Skip to main content
. Author manuscript; available in PMC: 2022 Nov 14.
Published in final edited form as: Domain Adapt Represent Transf (2022). 2022 Sep 15;13542:12–22. doi: 10.1007/978-3-031-16852-9_2

Table 3.

Continual pre-training on a large-scale domain-specific dataset (ImageNet→X-ray(926K)) via self-supervised SimMIM method achieves SOTA performance on the NIH ChestX-ray14 target task.

Method Backbone Mean Atel Card Effu Infi Mass Nodu Pne1 Pne2 Cons Edem Emph Fibr P.T. Hern
CXRDANet[7] DN-121 81.9 75.9 89.8 82.7 71.0 83.2 75.3 73.6 87.6 75.1 86.4 89.0 83.6 78.9 94.0
A3Net[24] DN-121 82.6 77.9 89.5 83.6 71.0 83.4 77.7 73.7 87.8 75.9 85.5 93.3 83.8 79.1 93.8
XProtoNet[17] DN-121 82.2 78.0 88.7 83.5 71.0 83.1 80.4 73.4 87.1 74.7 84.0 94.1 81.5 79.9 90.9
TransVW[11] DN-121 82.5 78.7 88.1 84.1 69.9 83.1 79.2 73.1 87.8 75.4 85.6 93.5 84.4 80.2 92.2

Ours Swin-B 83.2 79.3 90.7 84.6 71.5 85.3 76.6 74.5 88.5 76.8 86.3 92.9 84.2 80.4 93.5

Abbreviation of each pathology is as follow: Atel: Atelectasis; Card: Cardiomegaly; Effu: Effusion; Infi: Infiltration; Nodu: Nodule; Pne1: Pneumonia; Pne2: Pneumothorax; Cons: Consolidation; Edem: Edema; Emph: Emphysema; Fibr: Fibrosis; P.T.: Pleural Thickening; Hern: Hernia.