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Abstract

Myeloid  checkpoints  are  receptors  on  the  myeloid  cell  surface  which  can  mediate  inhibitory  signals  to  modulate

anti-tumor  immune  activities.  They  can  either  inhibit  cellular  phagocytosis  or  suppress  T  cells  and  are  thus

involved  in  the  pathogenesis  of  various  diseases.  In  the  tumor  microenvironment,  besides  killing  tumor  cells  by

phagocytosis  or  activating  anti-tumor  immunity  by  tumor  antigen  presentation,  myeloid  cells  could  execute  pro-

tumor  efficacies  through  myeloid  checkpoints  by  interacting  with  counter-receptors  on  other  immune  cells  or

cancer cells. In summary, myeloid checkpoints may be promising therapeutic targets for cancer immunotherapy.
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Introduction

Anti-tumor immunotherapies, conventionally referred to as
immune checkpoint inhibitors (ICIs), target T-cell immune
checkpoints  and  have  elicited  impressive  therapeutic
responses  in  the  treatment  of  human  cancers  (1).  Despite
achieving  the  long-term  survival  of  10%−30%  of  treated
individuals,  immunotherapies  are  not  effective  for  most
patients  suffering  from cancer  (2).  A  primary  challenge  of
this  strategy  for  extensive  anticancer  application  remains
the  cell  complexity  of  the  tumor  immune  microenviron-
ment.  In  addition  to  many  endeavors  to  seek  intrinsic
factors to enhance the efficacy of immune therapy in both
tumor  and  T  cells  (3-5),  many  studies  have  revealed  that
the  therapeutic  efficacy  could  be  improved  by  targeting
immune  regulatory  cells,  including  myeloid  cells  in  the
tumor microenvironment (TME) (6,7).

Myeloid cells are the most abundant hematopoietic cells
in the human body and have diverse functions. All myeloid
cells  arise  from  multipotent  hematopoietic  stem  cells

(HSCs) that  develop into mature myeloid cells  through
sequential steps of differentiation (Figure 1) (6). Various
tumors show abundant infiltration of myeloid cells. More
specifically,  tumor-infiltrating myeloid cells  (TIMs) are
constitutive of  several  myeloid lineages,  including mast
cells , plasmacytoid dendritic cells (pDCs) (8), conventional
dendritic cells (cDCs) (9), monocytes (10), macrophages
(11),  and  granulocytes  (12).  A  pan-cancer  single-cell
transcriptional atlas of TIMs across 15 human cancer types
showed that monocytes and macrophages accounted for the
largest proportion of TIMs, with an average of above 50%
in most tumors, and the proportion of cDCs was relatively
stable (approximately 10%−20%) across tumor types, while
the proportion of mast cells showed great variation across
different types of tumors (13).

Single-cell  RNA-seq also indicated that  in  the TME,
myeloid cells experience continuous reprogramming (14).
Following TME-specific cues, monocytes can differentiate
into  inflammatory  macrophages  (M1-like  type)  and
monocyte-derived DCs, whose functions are anti-tumor, or
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alternatively activated macrophages (M2-like type) with
immunosuppressive  capacity.  The  differentiation  from
monocytes to M2 macrophages may be the predominant
path in the process of myeloid reprogramming (15).

These cells have a profound impact on anti-tumor effect
and could influence neoangiogenesis, and sustain cancer
cell proliferation, metastasis and immunotherapy resistance
(16). On the one hand, myeloid cells can directly kill tumor
cells by phagocytosis (17) or activate anti-tumor immunity
by tumor antigen presentation (6). On the other hand, a
group  of  myeloid  cells,  including  tumor-associated
macrophages  (TAMs),  tumor-associated  neutrophils
(TANs), myeloid-derived suppressor cells (MDSCs) and
inhibitory DCs, support tumor development and metastasis
by suppressing infiltrating cytotoxic lymphocytes (18). The
activities and functions of these myeloid cells are regulated
by stimulatory or inhibitory signals mediated by receptors
on the cell surface, and inhibitory signals are considered
myeloid  checkpoints,  which  may  contain  an  immune-

receptor tyrosine-based inhibitory motif (ITIM)/immune-
receptor tyrosine-based switch motif (ITSM) to transduce
immune modulatory signals  in myeloid cells  or interact
with counter-receptors on other immune cells to modulate
their  activities  or  on cancer  cells  to  execute  pro-tumor
efficacies.  A  new  type  of  immunotherapeutic  strategy
targeting myeloid cells has also emerged (19).

In this review, we will discuss the biological functions
and molecular mechanisms of myeloid checkpoints below.

Checkpoints expressed by myeloid cells

We  briefly  introduce  CD47,  signaling  lymphocytic
activation molecule (SLAM) family, programmed cell death
1  (PD-1),  sialic  acid-binding  immunoglobulin-type  lectin
(Siglec)  family,  leukocyte  immunoglobulin-like  receptor  B
(LILRB)  family,  triggering  receptor  expressed  on  myeloid
cells  2  (TREM2),  neuropilin-1  (NRP1)  and  common
lymphatic  endothelial  and  vascular  endothelial  receptor-1

 

Figure 1 Stages of myelopoiesis  differentiation. Myeloid cells  originate from HSCs and MPPs. Myelopoiesis  is  amplified during chronic
inflammation  to  assist  tumor  progression  and  dissemination.  HSCs  differentiate  into  CMP,  which  can  further  differentiate  through
hematopoietic  system.  In  physiological  conditions,  CMP can  differentiate  into  neutrophils  or  monocytes,  and  subsequently  into  DCs  or
macrophages.  However,  with  chronic  inflammation,  pro-inflammatory  cytokines  can  skew monocytopoiesis  of  CMP into  M-MDSC and
TAM, and granulopoiesis into PMN-MDSC and TAN. HSC, hematopoietic stem cell; MPP, multipotent progenitor cell; CMP, common
myeloid  progenitor;  DC,  dendritic  cell;  M-MDSC,  monocytic  myeloid-derived  suppressor  cell;  TAM,  tumor-associated  macrophage;
PMN-MDSC,  polymorphonuclear  myeloid-derived  suppressor  cell;  TAN,  tumor-associated  neutrophil;  CDP,  common  DC  progenitor;
cDC, conventional DC; pDC, plasmacytoid DC.
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(Clever-1) in this chapter (Figure 2).

CD47/SIRPα

CD47 (also known as inhibitor of apoptosis protein, IAP) is
a  red  blood  cell  signal  that  serves  to  discriminate  self  and
non-self  (20).  Upon  engagement  of  CD47  by  signal
regulatory  protein  alpha  [SIRPα;  also  known  as  SH2-

domain  bearing  protein  tyrosine  phosphatase  (SHP)
substrate-1  (SHPS-1)  or  CD172a]  on  macrophages  and
DCs,  the  ITIM in  the  cytoplasmic  tail  of  SIRPα activates
the  inhibitory  tyrosine  phosphatases  SHP-1  and  SHP-2,
resulting  in  inhibition  of  the  actin  cytoskeleton
rearrangement required for phagocytosis (Figure 3). CD47
is  upregulated  on  the  surface  of  several  cancer  cell  types,
enabling  these  cells  to  evade  phagocytic  removal  by

 

Figure 2 Current myeloid checkpoints in cancer immunotherapy. Ligands and elementary structures of CD47, SLAMF7, PD-1, LILRB1,
LILRB2, LILRB4, Siglec-1, Siglec-9, Siglec-10, Siglec-15, TREM2, NRP1 and Clever1 are shown in this figure. PD-1, programmed cell
death  1;  LILRB,  leukocyte  immunoglobulin-like  receptor  B;  Siglec,  sialic  acid-binding  immunoglobulin-type  lectin;  TREM2,  triggering
receptor expressed on myeloid cells 2; NRP1, neuropilin-1; Clever1, common lymphatic endothelial and vascular endothelial receptor-1.

 

Figure 3 Role of CD47/SIRPα. On the one hand, after binding to CD47, ITIM in the cytoplasmic tail of SIRPα on macrophage activates
inhibitory  tyrosine  phosphatases  SHP-1  and  SHP-2,  resulting  in  inhibition  of  the  actin  cytoskeleton  rearrangement  required  for
phagocytosis.  On the other  hand,  SIRPα on DC inhibits  the  antigen presentation of  tumor cells.  ITIM, tyrosine-based inhibitory  motif;
DC, dendritic cell.
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immune  cells  (21).  In  accord  with  this,  high  CD47
expression  is  negatively  correlated  with  disease  prognosis
and  survival  in  acute  myeloid  leukemia  (AML),  non-small
cell  lung  cancer  (NSCLC)  and  high-grade  serous  ovarian
carcinoma (21-24).  Furthermore,  therapeutic  reagents  that
antagonize  the  CD47-SIRPα axis  in  macrophages  inhibit
the growth of several types of tumors, including AML and
non-Hodgkin  lymphoma,  by  enhancing  cellular
phagocytosis  (25-28).  Furthermore,  CD47  blockade  has
been shown to robustly increase immune responses against
tumor  antigens  by  activating  DCs  but  not  macrophage
cross-presentation of  tumor antigens  (29).  In  recent  years,
combined  therapies  of  a  CD47-SIRPα axis  inhibitor  and
other anticancer therapeutics [e.g.,  PD-1/programmed cell
death ligand-1 (PD-L1) blockade] have been investigated in
the  context  of  potentiating  anti-tumor  immunity in  vitro
(25,30).

SLAM family

The SLAM family of receptors is expressed on the majority
of immune cells. These receptors often serve as self-ligands
and  play  important  roles  in  cellular  communication  and
adhesion,  thus  modulating  immune  responses  (Figure  4)

(31,32).  SLAM  family  receptors  (SFRs)  play  a  key  role  in
inhibiting  macrophage  phagocytosis.  SFR  deficiency
triggers  macrophage  phagocytosis  of  hematopoietic  cells,
resulting in  severe  rejection of  donor hematopoietic  grafts
in recipient mice (33).

SLAMF7

The  SLAMF7  [also  acknowledged  as  CD2-like  receptor-
activating  cytotoxic  cell  (CRACC),  CS1  and  CD319]
receptor  belongs  to  the  SLAM  family  of  receptors  (34),
presenting  at  diverse  periodicities  on  different  types  of
immune  cells,  such  as  macrophages,  and  restrictively
expressed  on  hematopoietic  cells  (32,34,35).  Except  for
SLAMF4  (2B4),  SLAM  family  members  function  as
homotypic receptors, which recruit different SH2 domain-
containing  proteins  to  their  cytoplasmic  immune-receptor
tyrosine-based  switch  motifs  when  activated  (34)  so  that
SLAMF7  can  regulate  immune  cell-specific  functions
across diverse types of immune cells (34-36). SLAM family
receptors are correlated with T-cell exhaustion. SLAMF6 is
a marker of the progenitor of exhausted CD8+ T cells (37),
and  both  SLAMF6  and  SLAMF4  (2B4)  are  reported  as
inhibitory  receptors  of  CD8+ T  cells  (34).  As  reported,

 

Figure 4 Role of SLAM family. In T cells, the activation of self-ligand SLAMF7 immune receptor could induce phosphorylation of STAT1
and  STAT3  and  expression  of  various  inhibitory  receptors  and  transcription  factors  associated  with  T  cell  exhaustion.  In  macrophages,
SLAMF7  could  mediate  phagocytosis  interacting  with  integrin  Mac-1  and  do  with  signals  involving  immune-receptor  tyrosine-based
activation motifs. While most SLAM-mediated phagocytosis functions depend on SAP adaptors. SLAMF3 and SLAMF4 are identified as
“don’t eat me” receptors on macrophages which inhibit “eat-me” signals such as LRP1-mediated activation of mTOR and Syk through SH2
domain-containing phosphatases. STAT, signal transduction and activator of transcription; SAP, signaling lymphocyte activation molecule-
associated protein; GPI, glycosyl phosphatidyl inositol.
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SLAMF7  is  also  expressed  on  a  CD8+ T-cell  subset
enriched  in  melanoma  patients  who  are  not  responsive  to
checkpoint  blockade  immune  therapy  (38).  Moreover,
SLAMF7  is  expressed  on  certain  kinds  of  memory-
precursor  and  effector  CD8+ T  cells,  which  respond  to
checkpoint blockade in an indirect way (39). A recent study
showed that activation of the self-ligand SLAMF7 immune
receptor on T cells could induce phosphorylation of signal
transduction and activator of transcription 1 (STAT1) and
STAT3, and expression of various inhibitory receptors and
transcription  factors  associated  with  T-cell  exhaustion
(31,40).  High  SLAMF7  expression  is  reported  to  indicate
poor  survival  in  clear  cell  renal  cell  carcinoma  (ccRCC)
(31).  Moreover,  SLAMF7highCD38high TAMs show strong
relations  with  exhausted  T  cells  and  are  an  independent
prognostic  factor  of  ccRCC  (31).  Apart  from  the  role  of
SLAMF7  in  modulating  T-cell  function  in  the  TME,
SLAMF7  could  mediate  phagocytosis  by  interacting  with
integrin  Mac-1  (41)  and  with  signals  involving  immune-
receptor  tyrosine-based  activation  motifs  (42).  Most
SLAM-mediated  phagocytosis  functions  depend  on
signaling  lymphocyte  activation  molecule-associated
protein  (SAP)  adaptors  (34,43).  What’s  more,  it  has  been
shown  that  patients  whose  tumors  express  SLAMF7  are
more  likely  to  respond  to  SIRPα-CD47  blockade
therapy (33).

SLAMF3 & SLAMF4

Specifically,  SLAMF3 (Ly-9,  CD229)  and  SLAMF4 (2B4,
CD244)  were  identified  as  “do  not  eat  me”  receptors  on
macrophages  (44).  These  receptors  inhibit  “eat-me”
signals,  such  as  LRP1-mediated  activation  of  mTOR  and
Syk,  through  SH2  domain-containing  phosphatases.  SFRs
bind  to  but  are  independent  of  CD47  to  alleviate
macrophage phagocytosis,  and combined deletion of  SFRs
and  CD47  results  in  reduced  hematopoietic  cells  in  mice.
This  SFR-mediated  tolerance  is  compromised  in  patients
with  hemophagocytic  lymphohistiocytosis,  a  syndrome
characterized  by  inappropriate  phagocytosis  of
hematopoietic  cells.  Thus,  SFR-mediated  inhibition  of
macrophage  phagocytosis  is  critical  for  hematopoietic
homeostasis, and SFR may represent a previously unknown
tumor immunotherapy target (44).

PD-1/PD-L1

PD-1  (also  known  as  CD279)  is  one  of  the  best-
characterized  immune  checkpoint  targets  for  cancer
immunotherapy,  and  PD-1  blockade  has  proven  to  be  the

most successful immunotherapy strategy to date (45). It has
been reported that increased galectin-9+ M-MDSCs in the
peripheral  blood  of  NSCLC  patients  are  involved  in
resistance  to  anti-PD-1  therapy  (46).  Therefore,  the
presence  of  MDSCs  in  the  TME  is  detrimental  for  the
anti-PD-1/PD-L1  response.  As  expected,  several  studies
revealed  the  relationship  between  MDSC  infiltration  and
PD-1  blockade  resistance,  and  selective  depletion  of
MDSCs could restore anti-PD-1 efficacy (47,48).

In addition, it has been found that PD-1 is expressed in
TAMs  but  not  in  circulating  monocytes  or  splenic
macrophages and that it can negatively regulate cancer cell
phagocytosis  (30).  In addition,  as  reported,  blockade of
PD-1 or PD-L1 enhanced the phagocytic activity of TAMs
towards tumor cells in vivo and inhibited tumor growth in a
macrophage-dependent fashion, suggesting that the PD-
1/PD-L1 axis is an immune checkpoint for regulating both
innate and adaptive immunity.  They further found that
PD-1 blockade also  changed the  nature  of  TAMs from
immunosuppressive M2-like cells to pro-inflammatory M1-
like  cells.  The  presence  of  TAMs in  pancreatic  cancer
exaggerates  immunosuppression  within  the  micro-
environment  and  leads  to  PD-1/PD-L1  blockade
resistance.  Inhibition  of  colony-stimulating  factor  1
receptor (CSF1R) on TAMs can upregulate the expression
of  PD-L1 and increase  CD8+  T-cell  infiltration,  which
ablates anti-PD-1/PD-L1 resistance (49). PD-1-expressing
macrophages  exhibit  an  anti-inflammatory-like  surface
profile in tumor settings.  PD-1 expression is  negatively
correlated with the phagocytic ability of macrophages, and
blockade of PD-1/PD-L1 enhances antitumor responses
and prolongs survival by inhibiting pro-inflammatory to
anti-inflammatory macrophage polarization (50,51). PD-
L1  antibody  treatment  promoted  the  proliferation  of
cultured bone marrow-derived macrophages,  which was
related  to  the  activation  of  the  AKT-mTOR  pathway
(Figure 5) (52). The transcriptomic profiles of macrophages
were switched to inflammatory phenotypes following PD-
L1 antibody treatment (53). The interaction between the
immune checkpoint molecules PD-1 and PD-L1 may also
be responsible for TAN-mediated immune suppression. In
human hepatocellular carcinoma (HCC) tissues and HCC-
bearing  mice,  PD-L1  and  PD-1  were  expressed  in
peritumoral neutrophils and T lymphocytes, respectively,
and  PD-L1+  neutrophils  from  patients  with  HCC
effectively suppressed the proliferation and activation of T
cells by utilizing PD-1/PD-L1 interactions (54).

In addition to PD-L1, B7 superfamily member 1 (B7S1)
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(also known as B7-H4, B7x, or VTCN1) is expressed by
tumor-infiltrating  antigen-presenting  cells  (APCs)  and
triggers  dysfunction  and  exhaustion  of  activated  CD8+

TILs by Eomes upregulation (55).  Murine experiments
indicated that B7S1 inhibition suppresses the development
of liver cancer and enhances antitumor CTLs and that the
combination of  B7S1 and PD-1 blockade  could  inhibit
tumor growth in a synergistic way (55).

In  summary,  together  with  PD-1,  B7S1  could  be  an
intriguing target to reverse T-cell exhaustion and maximize
immunotherapeutic efficacy in cancer.

Siglec family

Sialic  acid-binding  immunoglobulin-type  lectins  (Siglecs)
contain a family of cell surface proteins playing an essential
role  in  regulating  immune  homeostasis  (Figure  6).  The
dysregulation  of  Siglecs  is  reported  to  be  correlated  with
various  diseases,  including  autoimmunity  diseases,
infections  and  cancer  (56).  Siglecs  are  type  I
transmembrane  proteins  with  one  V-set  immunoglobulin
(Ig) domain, including a sialic acid-binding site, and one or
more  C2-set  Ig  domains  in  the  extracellular  region.  Most
Siglecs,  such  as  CD22  (Siglec-2)  and  most  CD33  (Siglec-
3)-related Siglecs,  have ITIMs and/or ITIM-like motifs in
the intracellular domain and convey signaling mediated by

inhibitory  receptors  (57).  Each  Siglec  prefers  a  different
kind  of  sialic  acid  expressed  on  all  mammalian  cells  to
distinguish  self  and  non-self  (58).  Mammalian  cells  have  a
relatively  high  density  of  sialoglycans  on  their  surface  in
comparison  to  most  pathogens.  This  high  density  of
sialoglycans,  which  can  be  considered  self-associated
molecular  patterns  (SAMPs),  can  lead  to  the  inhibition  of
immune  responses  against  the  self  (59).  Siglec  is  mainly
expressed  on  hematopoietic  cells,  almost  on  myeloid  cells
and B cells or other types of cells, such as neurons (56,58).

CD169

CD169,  which  is  also  called  sialoadhesin  or  Siglec-1,  is
expressed  mostly  on  macrophages  conserved  among
mammals (60,61).  The CD169 molecule consists of 17 Ig-
like  domains,  including  an  N-terminal  V-set  domain  and
16  C2-set  domains  (62).  CD169  can  serve  as  a  functional
ligand,  different  from  most  Siglecs,  which  work  as
receptors  (57).  The  functions  of  CD169  are  involved  in
cell-to-cell  adhesion  and  cell-pathogen  interactions  (63)
including sialylated pathogen uptake, antigen presentation,
and  modulating  self-antigen  tolerance  (64).  CD169  could
potentially  contribute  to  both  the  damping  and  the
facilitation of  antitumor immunity  (65).  On the one hand,
Siglec1  can  recognize  and  bind  surface  polysaccharides,

 

Figure 5 Role of PD-1/PD-L1. PD-1-expressing macrophages exhibit an anti- inflammatory-like surface profile in tumor settings. PD-1
expression is negatively correlated to phagocytic ability of macrophages. PD-L1 antibody treatment promotes cell proliferation of cultured
bone marrow-derived macrophages, which is related to the activation of the AKT-mTOR pathway. PD-1, programmed cell death 1; PD-
L1, programmed cell death ligand 1.
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such  as  CD43,  on  T  cells  to  implement  cell-to-cell
communication (66). CD169+ macrophages in the marginal
zone  of  the  spleen  recognize  phosphatidylserine  on  the
surface  of  apoptotic  cells,  acting  as  APCs  to  present
apoptotic  cell  antigens  so  that  Tregs  are  recruited  to
exhibit  their  immune  tolerance  role  (67).  On  the  other
hand,  CD169  in  lymph  nodes  plays  an  immunoregulatory
role by interacting with MUC-1 binding on the surface of
breast  cancer  tumor  cells  (68).  A  high  density  of  CD169+

macrophages  in  the  regional  lymph  nodes  of  colorectal,
endometrial  carcinoma  and  malignant  melanoma  patients
indicates  a  better  clinical  prognosis,  perhaps  owing  to  an
increase  in  the  number  of  tumor-infiltrating  cytotoxic
immune  cells  (69,70).  CD169+ macrophages  can  also
directly  contact  CD43-expressing  CD8+ T  cells  (71).  In
endometrial  carcinoma patients,  a high density of CD169+

cells in the regional lymph nodes of the tumor is associated
with a higher density of CD8+ T cells and NK cells in the
tumor  tissue  (69,70).  The  number  of  intratumoral  cells

expressing  CD169  also  positively  correlates  with  the
number of infiltrating CD8+ T cells in the tumor and with
patient  survival  (71).  In  contrast,  the  subcapsular  sinus
macrophages  in  regional  lymph  nodes  of  patients  with
advanced-stage  endometrial  carcinoma  or  metastatic
carcinoma  bear  lower  levels  of  CD169  or  are  completely
dismissed  from  this  molecule  (70).  Furthermore,  some
results suggested that upon vesicular stomatitis virus (VSV)
infection,  Siglec1  can  associate  with  DAP12  and  SHP2,
triggering  suppression  of  type  I  IFN  production  (72).
There  is  also  evidence  that  Siglec-1  can  interact  with  and
activate  the  DAP12-Syk  pathway  to  increase  the
production  of  TGF-β1,  which  plays  an  essential  role  in
sepsis and endotoxin tolerance (73).

Siglec-9

Siglec-9  is  expressed  on  various  kinds  of  human  blood
leukocytes,  including  lymphocytes  and  myeloid  cells  such
as B cells, small groups of T cells, monocytes, neutrophils,

 

Figure 6 Role  of  Siglec  family.  On the  one  hand,  Siglec-1  could  associate  with  DAP12 to  recruit  and  activate  SHP2,  which  then could
recruit  E3  ubiquitin  ligase  TRIM27,  inducing  TBK1  degradation.  Therefore,  type  I  IFN  production  is  inhibited  and  innate  immune
response could be suppressed. On the other hand, Syk activation occurs when Siglec-1 binds to DAP12, leading to increased production of
TGF-β1,  which  could  inhibit  production  of  NF-kB,  Siglec-9  and  Siglec-10.  Membrane-proximal  ITIM  of  Siglec-9  and  Siglec-10  could
offer docking sites for SHP-1/2 once tyrosine is phosphorylated, which could inhibit the role of Toll-like-receptor, resulting in increased
production of NF-kB. SHP, SH2-domain bearing protein tyrosine phosphatase; IFN, interferon; TGF, transforming growth factor; Siglec,
sialic acid-binding immunoglobulin-type lectin.
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and  NK  cells  (74).  Siglec-9  is  mainly  expressed  on
neutrophils  in  peripheral  blood  (75)  and  on  NK  cells,  B
cells  and  monocytes  afterwards  (76).  As  plentiful  evidence
indicates,  Siglec-9  plays  inhibitory  roles  in  modulating
immune  homeostasis  (77)  by  interacting  with  the
membrane-proximal  ITIM.  ITIMs  can  offer  docking  sites
for SHP-1/2 once tyrosine is phosphorylated (78). Siglec-9
could also link with transmembrane epithelial MUC, a kind
of  strongly  glycosylated  protein  basically  produced  by
epithelial tissues, which could trigger immune evasion (79).
MUC1  overexpressed  on  adenocarcinomas  and
hematological cancers could recruit β-catenin binding to its
C-terminal domain to give rise to the growth of tumor cells
(80). MUC1-sialylated O-linked glycan binding to Siglec-9
could  induce  calcium  flux,  leading  to  the  activation  of
MEK-ERK  kinases  instead  of  recruiting  SHP-1/2  (81).
Siglec-9  could  also  interact  with  MUC16  expressed  on
epithelial  ovarian  cancer  cells,  which  protects  tumor  cells
from immune clearance (82).

Siglec-E

Siglec-E  is  the  mouse  orthologue  of  human  Siglec-9.
Similar to Siglec-9, Siglec-E was first found on neutrophils,
macrophages  and  monocytes  (83).  Siglec-E  could  stop
inflammatory  responses  mediated  by  immune  cells  when
binding  to  sialoglycan  ligands  in  its  extracellular  region
(83). A Siglec-E-deficient mouse model (84) was utilized to
explore  the  role  of  Siglecs  in  myeloid  cells  (85).  As
reported,  neutrophil-associated  Siglec-E  could  promote
extravasation  and  colony  formation  of  tumor  cells  in  the
lungs.  The  tumoricidal  effect  and  reactive  oxygen  species
(ROS) production mediated by neutrophils are shown to be
enhanced in  vitro with  the  deficiency  of  Siglec-E  (85,86).
TAMs  in  mice  with  Siglec-E  deficiency  have  a  higher
preference for polarization into M2 macrophages and could
enhance subcutaneous tumor growth (85).

Siglec-10

CD24 (also known as heat stable antigen or small-cell lung
carcinoma  cluster  4  antigen)  is  a  heavily  glycosylated
glycosylphosphatidylinositol-anchored surface protein (87).
It is reported to interact with the inhibitory receptor sialic-
acid-binding Ig-like lectin 10 (Siglec-10) on innate immune
cells  to  dampen  damaging  inflammatory  responses  to
infection  (88),  sepsis  (89),  liver  damage  and  chronic  graft
vs. host diseases (87,90). The binding of CD24 to Siglec-10
triggers an inhibitory signaling cascade,  which is  mediated

by  Src  homology  region  2  domain-containing
phosphatases, SHP-1 and/or SHP-2. The phosphatases are
associated  with  the  two  immune-receptor  tyrosine-based
inhibition  motifs  in  the  cytoplasmic  tail  of  Siglec-10,
thereby blocking Toll-like receptor-mediated inflammation
and  the  cytoskeletal  rearrangement  required  for  cellular
engulfment by macrophages (58,91,92). Moreover, the role
of CD24 in modulating tumor immune responses has been
reported.  CD24  is  a  potent  antiphagocytic  “don’t  eat  me”
signal  that  is  capable  of  directly  protecting  cancer  cells
from  attack  by  Siglec-10-expressing  macrophages.  Many
tumors  overexpress  CD24,  and  TAMs  express  high  levels
of Siglec-10. Genetic ablation of either CD24 or Siglec-10,
as well as blockade of the CD24-Siglec-10 interaction using
monoclonal  antibodies,  robustly  augmented  the
phagocytosis of all CD24-expressing human tumors and led
to  macrophage-dependent  reduction  of  tumor  growth in
vivo and  an  increase  in  survival  time  (93).  Studies  have
shown that CD24 is expressed by several solid tumors, such
as  ovarian  cancer  and  breast  cancer  (94,95),  which
demonstrate  weaker  responses  to  anti-PD-L1/PD-1
immunotherapies  than  other  cancers  (52,96),  suggesting
that  an  alternative  strategy  may  be  required  to  achieve
responses across a wide range of cancers.

Siglec-15

Among  the  Siglec  family  members,  Siglec-15  has  been
identified  as  a  very  unique  member,  selectively  expressed
on  myeloid  cells  and  osteoclasts  (a  bone-specific  myeloid
lineage)  and  generally  absent  in  other  immune  cells  and
tissues  (97,98).  Siglec-15  was  identified  as  a  novel  T-cell-
inhibitory  molecule,  which  was  originally  characterized  as
an osteoclast modulator (99). The expression of Siglec-15 is
normally limited to cells in the myeloid lineage but can be
upregulated in many human cancers (97). As a recent study
indicated, Siglec-15 strongly suppresses antigen-specific T-
cell responses in vitro and in vivo and can mediate immune
evasion  in  the  TME  (100).  As  an  immune  suppressive
molecule,  the  Siglec-15  pathway  is  nonredundant  to  the
B7-H1/PD-1  pathway  (100,101).  Siglec-15  can  be
upregulated  by  macrophage  colony-stimulating  factor  (M-
CSF)  released  by  diverse  cell  types  in  response  to
inflammatory  cytokines  or  by  tumor  cells,  while  under
physiological conditions, it is expressed on macrophages at
a low level (102).

Apart from Siglec-15’s unique induction mechanism by
M-CSF,  IFNγ,  the  major  inducer  of  PD-L1  (101),  is
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significantly demonstrated to suppress the expression of
Siglec-15 on macrophages (100). Unlike the majority of
Siglec members, there are no typical ITIMs or ITIM-like
motifs in the intracellular domain of Siglec15 (58). Instead,
it was reported to be associated with the adaptors DAP12
and DAP10, which contain an immunoreceptor tyrosine-
based activation motif (ITAM) (103). DAP12 can recruit
PI3K (104) and then promote an inflammatory response by
activating the mitogen-activated protein kinases (MAPK)
pathway (105). Furthermore, Siglec-15 could inhibit T cell
NF-κB/NFAT signaling in a direct way once binding and
could  suppress  the  proliferation  of  T  cells  and  the
production of cytokines, and the inhibitory function could
be mediated by IL-10 (99).  In addition, Siglec-15 could
behave as a macrophage receptor and produce TGFβ when
binding with its sialic acid ligand Sialyl-Tn on tumor cells
(101).  When  the  levels  of  IL10  and  TGFβ  rise  in  the
TME,  the  immune-suppressive  effect  of  Siglec-15  is
magnified (100).

LILRB family

The  LILR  family  comprises  a  set  of  paired
immunomodulatory  receptors  expressed  among  human
myeloid  and  lymphocyte  cell  populations.  The  leukocyte
immunoglobulin-like  receptor  (LILR,  LIR,  ILT,  CD85)
family can be divided into two classes: the inhibitory LILR
subfamily  B  (LILRB1−5)  and  the  activating  LILR
subfamily A (LILRA1−6). Inhibitory LILRB receptors were
first  identified  in  1997  (106).  Expression  is  enriched  in
myeloid cell  populations  and is  primate specific,  reflecting
rapid  gene  duplication  and  evolution  within  the  leukocyte
receptor complex of chromosomes (106). LILRs are closely
linked  to  the  human  killer  cell  inhibitory  receptor  (KIR)
family,  and  both  LILRs  and  KIRs  share  similar  Ig-like
structures  and  cytoplasmic  signaling  domains.  Whereas
KIR  expression  is  restricted  to  natural  killer  (NK)  cells,
LILRs  are  expressed  on  various  immune  cells,  including
NK,  T,  and  B  lymphocytes  and  myelomonocytic  cells
(monocytes,  macrophages,  DCs and granulocytes).  LILRB
expression  has  also  been  reported  in  other  cell  types,
including  osteoclasts  (107),  leukemia  ,  stromal  and
endothelial  cells  ,  and  various  cancers  (108).  LILRB
expression  in  cancer  has  been  associated  with  enhanced
tumor growth and correlates  with poor survival  outcomes.
LILRB1 is broadly expressed on myeloid cells,  B cells  and
subsets  of  NK  cells  and  T  cells.  LILRB2−5  are  more
restricted  to  cells  of  myeloid  origin  and  DCs.  LILRB
receptors  contain  cytoplasmic  (S/I/V/LxYxxI/V/L)  ITIM

domains to recruit the Src homology 2 domain-containing
phosphatase  SHP1/SHP2/SHIP,  leading  to  inhibited
immune  signaling  cascades.  SHP/SHIP  phosphatase
activity  is  critical  in  maintaining  immune  homeostasis
(Figure  7)  (109).  LILRBs  act  as  both  immune  checkpoint
molecules  and tumor sustaining factors  but  may not  affect
normal  development.  Thus,  they  have  potential  as
attractive targets for cancer treatment.

LILRB1

LILRB1,  an  immunoreceptor  tyrosine-based  inhibitory
motif-containing  receptor,  is  widely  expressed  on  human
immune  cells,  including  B  cells,  monocytes  and
macrophages, dendritic cells and subsets of NK cells and T
cells  (110).  The  ligands  of  LILRB1,  such  as  major
histocompatibility  complex  (MHC)  class  I  molecules,
activate LILRB1 and transduce a suppressive signal, which
inhibits  immune  responses  (111).  The  MHC  class  I
component β2-microglobulin (β2M) has been found to act
as  a  potential  antiphagocytic  signal  in  cancer  cells  (110).
MHC-I on the cancer cell surface is sensed by LILRB1 on
TAMs,  resulting  in  negative  regulation  of  cancer  cell
phagocytosis.  LILRB1 is  an immunoglobulin-like receptor
for  the  gene  product  of  human  cytomegalovirus  UL18,  a
homolog  of  cellular  MHC class  I  antigens  (112).  LILRB1
in  NK  cells  inhibits  Fc  receptor-mediated  signaling  in
monocytes by activating the inhibitory phosphatase SHP-1
(113).  It  has  been reported that  LILRB1 possibly  plays  an
antitumor role in hepatocarcinoma cells by interacting with
SHP1  (114).  Ablation  of  MHC-I  on  cancer  cells  or
LILRB1 on macrophages has been reported to promote the
phagocytic  clearance  of  tumor  cells  and  inhibit  tumor
growth in an in vivo mouse model (110).

LILRB2

LILRB2  is  known  as  an  immune  inhibitory  receptor  that
suppresses  the  immune  system.  CD8+CD28− alloantigen-
specific  T  suppressor  cells  could  trigger  the  expression  of
LILRB2 on  monocytes  and  DCs,  leading  to  the  tolerance
effect  on  these  APCs  (115).  LILRB2high DCs  could  give
rise  to  the  anergy  of  CD4+CD45RO+CD25+ T  cells  and
suppress their further differentiation into regulatory T cells
(116).  As  recent  studies  have  reported,  LILRB2  is  highly
expressed  on  hematopoietic  stem  cells  or  leukemia  stem
cells  and  is  critical  for  the  maintenance  of  stemness
supporting  hematopoiesis  or  leukemogenesis  (117).
LILRB2 is  also reported to be expressed in many types  of
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solid  cancers.  For  instance,  LILRB2  is  linked  with  fewer
infiltrating  lymphocytes  and  more  lymphatic  metastasis  in
breast  cancer  (117).  LILRB2  can  be  detected  on  the  cell
membrane  and  in  the  intracellular  region  of  NSCLC  and
enhances  progression  (118).  LILRB2  plays  a  vital  role  in
sustaining  epithelial-mesenchymal  transition  (EMT)  and
the early metastatic behavior of pancreatic adenocarcinoma
(119).  Furthermore,  LILRB2  is  shown  to  be  highly
expressed  in  endometrial  cancer,  and  the  expression  levels
are  conversely  correlated  with  overall  survival  of  patients
(119). In  vitro experiments  indicate  that  knockdown  of
LILRB2  leads  to  a  significant  decrease  in  proliferation,
colony  formation  and  migration  in  several  endometrial
cancer  cell  lines.  LILRB2  could  enhance  the
SHP2/CaMK1/CREB  signaling  pathways,  which  supports
the  expansion  and  migration  of  endometrial  cancer
cells (119).

LILRB4

LILRB4 (also known as CD85K, ILT3, LIR5, and HM18)
has  two  extracellular  Ig-like  domains  (D1  and  D2)  and
three  ITIMs.  On  the  one  hand,  LILRB4  is  a  marker  for

monocytic  AML  (120).  Further  demonstration  is  that
LILRB4 is more highly expressed on monocytic AML cells
than  on  their  normal  counterparts  and  that  LILRB4
expression  inversely  correlates  with  overall  survival  of
patients  with  AML  (120).  Experiments  in  mouse  models
and  human  cells  show  that  LILRB4  supports  tumor  cell
infiltration  into  tissues  and  suppresses  T-cell  activity  via  a
signaling  pathway  that  involves  APOE,  LILRB4,  SHP-2,
uPAR  and  ARG1  in  AML  cells  (120).  Furthermore,
LILRB4  represents  a  compelling  target  for  the  treatment
of  monocytic  AML.  It  has  been  reported  that  a  LILRB4-
targeted  humanized  mAb,  which  blocks  the
LILRB4/APOE  interaction  in  a  competitive  manner,
inhibits monocytic AML cell tissue infiltration and reverses
T  cell  suppression  (121).  On  the  other  hand,  LILRB4  is
expressed  on  MDSCs  and  TAMs  (122).  Expression  of
LILRB4  on  PMN-MDSCs  and  M-MDSCs  in  NSCLC  is
associated  with  poor  patient  outcomes  (123). In  vitro,  the
capacity  of  M-MDSCs  from normal  human  monocytes  to
induce IL-10-producing Treg cells could be potentiated by
prostaglandin  E2  through  LILRB4  on  M-MDSCs  (124).
Anti-LILRB4  antibodies  impaired  the  T  cell  suppression
induced  by  M-MDSCs  (122).  Furthermore,  fibronectin

 

Figure 7 Role of LILRB family. LILRB1 inhibits Fc receptor-mediated signaling in NK cells and monocytes and possibly plays an anti-
tumor  effect  in  hepatocarcinoma  cells  by  activating  SHP-1,  which  could  then  inhibit  PI3K/Akt  pathway.  In  endometrial  cancer  cells,
LILRB2 could enhance the SHP2/CaMK1/CREB signaling pathways. LILRB4 supports tumor cell infiltration into tissues and suppresses
T cell  activity possibly via APOE, LILRB4, SHP-2, uPAR and ARG1 in AML cells.  LILRB, leukocyte immunoglobulin-like receptor B;
SHP, SH2-domain bearing protein tyrosine phosphatase; NK, natural killer; AML, acute myeloid leukemia.
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expressed  by  stromal  cells  in  the  TME  can  bind  and
activate  LILRB4  on  MDSCs,  which  recruits  SHP-1  to
inhibit  Syk-mediated  FcγR  signaling  and  the
immunosuppressive activities of MDSCs (125). Apart from
MDSCs,  studies  have  indicated  that  LILRB4  is  expressed
on  TAMs  in  various  human  cancers  and  mouse  models,
including  melanoma,  lung  cancer,  colon  carcinoma  and
pancreatic  carcinoma  (108).  Blocking  LILRB4  or  gp49b
deficiency  could  increase  the  infiltration  of  antineoplastic
immune cells into the TME and lessen the inhibitory effect
of  Treg  cells  by  regulating  IL-1b  and  iNOS  production
from  TAMs  (126).  In  summary,  LILRB4  expressed  on
MDSCs and TAMs may be an interesting target for cancer
immunotherapy.

TREM2

TREM2 was originally recognized in Alzheimer’s disease as
a  myeloid  receptor  that  transmits  intracellular  signals  to
maintain microglial responses. TREM2 is also expressed on
TAMs,  acting  as  an  activating  receptor  of  the  Ig
superfamily  and  transmitting  intracellular  signals  when
binding to the adaptor DNAX-activating protein of 12 kDa
(DAP12) (127). DAP12, which recruits the protein tyrosine
kinase  Syk,  could  conduct  a  tyrosine  phosphorylation
cascade  activating  downstream  mediators  such  as  PLCγ2,
PI-3K, mTOR and MAPK, finally triggering cell activation
(Figure  8).  Mouse  models  show  that  TREM2−/− mice  are
more  resistant  to  the  growth  of  diverse  kinds  of  cancers
than wild-type mice and are more responsive to anti-PD-1
immunotherapy  (128).  Moreover,  treatment  with  an  anti-
TREM2  monoclonal  antibody  suppresses  tumor  growth
and raises regression when combined with anti-PD-1 (128).
Moreover,  in  colorectal  carcinoma  (CRC)  and  triple-
negative  breast  cancer,  TREM2  expression  is  reported  to
have a converse correlation with higher overall survival and
relapse-free survival (128,129).

NRP1

NRP1 was originally distinguished as an adhesion molecule
in the frog nervous system and found as  a  transmembrane
glycoprotein located on axons of nerve fibers (130). NRP1
located  on  the  cell  surface  acts  as  a  nontyrosine  kinase
transmembrane  glycoprotein  and  plays  a  role  as  a
coreceptor  of  secreted  Semaphorin-3A  (Sema-3A)
(Figure  9).  The NRP1 gene  is  widely  expressed  in  various
kinds of  cells,  tissues and organs,  such as endothelial  cells,
and  the  heart,  liver,  lung,  kidney,  pancreas,  and  skeletal

muscle  (131),  playing  an  essential  role  in  promoting
angiogenesis,  neural  development,  cytoskeleton
remodelling,  inflammation,  the  initial  immune  response,
and  tumor  development  (132,133).  The  expression  of
NRP1  in  the  immune  system  is  more  restricted  and
regulated. NRP1, which is also known as blood DC antigen
4  (BDCA4,  or  CD304),  was  identified  as  a  human  DC
marker expressed in all  pDCs (134). Other types of APCs,
including monocytes and macrophages, also express NPR1
(135).  NRP1  expressed  in  monocytes  and  macrophages
generally plays proangiogenic and anti-inflammatory roles,
contributing  to  tissue  remodelling  and  wound  healing
(136).  As  recently  reported,  NPR1  is  also  expressed  in
CD8+ T cells in mice and humans and is mainly detected in
intratumoral  CD8+ T  cells  marked  by  high  expression  of
PD-1 (137).

A  recent  study  indicated  the  role  of  NRP1  in  the
emergence and development of human malignant tumors
(138). Higher expression or mutations of NRP1 are linked
with the initiation, progression, and prognosis of human
malignant tumors such as hepatocellular carcinoma (139),
gastric  cancer  (140,141),  breast  cancer  (142),  prostatic
cancer,  and  pancreatic  cancer  (143).  Overexpression  of
NRP1 significantly reduces the survival rate in NSCLC

 

Figure  8 Role  of  TREM2.  TREM2  expressed  on  TAMs  could
transmit  intracellular  signals  when  binding  to  DAP12,  which
recruits  the  protein  tyrosine  kinase  Syk,  conducting  a  tyrosine
phosphorylation cascade activating downstream mediators such as
PLCγ2,  PI-3K,  mTOR  and  MAPK,  and  finally  triggers  cell
activation. TREM2, triggering receptor expressed on myeloidcells
2;  TAM,  tumor-associated  macrophage;  MAPK,  mitogen-
activated protein kinases.

470 Qian et al. Myeloid checkpoints for cancer immunotherapy

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2022;34(5):460-482



patients. The reduction of NRP1 expression by utilizing
NRP1 monoclonal antibody, RNA interference or NRP1
inhibitor  could  inhibit  tumor  cell  growth  and  tumor
angiogenesis (144). Overexpression of NRP1 in human oral
squamous cell  carcinoma shows more spindle filaments,
reduces  the  expression  of  EMT epithelial  markers  and
increases the expression of mesenchymal markers (145). As
studies report, NRP1 promotes the presence of EMT in
breast cancer cells by augmenting signaling molecules such
as TGF-β (146).

Clever-1

Clever-1,  also  known  as  stabilin-1  or  FEEL-1,  is  a
multifunctional glycoprotein expressed on a subset of anti-
inflammatory  macrophages  involved  in  scavenging,
angiogenesis  and  cell  adhesion,  which  are  involved  in
receptor-mediated  endocytosis  and  recycling,  intracellular
sorting  and  transcytosis  (147,148).  Additionally,  it  is  the

first  adhesion  molecule  implicated  in  transmigration
through  the  lymphatic  arm  of  the  immune  system  (147).
Attenuated  progression  of  melanoma  tumor  growth  and
metastasis  has  been  observed  in  Clever-1-knockout  mice
and those treated with anti-Clever-1 therapy (149). Clever-
1+ macrophages  are  found  in  human  cancers  and  are
associated  with  poorer  disease-free  survival  in  colorectal
cancers  of  advanced  stage  and  overall  survival  in  bladder
cancer  (149).  Circulating  monocytes  and  tissue
macrophages  show  higher  expression  of  Clever-1  in  an
immunosuppressive  environment,  such  as  pregnancy  and
cancer,  which  could  suppress  Th1  lymphocyte  activation
(148).  Meanwhile,  according  to  a  phase  1/2  clinical  trial,
bexmarilimab,  a  novel  anti-Clever-1  antibody,  has  shown
significant  efficacy  in  10  patients  with  hard-to-treat  solid
tumors (150).

Clinical application

While  myeloid  checkpoints  have  been  increasingly
recognized as a potentially hopeful target to develop novel
immunotherapeutic  strategies,  several  monoclonal
antibodies  (mAbs)  targeting  myeloid  checkpoints  have
recently  been  under  development,  and  clinical  trials  are
ongoing. Here, we labelled the recent advanced antibodies
targeting those myeloid checkpoints below (Table 1).

Summary and prospects

In  this  review,  we  briefly  summarized  the  biological
functions  of  different  kinds  of  myeloid  checkpoints
expressed  on  various  myeloid  cells,  which  has  greatly
advanced  cancer  treatment.  To  overcome  the  immune
escape mechanisms of tumors and to improve the versatility
and  raise  the  efficiency  of  current  immunotherapies,  it  is
necessary  to  understand  myeloid  checkpoints  in  more
details  and  explore  novel  approaches  based  on  these  kinds
of checkpoints.
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Figure 9 Role of NRP1. NRP1 located on the cell surface acts as
a  non-tyrosine  kinase  transmembrane  glycoprotein  and  plays  a
role as a co-receptor of secreted Semaphorin-3A (Sema-3A). NRP1
gene  widely  expresses  over  various  kinds  of  cells,  tissues  and
organs  such  as  endothelial  cells,  the  heart,  liver,  lung,  kidney,
pancreas,  and  skeletal  muscle,  playing  an  essential  part  in
promoting  angiogenesis,  neural  development,  cytoskeleton
remodeling,  inflammation,  initial  immune  response,  and  tumors
development. VEGF, vascular endothelial growth factor.
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