
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19141  | https://doi.org/10.1038/s41598-022-22058-7

www.nature.com/scientificreports

The first space‑filling polyhedrons 
of polymer cubic cells originated 
from Weaire‑Phelan structure 
created by polymerization induced 
phase separation
Naofumi Naga1,2*, Masumi Jinno2, Yuting Wang3 & Tamaki Nakano3,4*

The Weaire–Phelan structure is a three-dimensional structure composed of two different polyhedra 
having the same volume, i.e., pyritohedron and truncated hexagonal trapezohedron. It was proposed 
by Weaire and Phelan in 1993 as a solution of the Kelvin problem of filling space with no gaps with cells 
of minimum surface area and equal volume. It was found in physical systems including liquid foam 
and a metal alloy while it has never been constructed as organic materials. We report herewith the 
first polymeric Weaire–Phelan structure constructed through phase-separation of a single polymer 
species that is synthesized by simple polyaddition between tetrakis(3-mercaptopropionate) and 
1,6-diisocyanatohexane. The structure has the order of micrometers and is amorphous unlike reported 
crystal structures similar to the Weaire–Phelan structure.

“Tessellation of space into cells of equal volume with the least surface area” has been referred to as the Kelvin 
problem from the nineteenth century. In 1887, Lord Kelvin proposed a convex uniform honeycomb formed by 
a bi-truncated octahedron1. This form is called “Kelvin structure” and has been widely believed as the most effi-
cient form in tessellation2. After more than 100 years later, Weaire and Phelan discovered a more efficient form, 
so called “the Weaire-Phelan structure”, by computer simulations3. The Weaire-Phelan structure is composed 
by two kinds of cells with equal volume. One is a tetrakaidecahedron with two hexagonal and twelve pentago-
nal phases, and the other is an irregular dodecahedron with pentagonal faces. The arrangement of 3/4 of the 
tetrakaidecahedron cells and 1/4 of the dodecahedron cells in a specific way forms the Weaire-Phelan structure.

The family of the Weaire-Phelan structure is summarized in Fig. 1. The Weaire-Phelan structure inspired the 
architecture design of Beijing National Aquatics Center, called ‘Water Cube’, for the 2008 Summer Olympics4. 
The Weaire-Phelan structure has been found in physical materials only in two cases, i.e., liquid foam with the 
order of millimeters in size made from a detergent solution5,6 and a Pd-Pb alloy7. However, it has never been 
constructed for organic materials including polymer, especially, single-component polymeric material. The highly 
ordered three-dimensional structure in polymeric materials could open a way to novel function. In this work, we 
successfully constructed a Weaire-Phelan structure using a network polythiourethane through polymerization-
induced phase separation forming closely packed uniform particles of the order of micrometer for the first time. 
The polymer was synthesized by simple polyaddition reaction between tetrakis(3-mercaptopropionate) (PEMP), 
a multi-functional primary thiol compound as a “joint” source monomer, and hexamethylene diisocyanate 
(HDI), a diisocyanate as a “linker” source monomer, in the presence of triethyl amine (TEA) as a base catalyst 
in toluene (Fig. 2a).

Crystal or mesophase structures with some similarity to the Weaire-Phelan structure and with sizes of tens of 
nanometers are known, for examples, Type I clathrate structure for alkali metal silicides and germanides8 and for 
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gas hydrates composed of methane, propane and carbon dioxide9, and a Frank-Kasper phase (FK A15) of some 
self-assembled organic molecules such as dendritic liquid crystals, block copolymers, and giant surfactants10–15. 
However, organic amorphous materials having the Weaire-Phelan structure are unprecedented. The polymer 
Weaire-Phelan structure we report here is characterized by amorphousness and the size of the order of microm-
eters prepared by very facile synthetic procedures.

The synthetic methodology employed in this work is based on the “joint-and-linker” concept. The addi-
tion reaction between a multi-functional monomer as a source of “joint” (“joint”-source monomer) and α,ω-
bifunctional monomer as a source of “linker” (“linker-source monomer) forms polymer network16–24. The 
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Figure 1.   Family of Weaire-Phelan structure.
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Figure 2.   (a) Synthetic scheme of network polymers through the addition reaction of PEMP and HDI in 
toluene, and photos and images of the polymers, (b) Photos of PEMP-HDI network polymers from the reaction 
systems at monomer concentrations in the reaction systems of sample 1 (left): 25 wt%, sample 2 (center): 30 
wt%, and sample 3 (right): 35 wt%, SEM images of PEMP-HDI network polymers (c) 25 wt% (sample 1), (d) 30 
wt% (sample 2), and (e)–(g) 35 wt% (sample 3).
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joint-and-linker synthesis so far reported often preferentially yielded porous polymers by polymerization-
induced phase separation via spinodal decomposition. When the porous structure is fixed at an early stage of 
spinodal decomposition, a monolithic structure composed of co-continuous structure of polymer backbone 
and vacant space is produced. While isolated particles are generated at a later stage, and aggregated particles are 
formed upon an increase in the polymerization rate. The size and morphology of porous structure are decided 
by the ratio of the polymerization (network formation) rate to the phase separation rate. The relative ratio can 
be controlled by designing monomers and catalysts to tune reactivity and by considering miscibility between 
the polymer network and the solvent25–34.

The addition reaction between PEMP and HDI was conducted at monomer concentrations of 25, 30, and 35 
wt%, {(PEMP + HDI)/(PEMP + HDI + Toluene)}*100 = 25, 30, and 35 wt% ([PEMP] = 0.28, 0.34, and 0.40 M), 
resulting in samples 1, 2, and 3, respectively, in toluene in the presence of TEA as catalyst at room temperature 
at a feed ratio of [PEMP]/[HDI] = 1/2 ([–NCO] = [–SH]) and at a ratio of [TEA]/[–SH] = 1/100. All the reaction 
mixtures quickly turned opaque within a few minutes of the catalyst addition and yielded network polymers as 
shown in Fig. 2b. In the FT-IR spectra of the PEMP-HDI network polymer, the absorption peak based on –NCO 
group at 2250 cm-1 almost completely disappeared and a peak based on thiol-urethane bond emerged at 3300 cm-1 
(Fig. S1), supporting the intended reaction mechanism. Wide-angle x-ray diffraction patterns of the polymers 
showed only broad halo profiles, revealing that the polymers are amorphous.

The scanning electron microscopy (SEM) images of the PEMP-HDI network polymers are shown in Figs. 2c–e. 
The polymer obtained at a monomer concentration of 25 wt% (sample 1) showed a morphology composed of 
particles with spherical shapes and fused spherical shapes with a diameter of about 1.5 µm (Fig. 2c). The reaction 
at a monomer concentration of 30 wt% also produced spherical particles with slightly larger diameters than those 
in sample 1 (sample 2, Fig. 2 d) where the particles appeared more densely accumulated than those in sample 1. 
It is noteworthy that the surface of the particles sample 2 were slightly truncated. On the other hand, the sample 
obtained at a monomer concentration of 35 wt% (sample 3) clearly exhibited space-filling polyhedron particles 
with pentagon and hexagon faces on the surface which may correspond to the polyhedrons the Weaire-Phelan 
structure. Isolated particles of the PEMP-HDI network polymer of sample 3 appeared distorted tetrakaidecahe-
dron and dodecahedron units of the Weaire-Phelan structure, in (Figs. 2 e,f,g and Fig. 3). The bulk density of the 
PEMP-HDI network polymer increased with an increase in the monomer concentration of the reaction system, 
i.e., 0.808 g/cm3 (sample 1), 0.861 g/cm3 (sample 2), and 1.094 g/cm3 (sample 3), respectively.

The polyhedron structure of sample 3 was further studied by 3D SEM in more detail (Fig. 4). Space-filling 
polyhedrons with structures exactly matching those of the polyhedrons of the Weaire-Phelan structure were 
clearly detected. Figure 4b shows the plots of the structures reproduced based on the three-dimensional coordi-
nates of the vertices of particles, observed in the rectangular frame of the 3D SEM image (Fig. 4a) of the surface 
of the PEMP-HDI polymer sample 3. The bird’s eye views of PEMP-HDI polymer clearly indicated that the 
three-dimensional polyhedron particles with micrometer-order sizes were formed over the surface of sample 3.

The theoretical Weaire-Phelan structure without any anisotropy is composed of two pentagons and one hexa-
gon structures as shown in Fig. 3c. From this view, the structures of the polyhedrons observed on the surface of 
sample 3 were quantitatively examined. Figures 4c–e compare the pentagon structure I, hexagon structure II, 
and pentagon structure III extracted from the 3D SEM image as marked in red in Fig. 4a with the corresponding 
theoretical structures in Fig. 3c. The side lengths and angles of the polygons in Fig. 4 were calculated from the 
coordinate points in the 3D SEM image, which are available in supporting information. The numerical data of the 
side lengths and angles of the polygons from the observed structures and those from the theoretical structures 
are summarized in Table. 1.

As for pentagon I (Fig. 4c and Table. 1 (i)), the observed angles were in good agreement with the theoretical 
values while the ratios of the observed side lengths slightly deviated from those of the theoretical lengths. A 

Figure 3.   (a) Tetrakaidecahedron, (b) dodecahedron polyhedrons, and (c) pentagon and hexagon structures in 
the theoretical Weaire-Phelan structure.
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relatively large deviation was detected in a side length (c3) in hexagon II (Fig. 4 d and Table. 1 (ii)), and the other 
the side lengths and all angles showed relatively good agreement between the observed and theoretical values. 
The structure of hexagon II appears very close to that of the corresponding theoretical structure. Pentagon III 
structure fairly well coincided with the theoretical structure with at most 20% errors both in the side lengths 
and angles (Fig. 4 e and Table. 1 (iii)).

(a) (b)

(c) Pentagon I

(d) Hexagon II

(e) Pentagon III

Figure 4.   (a) A 3D SEM image, (b) bird’s eye views of the PEMP-HDI polymer of sample 3, 3D plots of (c) 
Pentagon I, (d) Hexagon II, and (e) Pentagon III.
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The formation process of the space-filling polyhedrons of the PEMP-HDI network polymer is proposed as fol-
lows. The porous structures in samples 1 and 2 were formed by the phase separation induced by the polyaddition 
between PEMP and HDI in toluene. Thereafter, two types of phase separation process are possible, i.e., nuclea-
tion growth and spinodal decomposition as shown in Fig. 5. Although, monolithic structure was not detected in 
the SEM images of the present research (Figs. 2 c,d), phase separation should preferentially occur via spinodal 
decomposition, as previously observed in other porous polymers prepared by the “joint-and-linker” method21,23.
In the SEM image of sample 1 (Fig. 2c), half-fused particles were detected which should be formed via spinodal 
decomposition. At an early stage of spinodal decomposition, co-continuous monolithic structure should be 
formed, and further phase separation transforms the monolithic structure to the structure with dispersed droplet-
type morphology by interfacial tension, which forms the connected particles. The formation of the half-fused 
particles in sample 1 (Fig. 2c should be completed at this transition state of the phase separation35–37.A further 
progress of the phase separation forms isolated spheres accompanied by their growth. The surface morphology 
in sample 2 should be completed at this stage, as shown in Fig. 2d. An increase in monomer concentration in 
the present reaction systems would increase the phase separation rate, which should finalize the phase-separated 
structure at later stages of phase separation. As described above, the small circle planes, which were derived from 
the truncated structures, were detected on the surface of the particles in sample 2 (Fig. 2d). Contact between 
particles may possibly play a key role in the formation of the polyhedral shapes. An increase in monomer concen-
tration in the reaction increased the space occupancy in the porous polymer by the polymer network, leading to 
the slightly more transparent appearance of sample 3 than samples 1 and 2 (Fig. 2b). The polyhedrons observed 
in sample 3 (Fig. 2e) can be formed by 3D occupation of vacant space in the porous polymer by the spheres. The 

Table 1.   Structure comparison of polyhedrons observed in 3D SEM with theoretical structure in the Weaire-
Phelan structure. a: Coordinate points are available in supporting information, b: a1 + b1 + b2 + b3 + b4 = 4.04a’, 
b5 + b6 + c5 + c6 + d1 = 4.3b’, a2 + a3 + c1 + c2 + c3 + c4 = 4.64a’’.

Sides & angles a Side length µm Length ratio b
Theoretical
length ratio

Angle
º

Theoretical
angle º

Error
%

Pentagon I

a1 (µm) 0.92 1.07a’ 1a  + 7.1

b1 (µm) 0.79 0.92a’ 0.76a  + 21.0

b2 (µm) 0.64 0.75a’ 0.76a − 1.3

b3 (µm) 0.55 0.64a’ 0.76a − 15.8

b4 (µm) 0.57 0.66a’ 0.76a − 13.2

A1 (º) 110.5 121.6 − 9.1

B1 (º) 113.0 106.6  + 6.0

B2 (º) 110.4 106.6  + 3.6

C1 (º) 105.7 102.6  + 3.0

C2 (º) 100.3 102.6 − 2.2

Hexagon II

a2 (µm) 0.80 0.89a’’ 1a − 11.0

a3 (µm) 0.82 0.91a’’ 1a − 8.8

c1 (µm) 0.54 0.60a’’ 0.66a − 9.1

c2 (µm) 0.59 0.66a’’ 0.66a  ± 0.0

c3 (µm) 0.78 0.87a’’ 0.66a  + 31.4

c4 (µm) 0.64 0.71a’’ 0.66a  + 7.6

D1 (º) 119.5 116.6  + 2.5

D2 (º) 121.4 116.6  + 4.1

D3 (º) 122.5 116.6  + 5.1

D4 (º) 128.8 116.6  + 10.5

E1 (º) 125.7 126.9 − 1.0

E2 (º) 101.4 126.9 − 20.0

Pentagon III

b5 (µm) 0.43 0.79b’ 1b − 21.3

b6 (µm) 0.51 0.93b’ 1b − 6.7

c5 (µm) 0.53 0.97b’ 0.86b  + 12.8

c6 (µm) 0.53 0.97b’ 0.86b  + 12.8

d1 (µm) 0.35 0.64b’ 0.58b  + 10.3

B3 (º) 101.5 106.6 − 4.8

B4 (º) 107.0 106.6  + 0.4

F1 (º) 135.3 112.2  + 20.6

F2 (º) 101.4 112.2 − 9.6
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polyhedrons may be formed on an increase in the number of particles per unit space at the highest monomer 
concentration used in this work where the spheres changed into the polyhedrons in order to facilitate the densest 
(most dense) packing in space without leaving any gaps. In this process, truncation seems to be indispensable in 
reducing gaps between particles, and the spheres eventually took the shapes of tetrakaidecahedron and dodeca-
hedron which can completely fill up the space without any gaps left.

The cubic honeycomb proposed by Kelvin was thus formed for the Weaire-Phelan structure in this work. 
This is the first example of Weaire-Phelan structure made from a polymer species and of solid-polymer cubic 
honeycomb created by polymerization-induced phase separation. The material synthesized in this work may be 
potentially applicable as photonic38–40, separation, catalytic, nano-medical and structural materials based on the 
new synthetic methodologies and structural concepts.

While there still are slight deviations in specification between the theoretical polyhedrons of the perfect 
Weaire-Phelan structure, further investigations are ongoing targeting to minimize the deviations. Control of 
space filling and tessellation should be useful not only from a basic view but also from views of development of 
advanced materials with unforeseen functions.

Data availability
Data generated and analyzed during this study are provided as source data with this paper or included in the 
Supplementary Information. Further data are available from the corresponding authors on reasonable request.
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