
Benchmarking and Boosting Transformers for Medical Image 
Classification

DongAo Ma1, Mohammad Reza Hosseinzadeh Taher1, Jiaxuan Pang1, Nahid UI Islam1, 
Fatemeh Haghighi1, Michael B. Gotway2, Jianming Liang1

1Arizona State University, Tempe, AZ 85281, USA

2Mayo Clinic, Scottsdale, AZ 85259, USA

Abstract

Visual transformers have recently gained popularity in the computer vision community as they 

began to outrank convolutional neural networks (CNNs) in one representative visual benchmark 

after another. However, the competition between visual transformers and CNNs in medical 

imaging is rarely studied, leaving many important questions unanswered. As the first step, 

we benchmark how well existing transformer variants that use various (supervised and self-

supervised) pre-training methods perform against CNNs on a variety of medical classification 

tasks. Furthermore, given the data-hungry nature of transformers and the annotation-deficiency 

challenge of medical imaging, we present a practical approach for bridging the domain gap 

between photographic and medical images by utilizing unlabeled large-scale in-domain data. 

Our extensive empirical evaluations reveal the following insights in medical imaging: (1) good 

initialization is more crucial for transformer-based models than for CNNs, (2) self-supervised 

learning based on masked image modeling captures more generalizable representations than 

supervised models, and (3) assembling a larger-scale domain-specific dataset can better bridge 

the domain gap between photographic and medical images via self-supervised continuous pre-

training. We hope this benchmark study can direct future research on applying transformers to 

medical imaging analysis. All codes and pre-trained models are available on our GitHub page 

https://github.com/JLiangLab/BenchmarkTransformers.
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1 Introduction

Visual transformers have recently demonstrated the potential to be considered as an 

alternative to CNNs in visual recognition. Though visual transformers have attained state-

of-the-art (SOTA) performance across a variety of computer vision tasks [11,20], their 

architectures lack convolutional inductive bias, making them more data-hungry than CNNs 
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[7,31]. Given the data-hungry nature of transformers and the challenge of annotation scarcity 

in medical imaging, the efficacy of existing visual transformers in medical imaging is 

unknown. Our preliminary analysis revealed that on medical target tasks with limited 

annotated data, transformers lag behind CNNs in random initialization (scratch) settings. 

To overcome the challenge of annotation dearth in medical imaging, transfer learning from 

ImageNet pre-trained models has become a common practice [9,10,18,35]. As such, the first 

question this paper seeks to answer is: To what extent can ImageNet pre-training elevate 
transformers’ performance to rival CNNs in medical imaging?

Meanwhile, self-supervised learning (SSL) has drawn great attention in medical imaging 

due to its remarkable success in overcoming the challenge of annotation dearth in medical 

imaging [8,30]. The goal of the SSL paradigm is to learn general-purpose representations 

without using human-annotated labels [10,16]. Masked image modeling (MIM) methods, in 

addition to supervised pre-training, have recently emerged as promising SSL techniques for 

transformer models; the basic idea behind MIM-based methods is to learn representations 

by (randomly) masking portions of the input image and then recovering the input image 

at the masked areas. Recent advancements in MIM-based techniques have resulted in 

SSL techniques that outperform supervised pre-trained models in a variety of computer 

vision tasks [5,21]. As a result, the second question this paper seeks to answer is: How 
generalizable are MIM-based self-supervised methods to medical imaging in comparison to 
supervised ImageNet pre-trained models?

Furthermore, the marked differences between photographic and medical images [8,16,30] 

may result in a mismatch in learned features between the two domains, which is referred 

to as a “domain gap.” Hosseinzadeh Taher et al. [16] recently demonstrated that using a 

CNN as the backbone, a moderately-sized medical image dataset is sufficient to bridge the 

domain gap between photographic and medical images via supervised continual pre-training. 

Motivated but different from this work and given the data-hungry nature of transformers, 

we investigate domain-adaptive pre-training in an SSL setting. Naturally, the third question 

this paper seeks to answer is: How to scale up a domain-specific dataset for a transformer 
architecture to bridge the domain gap between photographic and medical images?

In addressing the three questions, we conduct a benchmarking study to assess the efficacy 

of transformer-based models on numerous medical classification tasks involving different 

diseases (thorax diseases, lung pulmonary embolism, and tuberculosis) and modalities (X-

ray and CT). In particular, (1) we investigate the importance of pre-training for transformers 

versus CNNs in medical imaging; (2) we assess the transferability of SOTA MIM-based 

self-supervised method to a diverse set of medical image classification tasks; and (3) we 

investigate domain-adaptive pre-training on large-scale photographic and medical images to 

tailor self-supervised ImageNet models for target tasks on chest X-rays.

Our extensive empirical study yields the following findings: (1) In medical imaging, good 

initialization is more vital for transformer-based models than for CNNs (see Fig. 1). (2) 

MIM-based self-supervised methods capture finer-grained representations that can be useful 

for medical tasks better than supervised pre-trained models (see Table 1). (3) Continuous 

self-supervised pre-training of the self-supervised ImageNet model on large-scale medical 
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images bridges the domain gap between photographic and medical images, providing more 

generalizable pre-trained models for medical image classification tasks (see Table 2). We 

will contrast our study with related works in each subsection of Sect. 3 to show our 

novelties.

2 Benchmarking Setup

2.1 Transformer Backbones

In the target tasks in all experiments, we take two representative recent SOTA transformer 

backbones, including Vision Transformer (ViT) [7] and Swin Transformer (Swin) [22]. 

Visual transformer models, which have recently emerged as alternatives to convolutional 

neural networks (CNNs), have revolutionized computer vision fields. The groundbreaking 

work of ViT showcases how transformers can completely replace the CNNs backbone with 

a convolution-free model. Although ViT attains SOTA image classification performance, its 

architecture may not be suitable for use on dense vision tasks, such as object detection, 

segmentation, etc. Swin, a recent work, proposes a general-purpose transformer backbone to 

address this problem by building hierarchical feature maps, resulting in SOTA accuracy on 

object detection segmentation tasks. For transfer learning to the classification target tasks, 

we take the transformer pre-trained models and add a task-specific classification head. We 

assess the transfer learning performance of all pre-trained models by fine-tuning all layers in 

the downstream networks.

2.2 Target Tasks and Datasets

We consider a diverse suite of six common but challenging medical classification tasks 

including NIH ChestX-ray14 [32], CheXpert [17], VinDr-CXR [24], NIH Shenzhen CXR 

[19], RSNA PE Detection [6], and RSNA Pneumonia [1]. These tasks encompass various 

diseases (thorax diseases, lung pulmonary embolism, and tuberculosis) and modalities (X-

ray and CT). We use official data split of these datasets if available; otherwise, we randomly 

divide the data into 80%/20% for training/testing. AUC (area under the ROC curve) is used 

to measure the performance of multi-label classification target tasks (NIH ChestX-ray14, 

CheX-pert, and VinDr-CXR) and binary classification target tasks (NIH Shenzhen CXR 

and RSNA PE). Accuracy is used to evaluate multi-class classification target task (RSNA 

Pneumonia) performance. The mean and standard deviation of performance metrics over ten 

runs are reported in all experiments, and statistical analyses based on an independent two 

sample t-test are presented.

3 Benchmarking and Boosting Transformers

3.1 Pre-training is More Vital for Transformer-Based Models than for CNNs in Medical 
Imaging

Transformers have recently attained SOTA results and surpassed CNNs in a variety 

of computer vision tasks [11,20]. However, the lack of convolutional inductive bias in 

transformer architectures makes them more data-hungry than CNNs [7,31]. Therefore, to 

rival CNNs in vision tasks, transformers require a millions or even billions of labeled data 

[7,28,34]. Given the data-hungry nature of transformers and the challenge of annotation 
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scarcity in medical imaging [10,25,27,35], it is natural to wonder whether transformers 

can compute with CNNs if they are used directly on medical imaging applications. Our 

preliminary analysis showed that in random initialization (scratch) settings, transformers 

lag behind CNNs on medical target tasks with limited annotated data. Taken together, we 

hypothesize that in medical imaging, transformers require pre-trained models to rival with 

CNNs. To put this hypothesis to the test, we empirically validate how well transformer 

variants (ViT-B and Swin-B) that use various (supervised and self-supervised) pre-training 

methods compete with CNNs on a range of medical classification tasks. In contrast to 

previous work [23] which only compared one transformer model with a CNN counterpart, 

we benchmark six newly-developed transformer models and three CNN models.

Experimental Setup.—We evaluate the transferability of various popular transformer 

methods with officially released models on six diverse medical classification tasks. Our goal 

is to investigate the importance of pre-training for transformers versus CNNs in medical 

imaging. Given this goal, we use six popular transformer pre-trained models with ViT-B and 

Swin-B backbones and three standard CNNs pre-trained models with ResNet-50 backbones 

[15] that are already official and ready to use. Specifically, for supervised pre-training, we 

use official pre-trained ViT-B, Swin-B, and ResNet-50 on ImageNet-21K and pre-trained 

Swin-B and ResNet-50 on ImageNet-1K. For self-supervised pretraining, we use pre-trained 

ViT-B and Swin-B models with SimMIM [33] on ImageNet-1K, as well as pre-trained 

ViT-B and ResNet-50 models with MoCo v3 [4] on ImageNet-1K. The differences in 

pre-training data (ImageNet-1K or ImageNet-21K) are due to the availability of official 

pre-trained models.

Results and Analysis.—Our evaluations in Fig. 1 suggest three major results. Firstly, 

in random initialization (scratch) settings (horizontal lines), transformers (i.e., ViT-B and/or 

Swin-B) cannot compete with CNNs (i.e., ResNet50) in medical applications, as they offer 

performance equally or even worse than CNNs. We attribute this inferior performance 

to transformers’ lack of desirable inductive bias in comparison to CNNs, which has a 

negative impact on transformer performance on medical target tasks with limited annotated 

data. Secondly, Swin-B backbone consistently outperforms ViT-B across all target tasks. 

This reveals the importance of hierarchical inductive bias, which embedded in the Swin-B 

backbone, in elevating the performance of transformer-based models in medical image 

analysis. Thirdly, with supervised or self-supervised pre-training on ImageNet, transformers 

can offer competitive performance compare to CNNs, emphasizing the importance of pre-

training when using transformers for medical imaging tasks. In particular, the best of six 

pre-trained transformer models outperform the best of three pre-trained CNN models in all 

target tasks, with the exception of NIH Shenzhen CXR, which can be attributed to a lack of 

sufficient training data (only 463 samples).

3.2 Self-supervised Learning Based on Masked Image Modeling is a Preferable Option to 
Supervised Baselines for Medical Imaging

Visual transformer models, while powerful, are prone to over-fitting and rely heavily 

on supervised pre-training on large-scale image datasets [7,34], such as JFT-300M [29] 

and ImageNet-21K [26]. In addition to supervised pre-training, self-supervised learning 
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(SSL) techniques account for a substantial part of pre-trained transformer models. Masked 

Image Modeling (MIM) - an approach in which portions of the input image signals are 

randomly masked and then the original input signals are recovered at the masked area - 

has recently received great attention in computer vision for pre-training transformers in a 

self-supervised manner [14,33]. MIM-based self-supervised methods are widely accepted 

to capture more task-agnostic features than supervised pre-trained models, making them 

better suited for fine-tuning on various vision tasks [5,21]. We hypothesize that existing 

self-supervised transformer models pre-trained on photographic images will outperform 

supervised transformer models in the medical image domain, where there is a significant 

domain shift between medical and photographic images. To test this hypothesis, we consider 

two recent SOTA transformer backbones, ViT-B and Swin-B, and compare their supervised 

and self-supervised pre-trained models for various medical image classification tasks.

Experimental Setup.—To investigate the efficacy of self-supervised and supervised pre-

trained transformer models in medical imaging, we use existing supervised and SOTA 

self-supervised (i.e., SimMIM) pre-trained models with two representative transformer 

backbones, ViT-B and Swin-B; all pre-trained models are fine-tuned on six different medical 

classification tasks. To provide a comprehensive evaluation, we also include results for 

the training of these two architectures from scratch. We use SimMIM instead of the 

concurrent MAE [14] as the representative MIM-based method because SimMIM has been 

demonstrated superior performance to MAE in medical image analysis [5].

Results and Analysis.—As shown in Table 1, the self-supervised SimMIM model 

with the Swin-B backbone performs significantly better or on-par compared with both 

supervised baselines with either ViT-B or Swin-B backbones across all target tasks. The 

same observation of MIM-based models outperforming their supervised counterparts also 

exists in the finer-grained visual tasks, i.e., object detection [21] and medical image 

segmentation [5]; different from them, we focus on coarse-grained classification tasks. 

Furthermore, we observe that the SimMIM model with the Swin-B backbone consistently 

outperforms its counterpart with the ViT-B backbone in all cases, implying that the Swin-B 

backbone may be a superior option for medical imaging tasks to ViT-B. These findings 

suggest that the self-supervised SimMIM model with the Swin-B backbone could be a viable 

option for pre-training deep models in medical imaging applications.

3.3 Self-supervised Domain-Adaptive Pre-training on a Larger-Scale Domain-Specific 
Dataset Better Bridges the Domain Gap Between Photographic and Medical Imaging

Domain adaptation seeks to improve target model performance by reducing domain 

disparities between source and target domains. Recently, Hosseinzadeh Taher et al. [16] 

demonstrated that domain-adaptive pre-training can bridge the domain gap between natural 

and medical images. Particularly, Hosseinzadeh Taher et al. [16] first pre-trained a CNN 

model (i.e., ResNet-50) on ImageNet and then on domain-specific datasets (i.e., NIH 

ChestX-ray14 or CheXpert), demonstrating how domain-adaptive pre-training can tailor 

the ImageNet models to medical applications. Motivated by this work, we investigate 

domain-adaptive pre-training in the context of visual transformer architectures. Given the 

data-hungry nature of transformers and the annotation-dearth challenge of medical imaging, 
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different from [16], we use the SSL pre-training approach to bridge the domain gap 

between photographic and medical images. Since no expert annotation is required in SSL 

pre-training, we are able to assemble multiple domain-specific datasets into a large-scale 

dataset, which is differentiated from Azizi et al. [2] who used only a single dataset.

Experimental Setup.—We evaluate the transferability of five different self-supervised 

SimMIM models with the Swin-B backbone by utilizing three different pre-training datasets, 

including ImageNet, ChestX-ray14, and X-rays(926K)— a large-scale dataset that we 

created by collecting 926,028 images from 13 different chest X-ray datasets. To do so, 

we use SimMIM released ImageNet model as well as two models pre-trained on ChestX-

ray14 and X-rays(926K) using SimMIM; additionally, we created two new models that 

were initialized through the self-supervised ImageNet pre-trained model followed by self-

supervised pre-training on ChestX-ray14 (ImageNet→ChestX-ray14) and X-rays(926 K) 

(ImageNet→X-rays(926 K)). Every pre-training experiment trains for 100 epochs using the 

default SimMIM settings.

Results and Analysis.—We draw the following observations from Table 2. (1) X-

rays(926K) model consistently outperforms the ChestX-ray14 model in all cases. This 

observation suggests that scaling the pre-training data can significantly improve the self-

supervised transformer models. (2) While the X-rays(926 K) model uses fewer images in the 

pre-training dataset than the ImageNet model, it shows superior or comparable performance 

over the ImageNet model across all target tasks. In line with Hosseinzadeh Taher et al. [16], 

this implies that, whenever possible, in-domain medical transfer learning should be preferred 

over ImageNet transfer learning. (3) The overall trend highlights the benefit of domain-

adaptive pre-training, which leverages the ImageNet model’s learning experience and further 

refines it with domain-relevant data. Specifically, fine-tuning both domain-adapted models 

(ImageNet→ChestX-ray14 and ImageNet→X-rays(926 K)) outperforms ImageNet and 

corresponding in-domain models in all target tasks, with one exception; in the CheXpert, 

the ImageNet→ChestX-ray14 model performs worse in CheXpert than the corresponding 

ImageNet model. This exception, in line with Hosseinzadeh Taher et al. [16], suggests that 

the in-domain pre-training dataset should be larger than the target dataset. It is noteworthy 

that this gap was filled later by ImageNet→X-rays(926 K) model, which utilized more 

in-domain data. This highlights the significance of larger-scale medical data in improving 

the transformers’ ability to learn more discriminative representations.

4 Conclusion and Future Work

We manifest an up-to-date benchmark study to shed light on the efficacy and limitations 

of existing visual transformer models in medical image classification when compared to 

CNN counterparts. Our extensive experiments yield important findings: (1) a good pre-train 

model can allow visual transformers to compete with CNNs on medical target tasks with 

limited annotated data; (2) MIM-based self-supervised methods, such as SimMIM, play an 

important role in pre-training visual transformer models, preventing them from over-fitting 

in medical target tasks; and (3) assembling multiple domain-specific datasets into a larger-

scale one can better bridge the domain gap between photographic and medical imaging via 

continual SSL pre-training.
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Future Work:

Recently, many transformer-based UNet architectures have been developed for 3D medical 

image segmentation [3,5,12,13]. To make a comprehensive benchmarking study of 

transformers for medical image analysis, we will extend the evaluation to more modalities 

and medical image segmentation tasks in future work.
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Appendix

A Tabular results

In this section, tabulated results of different experiments are reported. All benchmarking 

results are presented in Table 1.

Table 1.

Benchmarking transfer learning with transformers (i.e., ViT-B and Swin-B) ImageNet pre-

trained models on six medical image classification tasks. For comparison with CNNs, we 

evaluate four pre-trained models with ResNet-50 backbones. To provide a comprehensive 

evaluation, we also include results for the training of these three architectures from scratch.

Backbone Initialization ChestX-
ray14 CheXpert Shenzhen VinDr-

CXR
RSNA 

Pneumonia RSNA PE

ResNet-50

Scratch 80.400.05 86.620.15 89.031.82 87.390.42 70.000.50 90.371.32

Supervised[20] 81.700.15 87.170.22 95.620.63 91.770.40 73.040.35 94.730.12

Sup.(IN21K)[21] 81.400.27 87.230.86 94.640.39 91.660.56 73.630.45 94.660.18

DINO[6] 81.410.35 87.370.45 96.380.48 90.960.68 73.580.35 95.600.10

MoCo-v3[8] 81.870.15 87.590.51 95.550.40 91.910.59 73.390.27 95.610.12

ViT-B

Scratch 71.690.32 80.780.03 82.240.60 70.221.95 66.590.39 84.680.09

Sup. (IN21K)[10] 80.050.17 87.880.50 93.671.03 88.301.45 71.500.52 91.190.11

DeiT[23] 79.460.24 87.490.43 95.350.80 89.642.97 72.930.62 91.950.07

DINO[6] 78.370.47 87.010.62 90.394.29 82.891.10 71.270.45 88.990.08

MoCo-v3[8] 79.200.30 87.120.36 92.851.00 87.250.63 72.790.52 91.330.10

BEiT(IN21K)[3] 79.910.24 87.770.38 92.871.08 85.931.98 72.780.37 91.310.10

MAE[12] 79.010.58 87.120.54 92.524.98 87.001.74 72.850.50 91.960.12

SimMIM[27] 79.550.56 88.070.43 93.472.48 88.910.55 72.080.47 91.390.10

Swin-B
Scratch 77.040.34 83.390.84 92.524.98 78.491.00 70.020.42 90.630.10

Supervised[18] 81.730.14 87.800.42 93.350.77 90.350.31 73.440.46 94.850.07
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Backbone Initialization ChestX-
ray14 CheXpert Shenzhen VinDr-

CXR
RSNA 

Pneumonia RSNA PE

Sup. (IN21K)[18] 81.740.13 87.940.54 94.211.25 91.231.06 73.200.59 94.580.13

SimMIM[27] 81.950.15 88.160.31 94.120.96 90.240.35 73.660.34 95.270.12

†
Abbreviations: Sup.: Supervised; IN21K: ImageNet-21K.

‡
Unless mentioned, all models are pre-trained on ImageNet-1K.

B The large-scale domain-specific dataset

Given the data-hungry nature of transformers and the annotation-deficiency challenge of 

medical imaging, we present a practical approach for bridging the domain gap between 

photographic and medical images by utilizing unlabeled large-scale in-domain data. We 

assembled 926,028 images from 13 chest X-ray datasets into a large-scale dataset. The 

datasets we used are listed in Table 2.

C State-of-the-art performance

Our domain-adapted model pre-trained using the large-scale domain-specific dataset that 

we assembled, i.e., X-ray(926K), achieves SOTA performance when transfered to NIH 

ChestX-ray14 dataset. The result of our best model is present in Table 3 with the results of 

other SOTA methods.

Table 2.

We created a large-scale dataset, namely X-ray(926K), by collecting 926,028 images from 

13 different chest X-ray datasets. For the datasets that have official training/testing data split, 

we only used the training set.

Source Datasets Number of Images

NIH ChestX-ray14 [26] 86,524

CheXpert [13] 223,414

VinDr-CXR [19] 15,000

NIH Shenzhen CXR [14] 662

RSNA Pneumonia Detection Challenge [1] 26,684

MIMIC-CXR database v2.0.0 [15] 377,028

PadChest [4] 160,828

COVID-19 Radiography Database [9] 21,165

Indiana ChestX-ray [2] 7,883

Mendeley-V2 [16] 5,232

COVIDx [25] 1,223

JSRT [22] 243

Montgomery County X-ray Set [5] 138

X-ray(926K) 926,028
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Table 3.

Continual pre-training on a large-scale domain-specific dataset (ImageNet→X-ray(926K)) 

via self-supervised SimMIM method achieves SOTA performance on the NIH ChestX-ray14 

target task.

Method Backbone Mean Atel Card Effu Infi Mass Nodu Pne1 Pne2 Cons Edem Emph Fibr P.T. Hern

CXRDANet[7] DN-121 81.9 75.9 89.8 82.7 71.0 83.2 75.3 73.6 87.6 75.1 86.4 89.0 83.6 78.9 94.0

A3Net[24] DN-121 82.6 77.9 89.5 83.6 71.0 83.4 77.7 73.7 87.8 75.9 85.5 93.3 83.8 79.1 93.8

XProtoNet[17] DN-121 82.2 78.0 88.7 83.5 71.0 83.1 80.4 73.4 87.1 74.7 84.0 94.1 81.5 79.9 90.9

TransVW[11] DN-121 82.5 78.7 88.1 84.1 69.9 83.1 79.2 73.1 87.8 75.4 85.6 93.5 84.4 80.2 92.2

Ours Swin-B 83.2 79.3 90.7 84.6 71.5 85.3 76.6 74.5 88.5 76.8 86.3 92.9 84.2 80.4 93.5

†
Abbreviation of each pathology is as follow: Atel: Atelectasis; Card: Cardiomegaly; Effu: Effusion; Infi: Infiltration; 

Nodu: Nodule; Pne1: Pneumonia; Pne2: Pneumothorax; Cons: Consolidation; Edem: Edema; Emph: Emphysema; Fibr: 
Fibrosis; P.T.: Pleural Thickening; Hern: Hernia.
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Fig. 1. 
In medical imaging, good initialization is more vital for transformer-based models than for 

CNNs. When training from scratch, transformers perform significantly worse than CNNs 

on all target tasks. However, with supervised or self-supervised pre-training on ImageNet, 

transformers can offer the same results as CNNs, highlighting the importance of pre-training 

when using transformers for medical imaging tasks. We conduct statistical analysis between 

the best of six pre-trained transformer models and the best of three pre-trained CNN models.
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Table 1.

Self-supervised SimMIM model with the Swin-B backbone outperforms fully-supervised baselines. The best 

methods are bolded while the second best are underlined. For every target task, we conduct statistical analysis 

between the best (bolded) vs. others. Green-highlighted boxes indicate no statistically significant difference at 

the p = 0.05 level.

Initialization Backbone ChestX-ray14 CheXpert Shenzhen VinDr-CXR RSNA Pneumonia RSNA PE

Scratch
ViT-B 71.69±0.32 80.78±0.03 82.24±0.60 70.22±1.95 66.59±0.39 84.68±0.09

Swin-B 77.04±0.34 83.39±0.84 92.52±4.98 78.49±1.00 70.02±0.42 90.63±0.10

Supervised
ViT-B 80.05±0.17 87.88±0.50 93.67±1.03 88.30±1.45 71.50±0.52 91.19±0.11

Swin-B 81.73±0.14 87.80±0.42 93.35±0.77 90.35±0.31 73.44±0.46 94.85±0.07

SimMIM
ViT-B 79.55±0.56 88.07±0.43 93.47±2.48 88.91±0.55 72.08±0.47 91.39±0.10

Swin-B 81.95±0.15 88.16±0.31 94.12±0.96 90.24±0.35 73.66±0.34 95.27±0.12
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Table 2.

The domain-adapted pre-trained model which utilized a large number of in-domain data (X-rays(926K)) in an 

SSL manner achieves the best performance across all five target tasks. The best methods are bolded while the 

second best are underlined. For each target task, we conducted the independent two sample t-test between the 

best (bolded) vs. others. The absence of a statistically significant difference at the p = 0.05 level is indicated by 

green-highlighted boxes.

Initialization ChestX-ray14 CheXpert Shenzhen VinDr-CXR RSNA Pneumonia

Scratch 77.04±0.34 83.39±0.84 83.92±1.19 78.49±1.00 70.02±0.42

ImageNet 81.95±0.15 88.16±0.31 93.63±1.80 90.24±0.35 73.66±0.34

ChestX-ray14 78.87±0.69 86.75±0.96 93.03±0.48 79.86±1.82 71.99±0.55

X-rays(926K) 82.72±0.17 87.83±0.23 95.21±1.44 90.60±1.95 73.73±0.50

ImageNet→ChestX-ray14 82.45±0.15 87.74±0.31 94.83±0.90 90.33±0.88 73.87±0.48

ImageNet→X-rays(926K) 83.04±0.15 88.37±0.40 95.76±1.79 91.71±1.04 74.09±0.39
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