sex interaction,
MRI magnetic field strength, and TIV. We adjusted for multiple com-
parisons using an FDR method. The statistical analysis was performed
using the JASP software (https://jasp-stats.org/). For the partial- cor-
relation analysis, we used MATLAB software (‘partialcorri.m’ function)
(https://www.mathworks.com/).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data underlying the study are available within the submitted paper.
No restrictions on data availability such as a materials transfer agree-
ment are foreseen for this study. The trial protocol is available upon
request from the corresponding author. The final trial protocol is
provided as a Supplementary File (Supplementary Data 11). Source
data are providedwith this paper as an.xlsx file with specified different
sheets corresponding to theMain Figures, Supplementary Figures and
Supplementary Tables provided with this paper. The following exter-
nal databases and datasets were used: SPM software as a suite of
MATLAB (MathWorks) functions and subroutineswith some externally
compiled C routines (Wellcome Trust Center for Neuroimaging, Lon-
don, UK; http://www.fil.ion. ucl.ac.uk/spm), Neuromorphometric atlas
(SPM12 introduces a new atlas “labels_Neuromorphometrics”; see
https://github.com/neurodebian/spm12/blob/master/spm_templates.
man, http://Neuromorphometrics.com/). Maximum probability tissue
labels derived from the “MICCAI 2012 Grand Challenge andWorkshop
on Multi-Atlas Labeling” are available in files tpm/labels Neuromor-
phometrics.{nii,xml}. This data was released under the Creative Com-
mons Attribution-NonCommercial (CC BY-NC) with no end date. The
MRI scans originate from the OASIS project and the labeled data as
“provided by Neuromorphometrics, Inc. under academic subscrip-
tion”. Source data are provided with this paper.

Code availability
All statistical reports are available under https://github.com/
WandrilleD/severe-neuro-COVID-cross-sectional-study-etteretal2022.
The molecular data analysis was realized using python tools and
libraries (Python Software Foundation, http://www.python.org). Sta-
tistical computations relied on the numpy, pandas, scikit-learn, scipy

and statsmodels libraries. Figures were generated using the graphviz,
matplotlib and seaborn libraries.
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