Table 1.
Backbone | Initialization | ChestX-ray14 | CheXpert | Shenzhen | VinDr-CXR | RSNA Pneumonia | RSNA PE |
---|---|---|---|---|---|---|---|
ResNet-50 | Scratch | 80.400.05 | 86.620.15 | 89.031.82 | 87.390.42 | 70.000.50 | 90.371.32 |
Supervised[20] | 81.700.15 | 87.170.22 | 95.620.63 | 91.770.40 | 73.040.35 | 94.730.12 | |
Sup.(IN21K)[21] | 81.400.27 | 87.230.86 | 94.640.39 | 91.660.56 | 73.630.45 | 94.660.18 | |
DINO[6] | 81.410.35 | 87.370.45 | 96.380.48 | 90.960.68 | 73.580.35 | 95.600.10 | |
MoCo-v3[8] | 81.870.15 | 87.590.51 | 95.550.40 | 91.910.59 | 73.390.27 | 95.610.12 | |
ViT-B | Scratch | 71.690.32 | 80.780.03 | 82.240.60 | 70.221.95 | 66.590.39 | 84.680.09 |
Sup. (in21k)[10] | 80.050.17 | 87.880.50 | 93.671.03 | 88.301.45 | 71.500.52 | 91.190.11 | |
DeiT[23] | 79.460.24 | 87.490.43 | 95.350.80 | 89.642.97 | 72.930.62 | 91.950.07 | |
DINO[6] | 78.370.47 | 87.010.62 | 90.394.29 | 82.891.10 | 71.270.45 | 88.990.08 | |
MoCo-v3[8] | 79.200.30 | 87.120.36 | 92.851.00 | 87.250.63 | 72.790.52 | 91.330.10 | |
BEiT(in21k)[3] | 79.910.24 | 87.770.38 | 92.871.08 | 85.931.98 | 72.780.37 | 91.310.10 | |
MAE[12] | 79.010.58 | 87.120.54 | 92.524.98 | 87.001.74 | 72.850.50 | 91.960.12 | |
SimMIM[27] | 79.550.56 | 88.070.43 | 93.472.48 | 88.910.55 | 72.080.47 | 91.390.10 | |
Swin-B | Scratch | 77.040.34 | 83.390.84 | 92.524.98 | 78.491.00 | 70.020.42 | 90.630.10 |
Supervised[18] | 81.730.14 | 87.800.42 | 93.350.77 | 90.350.31 | 73.440.46 | 94.850.07 | |
Sup. (in21k)[18] | 81.740.13 | 87.940.54 | 94.211.25 | 91.231.06 | 73.200.59 | 94.580.13 | |
SimMIM[27] | 81.950.15 | 88.160.31 | 94.120.96 | 90.240.35 | 73.660.34 | 95.270.12 |
Abbreviations: Sup.: Supervised; IN21K: ImageNet-21K.
Unless mentioned, all models are pre-trained on ImageNet-1K.