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Abstract

Myeloid checkpoints are receptors on the myeloid cell surface which can mediate inhibitory signals to modulate

anti-tumor immune activities. They can either inhibit cellular phagocytosis or suppress T cells and are thus

involved in the pathogenesis of various diseases. In the tumor microenvironment, besides killing tumor cells by

phagocytosis or activating anti-tumor immunity by tumor antigen presentation, myeloid cells could execute pro-

tumor efficacies through myeloid checkpoints by interacting with counter-receptors on other immune cells or

cancer cells. In summary, myeloid checkpoints may be promising therapeutic targets for cancer immunotherapy.
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Introduction

Anti-tumor immunotherapies, conventionally referred to as
immune checkpoint inhibitors (ICIs), target T-cell immune
checkpoints and have elicited impressive therapeutic
responses in the treatment of human cancers (1). Despite
achieving the long-term survival of 10%—30% of treated
individuals, immunotherapies are not effective for most
patients suffering from cancer (2). A primary challenge of
this strategy for extensive anticancer application remains
the cell complexity of the tumor immune microenviron-
ment. In addition to many endeavors to seek intrinsic
factors to enhance the efficacy of immune therapy in both
tumor and T cells (3-5), many studies have revealed that
the therapeutic efficacy could be improved by targeting
immune regulatory cells, including myeloid cells in the
tumor microenvironment (TME) (6,7).

Myeloid cells are the most abundant hematopoietic cells
in the human body and have diverse functions. All myeloid
cells arise from multipotent hematopoietic stem cells
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(HSCs) that develop into mature myeloid cells through
sequential steps of differentiation (Figure I) (6). Various
tumors show abundant infiltration of myeloid cells. More
specifically, tumor-infiltrating myeloid cells (TIMs) are
constitutive of several myeloid lineages, including mast
cells , plasmacytoid dendritic cells (pDCs) (8), conventional
dendritic cells (cDCs) (9), monocytes (10), macrophages
(11), and granulocytes (12). A pan-cancer single-cell
transcriptional atlas of TIMs across 15 human cancer types
showed that monocytes and macrophages accounted for the
largest proportion of TIMs, with an average of above 50%
in most tumors, and the proportion of cDCs was relatively
stable (approximately 10%—20%) across tumor types, while
the proportion of mast cells showed great variation across
different types of tumors (13).

Single-cell RNA-seq also indicated that in the TME,
myeloid cells experience continuous reprogramming (14).
Following TME-specific cues, monocytes can differentiate
into inflammatory macrophages (M1-like type) and
monocyte-derived DCs, whose functions are anti-tumor, or
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Myeloid cell differentiation under
normal physiological conditions

N

.
- 4
-

,
' Granulocyte

"""" >

~<

Chronic inflammation

PMN-MDSC

including tumors

00
-

461

Aberrant differentiation of myeloid cells
in tumor environment

@
g'. ‘\g_‘/’ TAN « Antigen-specific T cell
\\ : L —Jp- | tolerence

+ Nonspecific suppression

TAM Vl

+ Non-specific supression

« Produce cytokines and
soluble factors which
suppeort tumor angiogenesis

4

v

Suppressive DC

Figure 1 Stages of myelopoiesis differentiation. Myeloid cells originate from HSCs and MPPs. Myelopoiesis is amplified during chronic

inflammation to assist tumor progression and dissemination. HSCs differentiate into CMP, which can further differentiate through

hematopoietic system. In physiological conditions, CMP can differentiate into neutrophils or monocytes, and subsequently into DCs or

macrophages. However, with chronic inflammation, pro-inflammatory cytokines can skew monocytopoiesis of CMP into M-MDSC and
TAM, and granulopoiesis into PMN-MDSC and TAN. HSC, hematopoietic stem cell; MPP, multipotent progenitor cell; CMP, common

myeloid progenitor; DC, dendritic cell; M-MDSC, monocytic myeloid-derived suppressor cell; TAM, tumor-associated macrophage;

PMN-MDSC, polymorphonuclear myeloid-derived suppressor cell; TAN, tumor-associated neutrophil; CDP, common DC progenitor;

¢DC, conventional DC; pDC, plasmacytoid DC.

alternatively activated macrophages (M2-like type) with
immunosuppressive capacity. The differentiation from
monocytes to M2 macrophages may be the predominant
path in the process of myeloid reprogramming (15).

These cells have a profound impact on anti-tumor effect
and could influence neoangiogenesis, and sustain cancer
cell proliferation, metastasis and immunotherapy resistance
(16). On the one hand, myeloid cells can directly kill tumor
cells by phagocytosis (17) or activate anti-tumor immunity
by tumor antigen presentation (6). On the other hand, a
group of myeloid cells, including tumor-associated
macrophages (TAMs), tumor-associated neutrophils
(T'ANs), myeloid-derived suppressor cells (MDSCs) and
inhibitory DCs, support tumor development and metastasis
by suppressing infiltrating cytotoxic lymphocytes (18). The
activities and functions of these myeloid cells are regulated
by stimulatory or inhibitory signals mediated by receptors
on the cell surface, and inhibitory signals are considered
myeloid checkpoints, which may contain an immune-
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receptor tyrosine-based inhibitory motif (ITIM)/immune-
receptor tyrosine-based switch motif I'T'SM) to transduce
immune modulatory signals in myeloid cells or interact
with counter-receptors on other immune cells to modulate
their activities or on cancer cells to execute pro-tumor
efficacies. A new type of immunotherapeutic strategy
targeting myeloid cells has also emerged (19).

In this review, we will discuss the biological functions
and molecular mechanisms of myeloid checkpoints below.

Checkpoints expressed by myeloid cells

We briefly introduce CD47, signaling lymphocytic
activation molecule (SLAM) family, programmed cell death
1 (PD-1), sialic acid-binding immunoglobulin-type lectin
(Siglec) family, leukocyte immunoglobulin-like receptor B
(LILRB) family, triggering receptor expressed on myeloid
cells 2 (TREM2), neuropilin-1 (NRP1) and common
lymphatic endothelial and vascular endothelial receptor-1
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(Clever-1) in this chapter (Figure 2). domain bearing protein tyrosine phosphatase (SHP)
substrate-1 (SHPS-1) or CD172a] on macrophages and
CD47/SIRPa DCs, the ITIM in the cytoplasmic tail of SIRPa activates
S . . _ the inhibitory tyrosine phosphatases SHP-1 and SHP-2,
CD47 (also known as inhibitor of apoptosis protein, IAP) is resulting in inhibition of the actin cytoskeleton
a red blood cell signal that serves to discriminate self and rearrangement required for phagocytosis (Figure 3). CD47
non-self (20). Upon engagement of CD47 by signal is upregulated on the surface of several cancer cell types,
regulatory protein alpha [SIRPa; also known as SH2- enabling these cells to evade phagocytic removal by
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Figure 2 Current myeloid checkpoints in cancer immunotherapy. Ligands and elementary structures of CD47, SLAMFE?7, PD-1, LILRB1,
LILRB2, LILRB4, Siglec-1, Siglec-9, Siglec-10, Siglec-15, TREM2, NRP1 and Cleverl are shown in this figure. PD-1, programmed cell
death 1; LILRB, leukocyte immunoglobulin-like receptor B; Siglec, sialic acid-binding immunoglobulin-type lectin, TREM2, triggering
receptor expressed on myeloid cells 2; NRP1, neuropilin-1; Cleverl, common lymphatic endothelial and vascular endothelial receptor-1.
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Figure 3 Role of CD47/SIRPa. On the one hand, after binding to CD47, ITIM in the cytoplasmic tail of SIRPa on macrophage activates
inhibitory tyrosine phosphatases SHP-1 and SHP-2, resulting in inhibition of the actin cytoskeleton rearrangement required for
phagocytosis. On the other hand, SIRPa on DC inhibits the antigen presentation of tumor cells. ITIM, tyrosine-based inhibitory motif;
DC, dendritic cell.
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immune cells (21). In accord with this, high CD47
expression is negatively correlated with disease prognosis
and survival in acute myeloid leukemia (AML), non-small
cell lung cancer (NSCLC) and high-grade serous ovarian
carcinoma (21-24). Furthermore, therapeutic reagents that
antagonize the CD47-SIRPa axis in macrophages inhibit
the growth of several types of tumors, including AML and
non-Hodgkin  lymphoma, by enhancing cellular
phagocytosis (25-28). Furthermore, CD47 blockade has
been shown to robustly increase immune responses against
tumor antigens by activating DCs but not macrophage
cross-presentation of tumor antigens (29). In recent years,
combined therapies of a CD47-SIRPa axis inhibitor and
other anticancer therapeutics [e.g., PD-1/programmed cell
death ligand-1 (PD-L1) blockade] have been investigated in
the context of potentiating anti-tumor immunity in vitro

(25,30).
SLAM family

The SLAM family of receptors is expressed on the majority
of immune cells. These receptors often serve as self-ligands
and play important roles in cellular communication and
adhesion, thus modulating immune responses (Figure 4)
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(31,32). SLAM family receptors (SFRs) play a key role in
inhibiting macrophage phagocytosis. SFR deficiency
triggers macrophage phagocytosis of hematopoietic cells,
resulting in severe rejection of donor hematopoietic grafts
in recipient mice (33).

SLAMF7

The SLAMF7 [also acknowledged as CD2-like receptor-
activating cytotoxic cell (CRACC), CS1 and CD319]
receptor belongs to the SLAM family of receptors (34),
presenting at diverse periodicities on different types of
immune cells, such as macrophages, and restrictively
expressed on hematopoietic cells (32,34,35). Except for
SLAMF4 (2B4), SLAM family members function as
homotypic receptors, which recruit different SH2 domain-
containing proteins to their cytoplasmic immune-receptor
tyrosine-based switch motifs when activated (34) so that
SLAMF7 can regulate immune cell-specific functions
across diverse types of immune cells (34-36). SLAM family
receptors are correlated with T-cell exhaustion. SLAMFG6 is
a marker of the progenitor of exhausted CD8* T cells (37),
and both SLAMF6 and SLAMF4 (2B4) are reported as
inhibitory receptors of CD8* T cells (34). As reported,

Syk/mTOR

.

Phagocytosis

Figure 4 Role of SLAM family. In T cells, the activation of self-ligand SLAMF7 immune receptor could induce phosphorylation of STAT1

and STAT3 and expression of various inhibitory receptors and transcription factors associated with T cell exhaustion. In macrophages,

SLAMF7 could mediate phagocytosis interacting with integrin Mac-1 and do with signals involving immune-receptor tyrosine-based
activation motifs. While most SLAM-mediated phagocytosis functions depend on SAP adaptors. SLAMF3 and SLAMF4 are identified as
“don’t eat me” receptors on macrophages which inhibit “eat-me” signals such as LRP1-mediated activation of mTOR and Syk through SH2

domain-containing phosphatases. STAT, signal transduction and activator of transcription; SAP, signaling lymphocyte activation molecule-

associated protein; GPI, glycosyl phosphatidyl inositol.
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SLAME7 is also expressed on a CD8* T-cell subset
enriched in melanoma patients who are not responsive to
checkpoint blockade immune therapy (38). Moreover,
SLAMEF?7 is expressed on certain kinds of memory-
precursor and effector CD8* T cells, which respond to
checkpoint blockade in an indirect way (39). A recent study
showed that activation of the self-ligand SLAMF7 immune
receptor on T cells could induce phosphorylation of signal
transduction and activator of transcription 1 (STAT1) and
STAT3, and expression of various inhibitory receptors and
transcription factors associated with T-cell exhaustion
(31,40). High SLAMEF?7 expression is reported to indicate
poor survival in clear cell renal cell carcinoma (ccRCC)
(31). Moreover, SLAMF7highCD38high TAMs show strong
relations with exhausted T cells and are an independent
prognostic factor of ccRCC (31). Apart from the role of
SLAMEF7 in modulating T-cell function in the TME,
SLAMEF?7 could mediate phagocytosis by interacting with
integrin Mac-1 (41) and with signals involving immune-
receptor tyrosine-based activation motifs (42). Most
SLAM-mediated phagocytosis depend on
signaling lymphocyte activation molecule-associated
protein (SAP) adaptors (34,43). What’s more, it has been
shown that patients whose tumors express SLAMF7 are
more likely to respond to SIRPa-CD47 blockade
therapy (33).

functions

SLAMF3 & SLAMF4

Specifically, SLAMEF3 (Ly-9, CD229) and SLAMF4 (2B4,
CD244) were identified as “do not eat me” receptors on
macrophages (44). These receptors inhibit “eat-me”
signals, such as LRP1-mediated activation of mTOR and
Syk, through SH2 domain-containing phosphatases. SFRs
bind to but are independent of CD47 to alleviate
macrophage phagocytosis, and combined deletion of SFRs
and CD47 results in reduced hematopoietic cells in mice.
This SFR-mediated tolerance is compromised in patients
with hemophagocytic lymphohistiocytosis, a syndrome
characterized by  inappropriate  phagocytosis  of
hematopoietic cells. Thus, SFR-mediated inhibition of
macrophage phagocytosis is critical for hematopoietic
homeostasis, and SFR may represent a previously unknown

tumor immunotherapy target (44).
PD-1/PD-L1

PD-1 (also known as CD279) is one of the best-
characterized immune checkpoint targets for cancer
immunotherapy, and PD-1 blockade has proven to be the

© Chinese Journal of Cancer Research. All rights reserved.

Qian et al. Myeloid checkpoints for cancer immunotherapy

most successful immunotherapy strategy to date (45). It has
been reported that increased galectin-9* M-MDSCs in the
peripheral blood of NSCLC patients are involved in
resistance to anti-PD-1 therapy (46). Therefore, the
presence of MDSCs in the TME is detrimental for the
anti-PD-1/PD-L1 response. As expected, several studies
revealed the relationship between MDSC infiltration and
PD-1 blockade resistance, and selective depletion of
MDSC:s could restore anti-PD-1 efficacy (47,48).

In addition, it has been found that PD-1 is expressed in
TAMs but not in circulating monocytes or splenic
macrophages and that it can negatively regulate cancer cell
phagocytosis (30). In addition, as reported, blockade of
PD-1 or PD-L1 enhanced the phagocytic activity of TAMs
towards tumor cells in vivo and inhibited tumor growth in a
macrophage-dependent fashion, suggesting that the PD-
1/PD-L1 axis is an immune checkpoint for regulating both
innate and adaptive immunity. They further found that
PD-1 blockade also changed the nature of TAMs from
immunosuppressive M2-like cells to pro-inflammatory M1-
like cells. The presence of TAMs in pancreatic cancer
exaggerates immunosuppression within the micro-
environment and leads to PD-1/PD-L1 blockade
resistance. Inhibition of colony-stimulating factor 1
receptor (CSF1R) on TAMs can upregulate the expression
of PD-L1 and increase CD8+* T-cell infiltration, which
ablates anti-PD-1/PD-L1 resistance (49). PD-1-expressing
macrophages exhibit an anti-inflammatory-like surface
profile in tumor settings. PD-1 expression is negatively
correlated with the phagocytic ability of macrophages, and
blockade of PD-1/PD-L1 enhances antitumor responses
and prolongs survival by inhibiting pro-inflammatory to
anti-inflammatory macrophage polarization (50,51). PD-
L1 antibody treatment promoted the proliferation of
cultured bone marrow-derived macrophages, which was
related to the activation of the AKT-mTOR pathway
(Figure 5) (52). The transcriptomic profiles of macrophages
were switched to inflammatory phenotypes following PD-
L1 antibody treatment (53). The interaction between the
immune checkpoint molecules PD-1 and PD-L1 may also
be responsible for TAN-mediated immune suppression. In
human hepatocellular carcinoma (HCC) tissues and HCC-
bearing mice, PD-L1 and PD-1 were expressed in
peritumoral neutrophils and T lymphocytes, respectively,
and PD-L1* neutrophils from patients with HCC
effectively suppressed the proliferation and activation of T
cells by utilizing PD-1/PD-L1 interactions (54).

In addition to PD-L1, B7 superfamily member 1 (B7S1)
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Figure 5 Role of PD-1/PD-L1. PD-1-expressing macrophages exhibit an anti- inflammatory-like surface profile in tumor settings. PD-1

expression is negatively correlated to phagocytic ability of macrophages. PD-L1 antibody treatment promotes cell proliferation of cultured

bone marrow-derived macrophages, which is related to the activation of the AKT-mTOR pathway. PD-1, programmed cell death 1; PD-

L1, programmed cell death ligand 1.

(also known as B7-H4, B7x, or VI'CN1) is expressed by
tumor-infiltrating antigen-presenting cells (APCs) and
triggers dysfunction and exhaustion of activated CD8+*
TILs by Eomes upregulation (55). Murine experiments
indicated that B7S1 inhibition suppresses the development
of liver cancer and enhances antitumor CTLs and that the
combination of B7S1 and PD-1 blockade could inhibit
tumor growth in a synergistic way (55).

In summary, together with PD-1, B7S1 could be an
intriguing target to reverse T-cell exhaustion and maximize
immunotherapeutic efficacy in cancer.

Siglec family

Sialic acid-binding immunoglobulin-type lectins (Siglecs)
contain a family of cell surface proteins playing an essential
role in regulating immune homeostasis (Figure 6). The
dysregulation of Siglecs is reported to be correlated with
various  diseases, including autoimmunity diseases,

cancer (56). Siglecs are type I

transmembrane proteins with one V-set immunoglobulin

infections and

(Ig) domain, including a sialic acid-binding site, and one or
more C2-set Ig domains in the extracellular region. Most
Siglecs, such as CD22 (Siglec-2) and most CD33 (Siglec-
3)-related Siglecs, have I'TIMs and/or I'TIM-like motifs in

the intracellular domain and convey signaling mediated by

© Chinese Journal of Cancer Research. All rights reserved.

inhibitory receptors (57). Each Siglec prefers a different
kind of sialic acid expressed on all mammalian cells to
distinguish self and non-self (58). Mammalian cells have a
relatively high density of sialoglycans on their surface in
comparison to most pathogens. This high density of
sialoglycans, which can be considered self-associated
molecular patterns (SAMPs), can lead to the inhibition of
immune responses against the self (59). Siglec is mainly
expressed on hematopoietic cells, almost on myeloid cells
and B cells or other types of cells, such as neurons (56,58).

CD169

CD169, which is also called sialoadhesin or Siglec-1, is
expressed mostly on macrophages conserved among
mammals (60,61). The CD169 molecule consists of 17 Ig-
like domains, including an N-terminal V-set domain and
16 C2-set domains (62). CD169 can serve as a functional
ligand, different from most Siglecs, which work as
receptors (57). The functions of CD169 are involved in
cell-to-cell adhesion and cell-pathogen interactions (63)
including sialylated pathogen uptake, antigen presentation,
and modulating self-antigen tolerance (64). CD169 could
potentially contribute to both the damping and the
facilitation of antitumor immunity (65). On the one hand,
Siglecl can recognize and bind surface polysaccharides,

WWW.cjcren.org Chin J Cancer Res 2022;34(5):460-482
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Figure 6 Role of Siglec family. On the one hand, Siglec-1 could associate with DAP12 to recruit and activate SHP2, which then could

recruit E3 ubiquitin ligase TRIM27, inducing TBKI1 degradation. Therefore, type I IFN production is inhibited and innate immune

response could be suppressed. On the other hand, Syk activation occurs when Siglec-1 binds to DAP12, leading to increased production of
TGF-B1, which could inhibit production of NF-kB, Siglec-9 and Siglec-10. Membrane-proximal ITIM of Siglec-9 and Siglec-10 could
offer docking sites for SHP-1/2 once tyrosine is phosphorylated, which could inhibit the role of Toll-like-receptor, resulting in increased

production of NF-kB. SHP, SH2-domain bearing protein tyrosine phosphatase; IFN; interferon; TGF, transforming growth factor; Siglec,

sialic acid-binding immunoglobulin-type lectin.

such as CD43, on T cells to implement cell-to-cell
communication (66). CD169+ macrophages in the marginal
zone of the spleen recognize phosphatidylserine on the
surface of apoptotic cells, acting as APCs to present
apoptotic cell antigens so that Tregs are recruited to
exhibit their immune tolerance role (67). On the other
hand, CD169 in lymph nodes plays an immunoregulatory
role by interacting with MUC-1 binding on the surface of
breast cancer tumor cells (68). A high density of CD169*
macrophages in the regional lymph nodes of colorectal,
endometrial carcinoma and malignant melanoma patients
indicates a better clinical prognosis, perhaps owing to an
increase in the number of tumor-infiltrating cytotoxic
immune cells (69,70). CD169* macrophages can also
directly contact CD43-expressing CD8* T cells (71). In
endometrial carcinoma patients, a high density of CD169+
cells in the regional lymph nodes of the tumor is associated
with a higher density of CD8* T cells and NK cells in the
tumor tissue (69,70). The number of intratumoral cells

© Chinese Journal of Cancer Research. All rights reserved.

expressing CD169 also positively correlates with the
number of infiltrating CD8* T cells in the tumor and with
patient survival (71). In contrast, the subcapsular sinus
macrophages in regional lymph nodes of patients with
advanced-stage endometrial carcinoma or metastatic
carcinoma bear lower levels of CD169 or are completely
dismissed from this molecule (70). Furthermore, some
results suggested that upon vesicular stomatitis virus (VSV)
infection, Siglecl can associate with DAP12 and SHP2,
triggering suppression of type I IFN production (72).
There is also evidence that Siglec-1 can interact with and
DAP12-Syk pathway to
production of T'GF-p1, which plays an essential role in

sepsis and endotoxin tolerance (73).

activate the increase the

Siglec-9

Siglec-9 is expressed on various kinds of human blood
leukocytes, including lymphocytes and myeloid cells such
as B cells, small groups of T cells, monocytes, neutrophils,

WWW.cjcren.org Chin J Cancer Res 2022;34(5):460-482



Chinese Journal of Cancer Research, Vol 34, No 5 October 2022

and NK cells (74). Siglec-9 is mainly expressed on
neutrophils in peripheral blood (75) and on NK cells, B
cells and monocytes afterwards (76). As plentiful evidence
indicates, Siglec-9 plays inhibitory roles in modulating
immune homeostasis (77) by interacting with the
membrane-proximal ITIM. ITIMs can offer docking sites
for SHP-1/2 once tyrosine is phosphorylated (78). Siglec-9
could also link with transmembrane epithelial MUC, a kind
of strongly glycosylated protein basically produced by
epithelial tissues, which could trigger immune evasion (79).
MUC1
hematological cancers could recruit B-catenin binding to its

overexpressed on  adenocarcinomas  and
C-terminal domain to give rise to the growth of tumor cells
(80). MUC1-sialylated O-linked glycan binding to Siglec-9
could induce calcium flux, leading to the activation of
MEK-ERK kinases instead of recruiting SHP-1/2 (81).
Siglec-9 could also interact with MUCI16 expressed on
epithelial ovarian cancer cells, which protects tumor cells
from immune clearance (82).

Siglec-E

Siglec-E is the mouse orthologue of human Siglec-9.
Similar to Siglec-9, Siglec-E was first found on neutrophils,
macrophages and monocytes (83). Siglec-E could stop
inflammatory responses mediated by immune cells when
binding to sialoglycan ligands in its extracellular region
(83). A Siglec-E-deficient mouse model (84) was utilized to
explore the role of Siglecs in myeloid cells (85). As
reported, neutrophil-associated Siglec-E could promote
extravasation and colony formation of tumor cells in the
lungs. The tumoricidal effect and reactive oxygen species
(ROS) production mediated by neutrophils are shown to be
enhanced in vitro with the deficiency of Siglec-E (85,86).
TAMs in mice with Siglec-E deficiency have a higher
preference for polarization into M2 macrophages and could
enhance subcutaneous tumor growth (85).

Siglec-10

CD24 (also known as heat stable antigen or small-cell lung
carcinoma cluster 4 antigen) is a heavily glycosylated
glycosylphosphatidylinositol-anchored surface protein (87).
It is reported to interact with the inhibitory receptor sialic-
acid-binding Ig-like lectin 10 (Siglec-10) on innate immune
cells to dampen damaging inflammatory responses to
infection (88), sepsis (89), liver damage and chronic graft
vs. host diseases (87,90). The binding of CD24 to Siglec-10

triggers an inhibitory signaling cascade, which is mediated

© Chinese Journal of Cancer Research. All rights reserved.
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by Src homology region 2 domain-containing
phosphatases, SHP-1 and/or SHP-2. The phosphatases are
associated with the two immune-receptor tyrosine-based
inhibition motifs in the cytoplasmic tail of Siglec-10,
thereby blocking Toll-like receptor-mediated inflammation
and the cytoskeletal rearrangement required for cellular
engulfment by macrophages (58,91,92). Moreover, the role
of CD24 in modulating tumor immune responses has been
reported. CD24 is a potent antiphagocytic “don’t eat me”
signal that is capable of directly protecting cancer cells
from attack by Siglec-10-expressing macrophages. Many
tumors overexpress CD24, and TAMs express high levels
of Siglec-10. Genetic ablation of either CD24 or Siglec-10,
as well as blockade of the CD24-Siglec-10 interaction using
monoclonal  antibodies, robustly augmented the
phagocytosis of all CD24-expressing human tumors and led
to macrophage-dependent reduction of tumor growth in
vivo and an increase in survival time (93). Studies have
shown that CD24 is expressed by several solid tumors, such
as ovarian cancer and breast cancer (94,95), which
anti-PD-L1/PD-1

immunotherapies than other cancers (52,96), suggesting

demonstrate weaker responses to

that an alternative strategy may be required to achieve
responses across a wide range of cancers.

Siglec-15

Among the Siglec family members, Siglec-15 has been
identified as a very unique member, selectively expressed
on myeloid cells and osteoclasts (a bone-specific myeloid
lineage) and generally absent in other immune cells and
tissues (97,98). Siglec-15 was identified as a novel T-cell-
inhibitory molecule, which was originally characterized as
an osteoclast modulator (99). The expression of Siglec-15 is
normally limited to cells in the myeloid lineage but can be
upregulated in many human cancers (97). As a recent study
indicated, Siglec-15 strongly suppresses antigen-specific T-
cell responses in vitro and in vivo and can mediate immune
evasion in the TME (100). As an immune suppressive
molecule, the Siglec-15 pathway is nonredundant to the
B7-H1/PD-1 pathway (100,101). Siglec-15
upregulated by macrophage colony-stimulating factor (M-

can be

CSF) released by diverse cell types in response to
inflammatory cytokines or by tumor cells, while under
physiological conditions, it is expressed on macrophages at
a low level (102).

Apart from Siglec-15’s unique induction mechanism by
M-CSF, IFNy, the major inducer of PD-L1 (101), is
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significantly demonstrated to suppress the expression of
Siglec-15 on macrophages (100). Unlike the majority of
Siglec members, there are no typical ITIMs or ITIM-like
motifs in the intracellular domain of Siglec15 (58). Instead,
it was reported to be associated with the adaptors DAP12
and DAP10, which contain an immunoreceptor tyrosine-
based activation motif (ITAM) (103). DAP12 can recruit
PI3K (104) and then promote an inflammatory response by
activating the mitogen-activated protein kinases (MAPK)
pathway (105). Furthermore, Siglec-15 could inhibit T cell
NF-kB/NFAT signaling in a direct way once binding and
could suppress the proliferation of T cells and the
production of cytokines, and the inhibitory function could
be mediated by IL-10 (99). In addition, Siglec-15 could
behave as a macrophage receptor and produce TGFp when
binding with its sialic acid ligand Sialyl-Tn on tumor cells
(101). When the levels of IL10 and TGEFp rise in the
TME, the immune-suppressive effect of Siglec-15 is
magnified (100).

LILRB family

The LILR family
immunomodulatory receptors expressed among human
myeloid and lymphocyte cell populations. The leukocyte
immunoglobulin-like receptor (LILR, LIR, ILT, CD85)
family can be divided into two classes: the inhibitory LILR
subfamily B (LILRB1-5) and the activating LILR
subfamily A (LILRA1-6). Inhibitory LILRB receptors were
first identified in 1997 (106). Expression is enriched in
myeloid cell populations and is primate specific, reflecting

comprises a set of paired

rapid gene duplication and evolution within the leukocyte
receptor complex of chromosomes (106). LILRs are closely
linked to the human killer cell inhibitory receptor (KIR)
family, and both LILRs and KIRs share similar Ig-like
structures and cytoplasmic signaling domains. Whereas
KIR expression is restricted to natural killer (NK) cells,
LILRs are expressed on various immune cells, including
NK, T, and B lymphocytes and myelomonocytic cells
(monocytes, macrophages, DCs and granulocytes). LILRB
expression has also been reported in other cell types,
including osteoclasts (107), leukemia , stromal and
endothelial cells , and wvarious cancers (108). LILRB
expression in cancer has been associated with enhanced
tumor growth and correlates with poor survival outcomes.
LILRBL is broadly expressed on myeloid cells, B cells and
subsets of NK cells and T cells. LILRB2-5 are more
restricted to cells of myeloid origin and DCs. LILRB
receptors contain cytoplasmic (S/I/V/LxYxxI/V/L) ITIM

© Chinese Journal of Cancer Research. All rights reserved.
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domains to recruit the Src homology 2 domain-containing
phosphatase SHP1/SHP2/SHIP, leading to inhibited
immune signaling cascades. SHP/SHIP phosphatase
activity is critical in maintaining immune homeostasis
(Figure 7) (109). LILRBs act as both immune checkpoint
molecules and tumor sustaining factors but may not affect
normal development. Thus, they have potential as
attractive targets for cancer treatment.

LILRB1

LILRBI1, an immunoreceptor tyrosine-based inhibitory
motif-containing receptor, is widely expressed on human
immune cells, including B cells, monocytes and
macrophages, dendritic cells and subsets of NK cells and T
cells (110). The ligands of LILRBI1, such as major
histocompatibility complex (MHC) class I molecules,
activate LILRB1 and transduce a suppressive signal, which
inhibits immune responses (111). The MHC class I
component B2-microglobulin (32M) has been found to act
as a potential antiphagocytic signal in cancer cells (110).
MHC-I on the cancer cell surface is sensed by LILRB1 on
TAMs, resulting in negative regulation of cancer cell
phagocytosis. LILRB1 is an immunoglobulin-like receptor
for the gene product of human cytomegalovirus UL18, a
homolog of cellular MHC class I antigens (112). LILRBI
in NK cells inhibits Fc receptor-mediated signaling in
monocytes by activating the inhibitory phosphatase SHP-1
(113). It has been reported that LILRB1 possibly plays an
antitumor role in hepatocarcinoma cells by interacting with
SHP1 (114). Ablaton of MHC-I on cancer cells or
LILRBI on macrophages has been reported to promote the
phagocytic clearance of tumor cells and inhibit tumor
growth in an in vivo mouse model (110).

LILRB2

LILRB2 is known as an immune inhibitory receptor that
suppresses the immune system. CD8+*CD28" alloantigen-
specific T suppressor cells could trigger the expression of
LILRB2 on monocytes and DCs, leading to the tolerance
effect on these APCs (115). LILRB2high DCs could give
rise to the anergy of CD4*CD45RO*CD25* T cells and
suppress their further differentiation into regulatory T cells
(116). As recent studies have reported, LILRB2 is highly
expressed on hematopoietic stem cells or leukemia stem
cells and is critical for the maintenance of stemness
supporting hematopoiesis or leukemogenesis (117).
LILRB? is also reported to be expressed in many types of
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Figure 7 Role of LILRB family. LILRBI inhibits Fc receptor-mediated signaling in NK cells and monocytes and possibly plays an anti-

tumor effect in hepatocarcinoma cells by activating SHP-1, which could then inhibit PI3K/Akt pathway. In endometrial cancer cells,

LILRB2 could enhance the SHP2/CaMK1/CREB signaling pathways. LILRB4 supports tumor cell infiltration into tissues and suppresses
T cell activity possibly via APOE, LILRB4, SHP-2, uPAR and ARGI in AML cells. LILRB, leukocyte immunoglobulin-like receptor B;
SHP, SH2-domain bearing protein tyrosine phosphatase; NK, natural killer; AML, acute myeloid leukemia.

solid cancers. For instance, LILRB2 is linked with fewer
infiltrating lymphocytes and more lymphatic metastasis in
breast cancer (117). LILRB2 can be detected on the cell
membrane and in the intracellular region of NSCLC and
enhances progression (118). LILRB2 plays a vital role in
sustaining epithelial-mesenchymal transition (EMT) and
the early metastatic behavior of pancreatic adenocarcinoma
(119). Furthermore, LILRB2 is shown to be highly
expressed in endometrial cancer, and the expression levels
are conversely correlated with overall survival of patients
(119). In vitro experiments indicate that knockdown of
LILRB2 leads to a significant decrease in proliferation,
colony formation and migration in several endometrial
cancer cell lines. LILRB2 could enhance the
SHP2/CaMK1/CREB signaling pathways, which supports
the expansion and migration of endometrial cancer

cells (119).
LILRB#4

LILRB4 (also known as CD85K, ILT3, LIRS, and HM18)
has two extracellular Ig-like domains (D1 and D2) and
three ITIMs. On the one hand, LILRB4 is a marker for

© Chinese Journal of Cancer Research. All rights reserved.

monocytic AML (120). Further demonstration is that
LILRB4 is more highly expressed on monocytic AML cells
than on their normal counterparts and that LILRB4
expression inversely correlates with overall survival of
patients with AML (120). Experiments in mouse models
and human cells show that LILRB4 supports tumor cell
infiltration into tissues and suppresses T-cell activity via a
signaling pathway that involves APOE, LILRB4, SHP-2,
uPAR and ARGI1 in AML cells (120). Furthermore,
LILRB4 represents a compelling target for the treatment
of monocytic AML. It has been reported that a LILRB4-
humanized mAb, which  blocks the
LILRB4/APOE interaction in a competitive manner,

targeted

inhibits monocytic AML cell tissue infiltration and reverses
T cell suppression (121). On the other hand, LILRB4 is
expressed on MDSCs and TAMs (122). Expression of
LILRB4 on PMN-MDSCs and M-MDSCs in NSCLC is
associated with poor patient outcomes (123). In vitro, the
capacity of M-MDSCs from normal human monocytes to
induce IL-10-producing Treg cells could be potentiated by
prostaglandin E2 through LILRB4 on M-MDSCs (124).
Ant-LILRB4 antibodies impaired the T cell suppression
induced by M-MDSCs (122). Furthermore, fibronectin
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expressed by stromal cells in the TME can bind and
activate LILRB4 on MDSCs, which recruits SHP-1 to
inhibit ~ Syk-mediated ~ FcyR
immunosuppressive activities of MDSCs (125). Apart from
MDSCs, studies have indicated that LILRB4 is expressed
on TAMs in various human cancers and mouse models,
including melanoma, lung cancer, colon carcinoma and
pancreatic carcinoma (108). Blocking LILRB4 or gp49b

deficiency could increase the infiltration of antineoplastic

signaling and  the

immune cells into the TME and lessen the inhibitory effect
of Treg cells by regulating IL-1b and iNOS production
from TAMs (126). In summary, LILRB4 expressed on
MDSCs and TAMs may be an interesting target for cancer
immunotherapy.

TREM?2

TREM?2 was originally recognized in Alzheimer’s disease as
a myeloid receptor that transmits intracellular signals to
maintain microglial responses. TREM?2 is also expressed on
TAMs, acting as an activating receptor of the Ig
superfamily and transmitting intracellular signals when
binding to the adaptor DNAX-activating protein of 12 kDa
(DAP12) (127). DAP12, which recruits the protein tyrosine
kinase Syk, could conduct a tyrosine phosphorylation
cascade activating downstream mediators such as PLCy2,
PI-3K, mTOR and MAPK, finally triggering cell activation
(Figure 8). Mouse models show that TREM2~~ mice are
more resistant to the growth of diverse kinds of cancers
than wild-type mice and are more responsive to anti-PD-1
immunotherapy (128). Moreover, treatment with an anti-
TREM2 monoclonal antibody suppresses tumor growth
and raises regression when combined with anti-PD-1 (128).
Moreover, in colorectal carcinoma (CRC) and triple-
negative breast cancer, TREM2 expression is reported to
have a converse correlation with higher overall survival and
relapse-free survival (128,129).

NRP1

NRP1 was originally distinguished as an adhesion molecule
in the frog nervous system and found as a transmembrane
glycoprotein located on axons of nerve fibers (130). NRP1
located on the cell surface acts as a nontyrosine kinase
transmembrane glycoprotein and plays a role as a
coreceptor (Sema-3A)
(Figure 9). The NRPI gene is widely expressed in various

of secreted Semaphorin-3A

kinds of cells, tissues and organs, such as endothelial cells,
and the heart, liver, lung, kidney, pancreas, and skeletal

© Chinese Journal of Cancer Research. All rights reserved.
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Figure 8 Role of TREM2. TREM2 expressed on TAMs could
transmit intracellular signals when binding to DAP12, which
recruits the protein tyrosine kinase Syk, conducting a tyrosine
phosphorylation cascade activating downstream mediators such as
PLCy2, PI-3K, mTOR and MAPK, and finally triggers cell
activation. TREM2, triggering receptor expressed on myeloidcells
2; TAM, tumor-associated macrophage; MAPK, mitogen-

activated protein kinases.

muscle (131), playing an essential role in promoting

angiogenesis, = neural  development,  cytoskeleton
remodelling, inflammation, the initial immune response,
and tumor development (132,133). The expression of
NRP1 in the immune system is more restricted and
regulated. NRP1, which is also known as blood DC antigen
4 (BDCA4, or CD304), was identified as a human DC
marker expressed in all pDCs (134). Other types of APCs,
including monocytes and macrophages, also express NPR1
(135). NRP1 expressed in monocytes and macrophages
generally plays proangiogenic and anti-inflammatory roles,
contributing to tissue remodelling and wound healing
(136). As recently reported, NPRI1 is also expressed in
CD8+ T cells in mice and humans and is mainly detected in
intratumoral CD8* T cells marked by high expression of
PD-1 (137).

A recent study indicated the role of NRPI in the
emergence and development of human malignant tumors
(138). Higher expression or mutations of NRP1 are linked
with the initiation, progression, and prognosis of human
malignant tumors such as hepatocellular carcinoma (139),
gastric cancer (140,141), breast cancer (142), prostatic
cancer, and pancreatic cancer (143). Overexpression of
NRPI1 significantly reduces the survival rate in NSCLC
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Figure 9 Role of NRP1. NRP1 located on the cell surface acts as
a non-tyrosine kinase transmembrane glycoprotein and plays a
role as a co-receptor of secreted Semaphorin-3A (Sema-3A). NRP!
gene widely expresses over various kinds of cells, tissues and
organs such as endothelial cells, the heart, liver, lung, kidney,
pancreas, and skeletal muscle, playing an essential part in
promoting angiogenesis, neural development, cytoskeleton
remodeling, inflammation, initial immune response, and tumors

development. VEGF, vascular endothelial growth factor.

patients. The reduction of NRP1 expression by utilizing
NRP1 monoclonal antibody, RNA interference or NRP1
inhibitor could inhibit tumor cell growth and tumor
angiogenesis (144). Overexpression of NRP1 in human oral
squamous cell carcinoma shows more spindle filaments,
reduces the expression of EMT epithelial markers and
increases the expression of mesenchymal markers (145). As
studies report, NRP1 promotes the presence of EMT in
breast cancer cells by augmenting signaling molecules such

as TGF-p (1406).
Clever-1

Clever-1, also known as stabilin-1 or FEEL-1, is a
multifunctional glycoprotein expressed on a subset of anti-
inflammatory macrophages involved in scavenging,
angiogenesis and cell adhesion, which are involved in
receptor-mediated endocytosis and recycling, intracellular

sorting and transcytosis (147,148). Additionally, it is the
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first adhesion molecule implicated in transmigration
through the lymphatic arm of the immune system (147).
Attenuated progression of melanoma tumor growth and
metastasis has been observed in Clever-1-knockout mice
and those treated with anti-Clever-1 therapy (149). Clever-
1+ macrophages are found in human cancers and are
associated with poorer disease-free survival in colorectal
cancers of advanced stage and overall survival in bladder
(149).
macrophages show higher expression of Clever-1 in an

cancer Circulating monocytes and tissue
immunosuppressive environment, such as pregnancy and
cancer, which could suppress Thl lymphocyte activation
(148). Meanwhile, according to a phase 1/2 clinical trial,
bexmarilimab, a novel anti-Clever-1 antibody, has shown
significant efficacy in 10 patients with hard-to-treat solid
tumors (150).

Clinical application

While myeloid checkpoints have been increasingly
recognized as a potentially hopeful target to develop novel
immunotherapeutic  strategies, several  monoclonal
antibodies (mAbs) targeting myeloid checkpoints have
recently been under development, and clinical trials are
ongoing. Here, we labelled the recent advanced antibodies

targeting those myeloid checkpoints below (Table I).

Summary and prospects

In this review, we briefly summarized the biological
functions of different kinds of myeloid checkpoints
expressed on various myeloid cells, which has greatly
advanced cancer treatment. To overcome the immune
escape mechanisms of tumors and to improve the versatility
and raise the efficiency of current immunotherapies, it is
necessary to understand myeloid checkpoints in more
details and explore novel approaches based on these kinds
of checkpoints.
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