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Low back pain (LBP) seriously affects human quality of life. Intervertebral disc degeneration (IVDD) is the main pathological
factor that leads to LBP, but the pathological mechanism underlying IVDD has not been fully elucidated. Neuropathic pain
caused by IVDD is an important pathological factor affecting people’s daily lives. Therefore, it is very important to identify
therapeutic drugs to ameliorate IVDD and secondary neuropathic pain. Hydroxytyrosol (HT) is a natural compound derived
from olive leaves and oil and has anti-inflammatory, antioxidant, and antitumor activities and other properties. In this study,
TNF-α-stimulated human nucleus pulposus cells (HNPCs) were used to simulate the local inflammatory microenvironment
observed in IVDD in vitro to explore the role of HT in alleviating various pathological processes associated with IVDD. A rat
needle puncture model was used to further explore the role of HT in alleviating IVDD. Lipopolysaccharide (LPS) was used to
stimulate microglia in vitro to comprehensively explore the role of HT in alleviating neuropathic pain, and a rat model
involving chronic compression of the dorsal root ganglion (CCD) was established to simulate the neuropathic pain caused by
IVDD. This study suggests that HT reduces the expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase
(iNOS), the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, a disintegrin and
metalloproteinase with thrombospondin motifs-4 (ADAMTS-4) and matrix metalloproteinase-13 (MMP-13); inhibits the
production of mitochondrial reactive oxygen species (ROS); and maintains mitochondrial homeostasis. Thus, HT appears to
reduce the rate of apoptosis and mitigate the loss of major intervertebral disc components by inhibiting the nuclear factor
kappa-B (NF-κB) signaling pathway. Moreover, HT inhibited the secretion of COX-2, tumor necrosis factor-α (TNF-α),
interleukin (IL)-6, IL-1β, and iNOS and activation of the NLRP3 inflammasome in microglia by inhibiting the
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and extracellular regulated protein kinase (ERK) signaling
pathways. In conclusion, HT plays a protective role against IVDD and secondary neuropathic pain by inhibiting the NF-κB,
PI3K/AKT, and ERK signaling pathways.
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1. Introduction

Low back pain (LBP) is a common symptom in orthopedic
patients. Research suggests that up to 84% of the global pop-
ulation will experience LBP in their lifetime [1, 2]. Interver-
tebral disc degeneration (IVDD) is the main pathological
factor that causes LBP [3, 4]. The treatment of IVDD
remains a controversial topic; treatment options include rest,
pain medication, physical therapy, and surgery [5]. These
methods are designed to relieve the patient’s pain but not
to repair the damaged intervertebral disc (IVD). IVDD is
an extremely complex pathological process. Abnormal
mechanical stress, sudden trauma, bacterial infection, smok-
ing, aging, and other pathogenic factors lead to the increased
expression of inflammatory cytokines (such as interleukin
(IL)-1β, IL-6, IL-17, and tumor necrosis factor-α (TNF-α))
in nucleus pulposus (NP) cells. The release of inflammatory
cytokines leads to an increase in the expression of major cat-
abolic enzymes (a disintegrin and metalloproteinase with
thrombospondin motifs-4, 5 (ADAMTS-4, 5) and matrix
metalloproteinase-13 (MMP-13)) in NP cells, resulting in
the degradation of the extracellular matrix (ECM) and an
imbalance between catabolic and anabolic metabolism in
NP cells and the occurrence of IVDD [6].

Treatment of NP cells with TNF-α, a traditional inflam-
matory cytokine, has been widely used to establish IVDD
models in vitro [7]. TNF-α triggers many pathological pro-
cesses involved in IVDD through the activation of the NF-
κB signaling pathway, including the secretion of a variety
of proinflammatory cytokines (IL-1β, IL-6, and IL-8), the
production of MMPs and ADAMTSs that promote ECM
degradation, increased decomposition of collagen-2 (col-2),
and aggrecan, and damage to the structure of IVDs. TNF-α
exacerbates IVDD by activating the NOD-like receptor ther-
mal protein domain associated protein 3 (NLRP3) inflam-
masome, thus mediating mitochondrial dysfunction and
reactive oxygen species (ROS) production in NP cells [7].

Mitochondria are the main organelles producing ROS
[8]. Mitochondria are the target of ROS, and the accumula-
tion of ROS alters cellular metabolism, causing oxidative
damage to IVD cells and leading to the activation of the
NLRP3 inflammasome and the release of inflammatory
cytokines [9]. The overproduction of ROS substantially
inhibits matrix synthesis and upregulates the expression of
proteases that cause matrix degradation in IVD cells [10].
ROS can cause oxidative damage to mtDNA and respiratory
enzymes, resulting in the imbalance and dysfunction of
mitochondrial energy metabolism and thus leading to apo-
ptosis and the exacerbation of IVDD. Therefore, reducing
the inflammatory response in the local microenvironment
of IVDs, improving mitochondrial function and inhibiting
the activation of the NLRP3 inflammasome are important
strategies to delay IVDD progression.

The occurrence of neuropathic pain seriously affects
patient quality of life and makes treatment difficult [11].
Neuropathic pain is caused by damage to the peripheral or
central nervous system and is characterized by spontaneous
pain and hyperalgesia in response to innocuous and noxious
stimulation [12–14]. The exacerbation of IVDD leads to

annulus fibrosus (AF) tears and NP herniation. When disc
degeneration results in disc herniation, compression of adja-
cent nervous system structures, such as nerve roots or dorsal
root ganglia, occurs; this compression causes peripheral nerve
damage and aggravates neuropathic pain, since the damaged
sensory neurons produce inflammatory cytokines and chemo-
kines that activate microglia and astrocytes [15, 16].

Inflammatory cytokines are important initiators and
aggravators of neuropathic pain. Accumulating evidence
suggests that proinflammatory cytokines (IL-1β, IL-6,
cyclooxygenase-2 (COX-2), inducible nitric oxide synthase
(iNOS), and TNF-α) are strongly involved in the pathogen-
esis of neuropathic pain [17–19]. In addition, the NLRP3
inflammasome has been widely reported to promote neuro-
inflammatory responses, leading to the worsening of neuro-
pathic pain [20–22]. Proinflammatory cytokines are
upregulated in injured peripheral nerves and causes chronic
neuroinflammation while activating microglia and astro-
cytes in the spinal dorsal horn (SDH), which play key roles
in neuropathic pain [23]. Microglia are necessary for the
maintenance, support, protection, and monitoring of the
central nervous system [24]. Substantial microglial hyperpla-
sia in the SDH leads to local inflammatory responses that
aggravate neuropathic pain [18, 25]. Microglia interact with
neurons related to pain transmission and increase the excit-
ability of these neurons, leading to the occurrence and pro-
gression of neuropathic pain [26]. Therefore, inhibiting the
inflammatory response is an important way to alleviate neu-
ropathic pain. Chronic compression of the dorsal root gan-
glion (CCD) is one of the important methods used to
study neuropathic pain, and it has become an important dis-
ease model to simulate the neuropathic pain caused by disc
herniation and spinal canal stenosis due to its direct com-
pression of the dorsal root ganglion [16]. Therefore, we
established a rat model of CCD to simulate local nerve com-
pression caused by disc herniation and to study the mecha-
nism by which hydroxytyrosol (HT) alleviates neuropathic
pain.

HT is a natural phenol and the most biologically active
component in olive leaves and olive oil. HT has multiple bio-
logical effects, and its anti-inflammatory and antioxidant
effects have been widely studied. HT exerts its strong anti-
inflammatory effects by inhibiting the expression of lipo-
polysaccharide (LPS)-mediated inflammatory cytokines
(TNF-α and IL-1β) [27] and by inhibiting the expression
of MMP-9 and COX-2 in activated human monocytes
[28]. Among the various phenols in olives, HT has the stron-
gest antioxidant activity due to its abilities to supply elec-
trons in the ortho position of its hydroxyl group and to
form stable hydrogen bonds with the phenoxy radical [27,
29]. Various studies have demonstrated that HT has thera-
peutic effects in cancer, neurodegenerative diseases, rheuma-
toid arthritis, osteoarthritis, and osteoporosis [30–33].
Previous studies have shown that HT-20 can inhibit acute
inflammation and hyperalgesia induced by carrageenan in
rats and reduce the local expression levels of IL-1β and
TNF-α in rat tissues [34]. In a double-blind clinical trial,
HT led to significantly better Japanese Orthopaedic Associa-
tion (JOA) scores and visual analog scale scores than placebo
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in patients, demonstrating that HT is effective in reducing pain
in gonarthrosis [35]. Moreover, HT inhibits several important
pathological processes related to the occurrence and develop-
ment of osteoarthritis; for example, HT reduces the production
of important inflammatory cytokines, improves the local meta-
bolic microenvironment, and inhibits the oxidative stress
response [32, 36]. However, the mechanisms by which HT alle-
viates IVDD and neuropathic pain have not been reported. In
the present study, we investigated the mechanisms by which
HT alleviates neuropathic pain and IVDD.

2. Materials and Methods

2.1. Ethics Statement and Human Nucleus Pulposus Cell
(HNPC) Extraction. The IVD tissues of 7 patients with
IVDD were collected at Chinese PLA General Hospital (Bei-
jing, China). The extraction of primary HNPCs was carried
out according to a previously published study [37]. Briefly,
NP tissues were cut into 1mm3 pieces and digested with
trypsin and type II collagenase. After 4 h of digestion, we
used a 70μm sterile cell filter to filter the digested HNPCs.
The HNPCs were washed three times to remove the remain-
ing type II collagenase and then seeded in petri dishes [37].

2.2. HNPC and Microglia Culture. HNPCs were divided into
four groups and cultured under different conditions: PBS,
TNF-α (50ng/mL) (ABclonal, China), TNF-α+HT (20μM)
(MedChemExpress, China), and TNF-α+HT (100μM). Rat
microglia (Procell Life Science & Technology Co., Ltd.) were
divided into four groups and cultured under different condi-
tions according to a previous study [38]: PBS, LPS (1μg/mL)
(PeproTech, USA), LPS+HT (20μM), and LPS+HT
(100μM).

2.3. Cell Viability. Cell viability was determined using the
CCK-8 assay (Dojindo, Japan) following the manufacturer’s
instructions. The HNPC suspension (104 cells) was added to
96-well plates. The culture plates were placed in an incuba-
tor for preculture. Ten microliters of CCK-8 solution was
added to each well, and the cells were incubated for 2 h.
The absorbance at 450 nm was then measured with a micro-
plate reader.

2.4. Rats. Two-month-old Sprague–Dawley rats were
obtained from Beijing Vitalstar Biotechnology Co., Ltd. All
rats were randomly assigned to 3 groups (N = 5 per group).
After successfully anesthetizing the rats, we used X-ray to
assess the Co6/7 intervertebral space of the rats. A 20G
puncture needle was used to penetrate the AF of the IVD
to the center of the NP, rotated 360°, and then removed after
one minute. Two microliters of HT (100μM) was injected
slowly for approximately 8 seconds using a Hamilton micro-
syringe with a 33G needle on day 2 after the IVDD model
was established.

All rats were randomly assigned to 4 groups (N = 5 per
group). Two-month-old SD rats were anesthetized, the right
paravertebral muscle of the L4-5 segment of rats was sepa-
rated to expose the right lamina and the outer edge of the
lamina, and L-shaped titanium rods (approximately 4mm
at one end and 3mm at the other end) with a diameter of

0.63mm were inserted into the L4 and L5 foramen. The rods
were inserted into the foramen at 30° to the dorsal midline
and 10° to the vertebral horizontal line [16]. In the sham
group, only the L4 and L5 laminae and the outer edge of
the lamina were exposed. The rats in the CCD model group
(N = 5) were treated with intrathecal injection on the second
day after the operation, and 10μL HT (100μm) was injected
slowly for approximately 40 seconds.

2.5. Assessment of Pain Behaviors. Three researchers assessed
the rats’ behavioral scores separately and in a double-blind
manner. As previously reported [39], beginning on Day 0
postoperatively, the paw withdrawal mechanical threshold
(PWMT) was assessed by the same researcher every two
days using the BME-404 electronic mechanical pain detector
(Chinese Academy of Medical Sciences, CAMS, Beijing,
China), and thermal paw withdrawal latency (TPWL) was
assessed by the same researcher every two days using the
BME-410C thermal analgesia tester (CAMS).

2.6. Quantitative Real-Time PCR (qRT–PCR). HNPCs were
incubated for 24 h with 50 ng/mL TNF-α and 20 or 100μM
HT or were left untreated. Microglia were incubated for
24 h with 1μg/mL LPS and 20 or 100μM HT or were left
untreated. Total RNA was extracted from HNPCs and
microglia in each group with an RNA extraction kit (Yishan
Biotechnology, China) and reverse transcribed into cDNA
with a 20μL reverse transcription kit (Yishan Biotechnol-
ogy). 2×RealStar Power SYBR Real-time Quantitative PCR
Mix (High ROX) (Genstar, China) on a 7500 RT–PCR sys-
tem (ABI, USA) was used to conduct qRT–PCR. Table 1 lists
all the nucleotide sequences of the primers used in this
experiment.

2.7. Western Blotting (WB) Analysis. HNPCs were incubated
for 1 h or 48 h with 50 ng/mL TNF-α and 20 or 100μM HT
or were left untreated. Microglia were incubated for 1 h or
48 h with 1μg/mL LPS and 20 or 100μM HT or were left
untreated. The SDH was collected from the rats and lysed
for 1 h with 100-150μL protein extraction buffer (1%
PMSF+RIPA); the total protein contents in microglia and
HNPCs were then extracted. The proteins were separated
and transferred to polyvinylidene fluoride (PVDF) mem-
branes. The bands were incubated with primary antibodies
(all at 1 : 1000 dilution), including antibodies targeting
NLRP3, COX-2, MMP-13, iNOS, ADAMTS-4, Bcl-2,
cleaved caspase-3 (c-caspase3), Bax, IL-6, TNF-α, phosphor-
ylated p65 (p-p65), p65, phosphorylated-AKT (p-AKT),
AKT, phosphorylated-ERK (p-ERK), ERK, and GAPDH
(1 : 5000, Proteintech, China) (Table 2), and secondary anti-
bodies (1 : 5000, Proteintech, China). The protein bands
were detected using a Tanon 5200 imaging system (Tanon,
China).

2.8. Flow Cytometry. A flow cytometry assay was performed
after the cells had been stained with propidium iodide (PI)
and annexin V-FITC at 25°C for 20min using the BD Biosci-
ences Assay Kit (USA). A BD FACSCalibur Flow Cytometer
(BD Biosciences, USA) was used for analysis.
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2.9. JC-1 Assay. A Beyotime Biotechnology (China) assay kit
was used for the JC-1 experiment. In brief, HNPCs were
incubated with JC-1 staining solution at 37°C for 30min
and then washed three times using 1X JC-1 buffer.

2.10. Mitochondrial Permeability Transition Pore (Mptp)
Assay. An Mptp Assay Kit (Beyotime Biotechnology) was
used to investigate the opening of the Mptp. In brief, HNPCs
were incubated with calcein AM staining solution at 37°C for
45min and then with preheated culture solution at 37°C for
30min, washed with PBS 2-3 times, and then added to
detection buffer solution for observation under a fluores-
cence microscope.

2.11. ROS Assay. Dichlorodihydrofluorescein diacetate
(DCFH-DA) was added to fresh serum-free medium at a
dilution ratio of 1 : 1000 and added dropwise to the cell cul-
ture plate for cell incubation at 37°C for 20-30min according
to the instructions of the ROS assay kit (Beyotime Biotech-
nology) [37].

2.12. Histological Staining. Hematoxylin and eosin (HE)
staining (G1120, Solarbio, China), Safranin O-fast green
(SO-FG) staining (Servicebio, China), and Sirius red staining
(G1018, Servicebio, China) were carried out following the
manufacturer’s procedures. A Pannoramic MIDI scanner
(3DHISTECH, Hungary) was used to capture images.

Table 1: The nucleotide sequences of the primers used in this experiment.

Source Target Forward primer, 5′-3′ Reverse primer, 5′-3′

Human

COX-2 GGAACTTTCTGGTCCCTTCAG TGTGTTTGGAGTGGGTTTCA

iNOS GCCAAGCTGAAATTGAATGAGGA TTCTGTGCCGGCAGCTTTAAC

MMP-13 TGCTGCATTCTCCTTCAGGA ATGCATCCAGGGGTCCTGGC

ADAMTS-4 ACCCAAGCATCCGCAATC CAGGTCCTGACGGGTAAACA

NF-κB1 TATTTGAAACACTGGAAGCACG CCGGAAGAAAAGCTGTAAACAT

GAPDH GCACCGTCAAGGCTGAGAAC TGGTGAAGACGCCAGTGGA

Rat

COX-2 CTACACCAGGGCCCTTCC TCCAGAACTTCTTTTGAATCAGG

iNOS CACCACCCTCCTTGTTCAAC CAATCCACAACTCGCTCCAA

IL-6 AAGCCAGAGTCATTCAGAGCAA GGTCCTTAGCCACTCCTTCT

IL-1β AAATGCCTCGTGCTGTCTGA CAAGGCCACAGGGATTTTGTC

GAPDH CCACCAACTGCTTAGCCCCC GCAGTGATGGCATGGACTGTGG

Table 2: Antibodies used in this experiment.

Primary antibody Catalog number Manufacturer

Anti-NLRP3 A5652 ABclonal

Anti-COX-2 A1253 ABclonal

Anti-MMP13 A11148 ABclonal

Anti-iNOS A14031 ABclonal

Anti-ADAMTS-4 BS-4191R Bioss

Anti-Bcl-2 A1105 ABclonal

Anti-cleaved caspase-3 9664 Cell signaling technology

Anti-Bax A19684 ABclonal

Anti-IL-6 A2447 ABclonal

Anti-TNF-α 60291-1-Ig Proteintech

Anti-phosphorylated p65 (anti-p-p65) AF2006 Affinity

Anti-p65 3033 Cell signaling technology

Anti-phosphorylated AKT (anti-p-AKT) 9271 Cell signaling technology

Anti-AKT 9272 Cell signaling technology

Anti-phosphorylated ERK (anti-p-ERK) 9101 Cell signaling technology

Anti-ERK 9102 Cell signaling technology

Anti-GAPDH 10494-1-AP Proteintech

Anti-col-2 AF0135 Affinity

Anti–aggrecan DF7561 Affinity

Anti-IL-1β A19635 ABclonal
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2.13. Transmission Electron Microscopy (TEM). The mito-
chondrial morphology of HNPCs was observed with a
TEM instrument (HT7700; Hitachi, Japan) according to a
previously described method [37].

2.14. Immunofluorescence Staining. Cells were immobilized,
permeabilized, and incubated with the primary antibodies
[37]. A concentration of 1 : 100 was used for the primary
antibodies, including antibodies targeting iNOS, MMP13,
COX-2, NLRP3, col-2, aggrecan, p65, and p-p65 (Table 2),
and a concentration of 1 : 200 was used for the secondary
antibody (ZSGB-Bio, China).

The sections were immersed in absolute ethanol for
5min, 95% ethanol for 4min, 90% ethanol for 3min, 80%
ethanol for 2min, 70% ethanol for 2min, and distilled water
for 2min. The sections were then washed 3 times with PBS
for 5min each, and 0.1% trypsin was used for antigen repair.
The cells were washed 3 times with PBS for 3min each,
blocked with hydrogen peroxide blocking solution, and then
washed again 3 times with PBS for 3min each. Next, the cells
were blocked with 5% bovine serum albumin (BSA) for
60min, incubated with primary antibody at 4°C for 12h,
washed with PBS 3 times for 5min each, incubated with sec-
ondary antibody at room temperature for 2 h, and washed
with PBS 3 times for 5min each. Nuclei were stained with
DAPI and examined under a fluorescence microscope. A
concentration of 1 : 100 was used for the primary antibodies,
including antibodies targeting col-2, MMP13, IL-1β, COX-2,
p-ERK, and p-AKT (Table 2), and a concentration of 1 : 200
was used for the secondary antibody (ZSGB-Bio, China).
Images were captured with a Pannoramic 250 FLASH scan-
ner (3DHISTECH, Hungary).

2.15. Statistical Analysis. The data are expressed as the
mean ± standard deviation (SD) and were analyzed using
GraphPad Prism v.5.0 software (GraphPad Software Inc.,
USA). Differences between groups were evaluated by one-
way analysis of variance (ANOVA) with Tukey’s post hoc
test. A p value <0.05 was considered significant, and signifi-
cance was denoted as follows: ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p <
0:001, ∗∗∗∗p < 0:0001,#p < 0:05, ##p < 0:01 and ###p < 0:001.

3. Results

3.1. Effects of HT on HNPC Viability. The results (Figure 1
showed that a cytotoxic effect of HT was not obvious at con-
centrations of 0, 20, 50, and 100μM. At the HT concentra-
tion of 100μM, cell viability was slightly decreased
compared with that at the other concentrations, but there
was no significant difference in viability between the 0μM
and 100μM treatments. However, cell viability was signifi-
cantly decreased at HT concentrations of 200μM and
400μM. Therefore, HT concentrations of 20 and 100μM
were selected for the subsequent experiments.

3.2. HT Protects the Main Components of the IVD by
Alleviating Inflammation and Mitigating ECM
Degradation. The release of inflammatory cytokines by NP
cells is an important motile and pathological factor of IVDD.
The increased secretion of ADAMTSs and MMPs is an

important pathological process secondary to the inflamma-
tory response, which can accelerate the imbalance of anabo-
lism and catabolism in IVDs, destroy the homeostasis of the
IVD, and aggravate IVDD. The qRT–PCR and WB results
shown in Figure 2(a)-2(g)and 2(l)-2(o) reveal that after the
HNPCs were stimulated with 50 ng/mL TNF-α, TNF-α
induced increased protein and mRNA levels of iNOS,
COX-2, MMP-13, ADAMTS-4, and NLRP3 in HNPCs,
which promoted the degradation of IVD components. In
contrast, 20 and 100μM HT treatment significantly inhib-
ited the secretion of inflammatory cytokines that promote
the occurrence and progression of IVDD. The immunofluo-
rescence staining results shown in Figure 2(h)-2(k) and 2(p)-
2(w) demonstrate that after TNF-α stimulation, the fluores-
cence intensity resulting from iNOS, COX-2, NLRP3 inflam-
masome, and MMP-13 staining was increased, indicating
that the expression of these catabolism-promoting indicators
was increased, and the fluorescence intensity resulting from
col-2 and aggrecan staining was significantly decreased. HT
treatment significantly reduced the secretion of inflamma-
tory cytokines and significantly increased the fluorescence
intensity resulting from col-2 and aggrecan staining.

3.3. HT Maintains Mitochondrial Homeostasis by Inhibiting
the NF-κB Signaling Pathway. As illustrated in
Figures 3(a)–3(g), following TNF-α treatment, the mRNA
level of NF-κB1 increased, a large amount of p65 was trans-
ferred from the cytoplasm to the nucleus, and the phosphor-
ylation level of p65 in the nucleus was increased. After HT
intervention, the mRNA level of NF-κB1 and the nuclear
translocation rate of p65 were significantly decreased, which
decreased the expression level of p-p65. As illustrated in
Figures 3(h)–3(k), 50 ng/mL TNF-α significantly increased
the endogenous ROS content in HNPCs in vitro. Subsequent
Mptp experiments revealed that TNF-α led to the opening of
the Mptp, which damaged mitochondrial function and trig-
gered mitochondrial apoptosis. HT intervention significantly
reduced the increase in endogenous ROS levels induced by
TNF-α and protected mitochondrial function by reducing
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Figure 1: Effects of HT on HNPC viability. HNPCs were treated
with different concentrations of HT (0, 20, 50, 100, 200, and
400 μM) for 48 h, and cell viability was determined using a CCK-
8 assay.
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Figure 2: Continued.

6 Oxidative Medicine and Cellular Longevity



30

20

10
M

ea
n 

flu
or

es
ce

nc
e i

nt
en

sit
y

0
TNF-𝛼 0 50 50 50

HT 0 0 20

COX-2

100

⁎⁎⁎⁎
⁎⁎⁎⁎⁎⁎⁎⁎

(j)

20

15

10

M
ea

n 
flu

or
es

ce
nc

e i
nt

en
sit

y

0
TNF-𝛼 0 50 50 50

HT 0 0 20

iNOS

100

5

⁎⁎⁎⁎
⁎⁎⁎⁎⁎⁎⁎⁎

(k)

TNF-𝛼 0 50 50 50
HT 0 0 20

ADAMTS4

NLRP3

MMP13

GAPDH

90 KD

118 KD

54 KD

100

37 KD

(l)

1.0

0.8

0.6

Re
l. 

pr
ot

ei
n 

le
ve

l

0.0
TNF-𝛼 0 50 50 50

HT 0 0 20

ADAMTS-4

100

0.2

0.4

⁎⁎⁎⁎
⁎⁎⁎

(m)

1.5

1.0

0.5

Re
l. 

pr
ot

ei
n 

le
ve

l

0.0
TNF-𝛼 0 50 50 50

HT 0 0 20

NLRP3

100

⁎⁎⁎⁎
⁎⁎⁎

(n)

1.5

1.0

0.5

Re
l. 

pr
ot

ei
n 

le
ve

l

0.0
TNF-𝛼 0 50 50 50

HT 0 0 20

MMP13

100

⁎⁎
⁎⁎⁎

(o)

TN
F-
𝛼

TN
F-
𝛼

+H
T

(2
0 
𝜇

M
)

TN
F-
𝛼

+H
T

(1
00

 𝜇
M

)

NLRP3DAPI

C
on

tro
l

Merge

(p)

TN
F-
𝛼

TN
F-
𝛼

+H
T

(2
0 
𝜇

M
)

TN
F-
𝛼

+H
T

(1
00

 𝜇
M

)

Col-2DAPI

C
on

tro
l

Merge

(q)

Figure 2: Continued.
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Mptp opening. As shown in Figure 3(l), we observed the
morphology of mitochondria directly by TEM. After TNF-
α treatment, the morphology of HNPC mitochondria was
damaged, the mitochondria had become swollen, and the
mitochondrial crest had disappeared, which indirectly indi-
cated mitochondrial dysfunction in HNPCs. Moreover, the
change in mitochondrial membrane potential was evaluated

by JC-1, and the results are shown in Figures 3(m) and 3(n).
We found that TNF-α caused a decrease in the mitochon-
drial membrane potential of HNPCs, as indicated by a
decreased red/green fluorescence value, suggesting that nor-
mal mitochondrial function was damaged. In contrast, TNF-
α-induced pathological changes were significantly mitigated
after HT treatment. Assessments of mitochondrial
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Figure 2: HT protects the main components of the IVD by alleviating inflammation and mitigating ECM degradation. Note: HNPCs were
incubated for 24/48 h with 50 ng/mL TNF-α and 20 or 100μMHT or were left untreated. The expression of iNOS (a), COX-2 (b), MMP-13
(c), and ADAMTS-4 (d) was assayed by qRT–PCR. Protein levels of iNOS (e, f) and COX-2 (e, g) were assessed by WB.
Immunofluorescence staining was used to assess the COX-2 (h, j), and iNOS (i, k) levels in HNPCs treated with TNF-α and HT. Scale
bar: 50 μm. Western blot detection for the expression of ADAMTS-4 (l, m), NLRP3 (l, n), and MMP13 (l, o) in each group.
Immunofluorescence staining of NLRP3 (p, r), col-2 (q, s), aggrecan (t, w), and MMP-13 (u, v) in HNPCs. Scale bar: 50 μm.
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morphology showed that HT reduced the number of mito-
chondria with abnormal morphology, reduced the opening
of the Mptp, and alleviated damaged mitochondrial function
by improving mitochondrial membrane potential. As shown
in Figures 3(o) and 3(p), TNF-α induced apoptosis in 13.4%
of HNPCs, whereas HT significantly reduced the apoptosis
rate of HNPCs: the apoptosis rate of HNPCs treated with
20μM HT was 8.49%, and that of HNPCs treated with
100μM HT was 5.18%. After TNF-α treatment, the expres-
sion of c-caspase3 and Bax (employed as a proapoptotic
evaluation index) in HNPCs increased, while the expression
of Bcl-2 (serving as an antiapoptotic evaluation index)
decreased. HT treatment decreased the production of proa-
poptotic indicators and increased the secretion of antiapop-
totic indicators.

3.4. HT Alleviates IVDD in a Rat Needle Puncture Model In
Vivo. The HE staining results in Figures 4(b) and 4(g) show
that the caudal space in rats was narrowed after puncture.
Sagittal pathological staining of the IVD revealed structural
disorder, and the structures of the NP and AF could not be
distinguished. HT injection mitigated the degeneration of
the IVD in rats. The pathological results showed that the
two adjacent spaces in the rat caudal vertebra were wider
in the HT-treated rats than in the puncture-only rats, and
the structure of the NP and AF could be clearly distin-
guished in the HT-treated rats. As shown in Figure 4(a),
SO-FG staining revealed a significantly reduced content of
proteoglycans in the degenerative IVD of rats, and the loss
of proteoglycans was alleviated by HT treatment. As illus-
trated in Figures 4(c) and 4(d), picrosirius red staining and
polarized light results showed that HT treatment signifi-
cantly mitigated the loss of collagen content in rat IVDs
caused by needle puncture. As illustrated in Figures. 4(e)–
4(i), HT reduced MMP-13 expression, thereby preventing
the loss of col-2 expression caused by excessive catabolic
enzyme production.

3.5. HT Inhibits the LPS-Induced Microglial Inflammatory
Response. To assess the pathological process, we examined
the mechanism by which HT reduces the inflammatory
response of microglia to identify a new treatment method
for relieving neuropathic pain. As shown in Figures 5(a)–
5(d), microglial stimulation with 1μg/mL LPS resulted in
the release of inflammatory cytokines and increased the
levels of secreted IL-1β, IL-6, COX-2, and iNOS mRNA.
The expression of IL-1β, IL-6, COX-2, and iNOS in microg-
lia was significantly inhibited after HT stimulation. As
shown in Figures 5(e)–5(j), LPS treatment increased the
inflammatory response of microglia, resulting in increased
secretion of COX-2, NLRP3, TNF-α, IL-6, and iNOS. How-
ever, HT treatment inhibited this pathological process by
reducing the expression of these inflammatory cytokines.
As shown in Figures 5(k)–5(n), immunofluorescence stain-
ing revealed that HT decreased the fluorescence intensity
resulting from COX-2 and iNOS staining, indicating that
HT played a role in maintaining the inflammatory homeo-
stasis of microglia.

3.6. HT Alleviates Neuropathic Pain and Reduces the
Inflammatory Response in Rats after CCD. We further
explored the role of HT in alleviating neuropathic pain in
rats by establishing a rat model of CCD and intrathecally
administering HT. PWMT and TPWL (behavioral evalua-
tion indices) were measured in the rats every two days
beginning on the second day after surgery. The PWMT
and TPWL values in the rats in the CCD model group con-
tinuously decreased from the 2nd day to the 8th day after
surgery and began to recover on the 8th day after surgery.
As illustrated in Figures 6(a) and 6(b), HT was injected on
the second day after the establishment of the CCD model.
The PWMT and TPWL values of the rats had improved
beginning on day 2 after HT injection and continued to
improve through day 14.

Inhibiting the expression of various proinflammatory
cytokines in microglia ameliorates the worsening of
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Figure 3: HT maintains mitochondrial homeostasis by inhibiting the NF-κB signaling pathway. Note: HNPCs were incubated for 1 h with
50 ng/mL TNF-α and 20 or 100 μM HT or were left untreated. (a) qRT–PCR measurement of NF-κB1 levels in each group. (b, c) HNPCs
were cultured according to the methods described above; Western blot measurement of p-p65 levels was performed. (d, f) The nuclear
translocation rate of p65 was assessed by immunofluorescence staining. Scale bars: 25μm. (e, g). The expression level of p-p65 was
measured using immunofluorescence staining. Scale bar: 50μm. HNPCs were incubated for 48 h with 50 ng/mL TNF-α and 20 or
100μM HT or were left untreated. (h, i) Endogenous ROS levels in HNPCs were measured with a DCFH-DA probe. Scale bar: 50 μm. (j,
k) Mptps in HNPCs were assayed by Mptp assay. Scale bar: 50μm. (l) Mitochondrial morphology was assessed by TEM. Scale bars:
5μm and 1μm. (m, n) The mitochondrial membrane potential in HNPCs was assessed by JC-1 staining. Scale bar: 50μm. (o) Flow
cytometry was used to evaluate the apoptotic ratio of HNPCs in each group. (p) Western blot measurement of c-caspase3, Bax, and Bcl-
2 levels in HNPCs was performed.
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neuropathic pain. As illustrated in Figures 6(c)–6(f), the pro-
tein levels of COX-2, IL-6, and TNF-α in the SDH of rats
increased after CCD. As illustrated in Figures. 6(g)–6(j),
immunofluorescence staining showed that HT decreased
the fluorescence intensity resulting from IL-1β and COX-2
staining. Notably, HT reduced the production of inflamma-
tory cytokines in the SDH after CCD, indicating that it
played a role in alleviating neuropathic pain.

3.7. HT Alleviates Neuropathic Pain by Inhibiting the PI3K/
AKT and ERK Signaling Pathways. As shown in Figures.
7(a)–7(c), LPS stimulation activated the PI3K/AKT and
ERK signaling pathways by increasing the levels of p-ERK
and p-AKT in microglia. In addition, HT inhibited PI3K/
AKT and ERK signaling pathway activation by decreasing

the p-ERK and p-AKT levels. In verifying our experimental
results, we found that the expression of p-ERK and p-AKT
increased in rats after CCD, suggesting that the PI3K/AKT
and ERK signaling pathways are involved in the develop-
ment of neuropathic pain. However, intrathecal injection
of HT significantly reduced the expression levels of p-ERK
and p-AKT in the SDH of rats. These findings indicate that
intrathecal injection of HT inhibited the activation of the
PI3K/AKT and ERK signaling pathways by reducing the
levels of p-ERK and p-AKT in the SDH (Figures 7(d)–7(g)).

HNPCs were incubated for 2 h with 1μg/mL LPS and 20
or 100μM HT or were left untreated. (a–c) Western blot
analysis of AKT, p-AKT, ERK, and p-ERK expression in
HNPCs. (d–g) Representative immunofluorescence staining
images of p-AKT and p-ERK expression in the SDH in the
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control group, sham group, CCD group, and CCD group
after HT treatment were obtained by immunofluorescence
staining. N = 5, scale bar: 50μm.

Specific mechanisms by which HT alleviates IVDD and
neuropathic pain. HT ameliorates the inflammatory
response and ECM degeneration, reduces the apoptosis rate,
alleviates mitochondrial dysfunction, and maintains IVD
homeostasis by inhibiting the NF-κB signaling pathway.
HT reduces the inflammatory response and ameliorates neu-
ropathic pain by inhibiting the PI3K/AKT and ERK signal-
ing pathways.

4. Discussion

IVDD is caused by multiple pathological factors, including
genetic factors, trauma, excessive mechanical loads, aging,
and smoking [40]. In response to various pathological fac-

tors, the expression of inflammatory cytokines and chemo-
kines is upregulated in IVD cells [6, 41, 42]. Subsequently,
the expression of the catabolic molecules ADAMTSs and
MMPs is increased in IVD cells [43, 44]. Catabolic molecules
from NP and AF cells promote ECM degradation. Therefore,
inhibition of the inflammatory responses and IVD catabo-
lism is important for alleviating IVDD. TNF-α is commonly
utilized to simulate the local microenvironment. In the cur-
rent study, HT improved the inflammatory response of
HNPCs, alleviated the degradation of the ECM, and signifi-
cantly inhibited the loss of major components of the IVD.
Therefore, HT balances the relationship between catabolism
and anabolism in the IVD and inhibits the loss of major IVD
components by inhibiting the expression of enzymes that
promote catabolism. In addition, TNF-α plays an important
role in mediating ECM degradation by inducing NLRP3
inflammasome activation [45]. In the current study, HT
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Figure 5: HT reduces the LPS-induced microglial inflammatory response. Note: HNPCs were incubated for 24/48 h with 1μg/mL LPS and
20 or 100 μM HT or were left untreated. After LPS and HT stimulation, the levels of IL-1β (a), IL-6 (b), COX-2 (c), and iNOS (d) were
measured using qRT–PCR, and the expression levels of COX-2 (e, f), NLRP3 (e, g), TNF-α (e, h), IL-6 (e, j), and iNOS (e, i) in microglia
were determined by WB. Representative immunofluorescence staining images of the COX-2 (k, m), and iNOS (l, n) levels in each group
are shown. Scale bar: 50μm.
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significantly reduced the increase in the expression of the
NLRP3 inflammasome observed during IVDD, thereby
ameliorating ECM degradation.

The NF-κB signaling pathway triggers multiple patho-
logical processes that lead to IVDD, including the inflamma-
tory response, matrix degradation, and imbalance in
mitochondrial homeostasis [45]. Therefore, we aimed to
explore the potential regulatory mechanism of HT in the

inhibition of the NF-κB signaling pathway in the pathologi-
cal process of IVDD and thereby identify appropriate thera-
peutic targets for improving or even blocking IVDD. In our
study, TNF-α was found to increase the expression of NF-
κB1, and TNF-α induced the phosphorylation of p65 in the
nucleus by increasing its nuclear translocation rate, thereby
increasing the expression of p-p65 protein. Our current
study demonstrated that HT inhibits the TNF-α-induced
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Figure 7: HT alleviates neuropathic pain by inhibiting the PI3K/AKT and ERK signaling pathways.
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activation of the NF-κB signaling pathway by inhibiting p65
nuclear translocation and phosphorylation.

An imbalance in mitochondrial homeostasis can lead to
abnormal increases in ROS and secondary oxidative stress
reactions as well as decreases in mitochondrial membrane
potential. These phenomena disrupt the homeostasis of
energy metabolism in the IVD, resulting in an imbalance
of anabolism and catabolism, and subsequently causing the
apoptosis of NP cells and exacerbating IVDD progression
[45]. Our results showed that HT can significantly inhibit
the activation of the NF-κB signaling pathway. Moreover,
HT reduced the opening of the Mptp and the loss of mito-
chondrial membrane potential by reducing the production
of ROS in HNPCs caused by TNF-α, which was verified by
assessments of mitochondrial morphology. HT treatment
significantly inhibited the increase in the proapoptotic index
and increased the antiapoptotic index. Therefore, HT can
reduce apoptosis in HNPCs by maintaining mitochondrial
homeostasis during IVDD.

Next, we used a rat needle puncture degeneration model
to evaluate the role of HT in alleviating IVDD. HT can alle-
viate stenosis in the caudal space caused by needle puncture,
prevent col-2 loss, and reduce MMP-13 expression. Thus,
HT maintains IVD homeostasis by inhibiting the pathogen-
esis of the IVD.

With the exacerbation of IVDD, the NP may herniate
and compress the dural sac and surrounding nerve tissue,
thereby inducing neuropathic pain [16]. Therefore, much
effort is being made to identify drugs that can relieve IVDD
and neuropathic pain to improve the symptoms of LBP and
the quality of life of patients. Because the IVD is a tissue
severely lacking blood supply [46], local puncture injection

is an important means of delivering drugs to NP cells. Since
the dural sac is posterior to the IVD, we envision delivering
the drug to the dural sac by a single puncture to relieve neu-
ropathic pain and then adjusting the direction of the punc-
ture needle to deliver the drug into the NP tissue to relieve
IVDD. Therefore, a single puncture can solve these two clin-
ical problems, reduce pain in patients and the treatment
cost, and improve the treatment effect.

Microglia in the SDH release a variety of inflammatory
cytokines that initiate neuropathic pain [47]. Therefore, inhi-
bition of the inflammatory response in the SDH is an impor-
tant method for alleviating neuropathic pain. In the rat CCD
model of the present study, the secretion of proinflammatory
cytokines in the SDH was increased. Intrathecal injection of
HT significantly antagonized the expression of inflammatory
cytokines in the SDH after CCD. In vitro experiments showed
that HT also significantly reduced the levels of inflammatory
cytokines in microglia to relieve neuropathic pain.

The PI3K/AKT and ERK signaling pathways play impor-
tant roles in the development of neuropathic pain. Inhibition
of PI3K/AKT and ERK signaling pathway activation is an
important approach for treating neuropathic pain. ERK sig-
naling pathway activation leads to the production of various
cytokines, including TNF-α, IL-1β, COX-2, and iNOS, that
are involved in the enhancement of neuropathic pain
[48–50]. The PI3K/AKT pathway modulates nociceptive
information and mediates central sensitization induced by
noxious stimuli [51, 52]. Inhibition of PI3K/AKT signifi-
cantly reduces inflammation and neuropathic pain [53,
54]. Our cell and animal experiments showed that HT plays
an important role in inhibiting the ERK and AKT signaling
pathways by reducing the expression of p-ERK and p-AKT.

Microglia activation

Inflammatory
response

Hydroxytyrosol

Hydroxytyrosol
NF-kB activation

NF-kB P-Akt P-ERK

Inflammatory response

Needle puncture model

Nerve compression

CCD model

Neuropathic pain

Intervertebral disc degeneration

ECM degeneration

Elevated apoptosis
Mitochondral damage

TNF-𝛼

P50 P65

Figure 8: Schematic diagram showing that HT alleviates IVDD and neuropathic pain.
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5. Conclusions

In conclusion, HT inhibits inflammatory responses, attenu-
ates oxidative stress, and ameliorates mitochondrial function
to maintain IVD homeostasis by inhibiting the NF-κB sig-
naling pathway. HT alleviates neuropathic pain by inhibiting
the PI3K/AKT and ERK signaling pathways. Therefore, HT
ameliorates IVDD and its secondary neuropathic pain.
These findings suggest a new approach for treatment
(Figure 8).
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