Skip to main content
. Author manuscript; available in PMC: 2022 Nov 14.
Published in final edited form as: Domain Adapt Represent Transf (2022). 2022 Sep 15;13542:12–22. doi: 10.1007/978-3-031-16852-9_2

Table 2.

The domain-adapted pre-trained model which utilized a large number of in-domain data (X-rays(926K)) in an SSL manner achieves the best performance across all five target tasks. The best methods are bolded while the second best are underlined. For each target task, we conducted the independent two sample t-test between the best (bolded) vs. others. The absence of a statistically significant difference at the p = 0.05 level is indicated by green-highlighted boxes.

Initialization ChestX-ray14 CheXpert Shenzhen VinDr-CXR RSNA Pneumonia
Scratch 77.04±0.34 83.39±0.84 83.92±1.19 78.49±1.00 70.02±0.42

ImageNet 81.95±0.15 88.16±0.31 93.63±1.80 90.24±0.35 73.66±0.34

ChestX-ray14 78.87±0.69 86.75±0.96 93.03±0.48 79.86±1.82 71.99±0.55
X-rays(926K) 82.72±0.17 87.83±0.23 95.21±1.44 90.60±1.95 73.73±0.50

ImageNet→ChestX-ray14 82.45±0.15 87.74±0.31 94.83±0.90 90.33±0.88 73.87±0.48
ImageNet→X-rays(926K) 83.04±0.15 88.37±0.40 95.76±1.79 91.71±1.04 74.09±0.39