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Abstract
This paper reviews the state of the art and discusses recent developments in the field of adaptive isogeometric analysis, with 
special focus on the mathematical theory. This includes an overview of available spline technologies for the local resolution 
of possible singularities as well as the state-of-the-art formulation of convergence and quasi-optimality of adaptive algorithms 
for both the finite element method and the boundary element method in the frame of isogeometric analysis.
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 1 Introduction

1.1  Isogeometric Analysis

Isogeometric analysis (IGA) was introduced in 2005 in the 
seminal work [129] and since then has been a very suc-
cessful area of research including mathematical discover-
ies, computational mechanics challenges as well as a rather 
unique joint effort to tackle problems that fall outside one 
single research community.

By using the same building blocks employed in stand-
ard Computer-Aided Design (CAD), namely B-splines, 

Non-Uniform Rational B-splines (NURBS) and variants 
thereof, the final goal of IGA is to provide an end-to-end 
methodology that unifies geometrical design with the analy-
sis of partial differential equations (PDEs) for computational 
engineering. While this is still a widely open issue, in the 
last decade an extensive amount of research has been dedi-
cated to IGA in various different fields. We refer, e.g., to the 
special issue [1] for a review of the most prominent works 
published in recent years. B-spline based formulations are 
now built on solid mathematical foundations (see, e.g. [20, 
129]) and have demonstrated their capabilities in many dif-
ferent areas of engineering. Moreover, since B-splines are 
nothing but (possibly smooth) piecewise polynomials of a 
given degree, methods based on them (including IGA) are 
potentially high-order.

The starting point of IGA is a description of the com-
putational geometry as a collection of (possibly trimmed) 
patches. A patch is a geometric entity characterized by a 
spline (or more generally by a non uniform rational spline) 
parametrization. IGA stands for the class of methods which 
use spline discretization techniques over such geometric 
descriptions. Thus, it includes, and it is not restricted to, sec-
ond or higher order PDEs defined in d-dimensional domains 
[71], PDEs defined on manifolds such as the ones describing 
shells [136] or membranes [14] and also boundary integral 
equations [178]. IGA methods and their applications are now 
a rather large research area in computational mechanics and 
numerical analysis so that we refrain from trying to list all 
relevant contributions to the field.

Indeed, this paradigm has raised significant mathematical 
challenges. Some of them have only been partially addressed 

 * Gregor Gantner 
 gregor.gantner@asc.tuwien.ac.at

 Annalisa Buffa 
 annalisa.buffa@epfl.ch

 Carlotta Giannelli 
 carlotta.giannelli@unifi.it

 Dirk Praetorius 
 dirk.praetorius@asc.tuwien.ac.at

 Rafael Vázquez 
 rafael.vazquez@epfl.ch

1 École polytechnique fédérale de Lausanne, Institute 
of Mathematics, 1015 Lausanne, Switzerland

2 Istituto di Matematica Applicata e Tecnologie Informatiche 
“E. Magenes” del CNR, Pavia, Italy

3 TU Wien, Institute of Analysis and Scientific Computing, 
Vienna 1040, Austria

4 Università degli Studi di Firenze, Dipartimento di 
Matematica e Informatica “U. Dini”, 50134 Florence, Italy

http://orcid.org/0000-0002-0324-5674
http://orcid.org/0000-0002-5137-1405
http://orcid.org/0000-0002-1977-9830
http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-022-09752-5&domain=pdf


 A. Buffa et al.

1 3

4480

by the community until now, e.g., the construction of C1 
basis functions with optimal approximation properties [134, 
170, 212], optimal reparametrization for trimmed surfaces 
[122, 123, 153, 155] and the construction and manipula-
tion of spline volumes [5, 157, 173, 214]. Instead, other 
research topics have reached a more advanced maturity, e.g., 
the approximation estimates of splines of arbitrary degrees 
[184] or the construction of locally refined splines and their 
use within an adaptive paradigm, which is the topic of this 
review paper. The literature on the subject is today very wide 
and covers several different (integro-) differential problems. 
This review aims at describing, with a careful mathematical 
perspective, some of the very many approaches existing in 
the literature, with a different level of details.

1.2  Adaptivity

As soon as the (given) data or the (unknown) solution u of 
a PDE have singularities, the possible high-order conver-
gence rate of isogeometric methods is significantly reduced 
down to rates which could also be achieved by low-order 
methods. However, at least for standard finite element meth-
ods (FEM), it is known that better rates –and usually even 
optimal algebraic convergence rates– can be regained by 
an appropriate local mesh grading of the underlying mesh 
towards these singularities.

If the singularities and the required local mesh grading 
are a priori unknown, the local mesh adaptation can be auto-
mated by so-called adaptive algorithms. Usually, these adap-
tive algorithms rely on a posteriori error estimators which 
provide computable (lower and upper) bounds on the error 
of an already computed approximation U ≈ u . Localizing 
these bounds to related elements of the underlying mesh 
(resp. specific isogeometric basis functions), one can extract 
the necessary information of where to locally refine the mesh 
(resp. where to add additional basis functions).

1.2.1  Modules of Adaptive Loop

Starting from a given initial mesh Q0 , adaptive algorithms 
aim to improve the accuracy of a discrete solution by iterat-
ing the so-called adaptive loop

The module ����� computes a discrete solution Uk ≈ u 
(indexed by some step counter k ∈ ℕ0 ) related to the cur-
rent mesh Qk.

The module �������� computes for all elements Q ∈ Qk 
the local contributions �k(Q) of some a posteriori error esti-
mator �k ∶=

�∑
Q∈Qk

�k(Q)
2
�1∕2 which, at least heuristically, 

provides a measure of the discretization error ‖u − Uk‖ . The 

(1)𝚜𝚘𝚕𝚟𝚎 ⟶ 𝚎𝚜𝚝𝚒𝚖𝚊𝚝𝚎 ⟶ 𝚖𝚊𝚛𝚔 ⟶ 𝚛𝚎𝚏𝚒𝚗𝚎

so-called refinement indicators �k(Q) depend usually on the 
computed discrete solution Uk and the known problem or 
mesh data, but are independent of the unknown solution u.

Having computed all refinement indicators, the module 
���� selects elements Q ∈ Qk for refinement.

Finally, the module ������ adapts the underlying mesh 
and generates a new mesh Qk+1 by refinement of, at least, all 
marked elements. We stress that usually, besides the marked 
elements, also non-marked elements are refined to preserve 
structural properties of the mesh (e.g., avoidance of certain 
hanging nodes, preservation of local mesh grading, etc.).

1.2.2  Analysis of Adaptive Algorithms

Empirically, it has already been observed in the seminal 
papers on a posteriori error estimation [8–12] that adap-
tive algorithms regain the optimal convergence rate, under-
stood as the decay of the error with respect to the number 
of degrees of freedom. However, since adaptive algorithms 
usually do not guarantee that all elements are refined (so 
that the local mesh size becomes infinitesimally fine every-
where), one cannot rely on a priori error estimates to ensure 
that the error tends to zero ‖u − Uk‖ → 0 as the adaptive step 
counter k → ∞ increases.

A first convergence result for adaptive finite elements for 
a 1D boundary value problem already dates back to [12]. 
However, it took more than a decade until [85, 166] proved 
plain convergence for the lowest-order FEM for the Poisson 
model problem in 2D. Generalizing those arguments, the 
works [167, 194] proved plain convergence ‖u − Uk‖ → 0 
for a large class of PDE model problems.

Moreover, it took almost two decades to mathemati-
cally understand optimal convergence in the sense that 
‖u − Uk‖ = O((#Qk)

−s) , where #Qk is proportional to the 
numbers of the degrees of freedom and the algebraic con-
vergence rate s > 0 is as large as possible. The seminal 
work [24] proves convergence with optimal algebraic rates 
for the 2D Poisson problem, discretized by lowest-order 
elements. While the analysis of [24] requires an additional 
mesh coarsening step to prove optimal rates, this has been 
proved unnecessary in the work [200], which was the first 
work that proved optimal convergence rates for the standard 
adaptive loop (1). We note, however, that these develop-
ments originated from groundbreaking results on adaptive 
wavelet discretizations [64–66, 73], which analyzed opti-
mality for a variety of problems in terms of the best N-term 
approximation.

The seminal ideas of [200] have then been extended to 
finite element methods for symmetric second-order linear 
elliptic PDEs in [57], general second-order linear elliptic 
PDEs in the setting of the Lax–Milgram lemma [58, 92], 
and even for well-posed indefinite PDEs like the Helmholtz 
problem [23], see also [172] for an easy introduction to the 
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topic focussing on the Poisson model problem. For stand-
ard boundary element methods (BEMs) based on piecewise 
polynomials, [6, 90, 91, 96, 110] obtained similar results.

All these developments led to the identification of a uni-
fied framework of optimal adaptivity [53], which consists of 
four axioms of adaptivity that guarantee convergence of the 
adaptive loop (1) with optimal algebraic rates.

While all mentioned works consider optimal adaptivity 
with respect to the number of the degrees of freedom, in 
practice, optimal adaptivity with respect to the computa-
tional time is of more importance. This question is math-
ematically well-understood for wavelet discretizations (see, 
e.g., [64–66, 73]), but the numerical analysis for non-wavelet 
FEM (or BEM) discretizations still has to be developed. First 
results, where the adaptive algorithm does not only steer 
the mesh-refinement but also the iterative and inexact solu-
tion, include [101] for standard BEM as well as [104] for 
an abstract framework based on contractive iterative solvers 
(like optimally preconditioned CG solvers).

1.3  Adaptive Isogeometric Analysis

Although adaptive algorithms of type (1) have a long his-
tory in the finite element theory, their application in 3D is 
often very complex and some developments do not provide 
real computational tools. Reasons are of practical type, e.g., 
splitting a tetrahedral mesh is not an easy task and adaptive 
approaches may generate several unwanted elements when 
the refinement of the mesh fails to be aligned with the steep 
gradient of the solution. Sometimes, in the case of three 
dimensional finite elements, the generation of a tetrahedral 
mesh following a certain metric is preferred over the adap-
tive loop (1).

The situation is different in IGA. The mesh is not as flex-
ible as a tetrahedral mesh, but it is a locally structured and 
globally unstructured hexahedral mesh. Local refinement 
and the use of locally refined splines is a viable option to 
keep the structure of splines (including the isoparametric 
paradigm) while adapting the mesh to the structure of the 
solution.

Once locally refined splines are used, the development of 
adaptive algorithms is not a tremendous overhead on a com-
putational code, and can immensely improve the accuracy of 
the solution. Indeed, singularities of the PDE solution might 
significantly spoil the possible high-order convergence rate 
of isogeometric methods. Thus, we believe that the use of 
adaptive algorithms in IGA holds the promise of becoming 
ubiquitous in isogeometric codes.

1.3.1  Splines Suited for Adaptivity

The tensor-product structure of B-splines and NURBS is 
essentially non-local, because the bisection of one single 

element extends the refinement through the whole domain. 
Adaptive IGA methods must be based on suitable extensions 
of B-splines that break their tensor-product structure and 
allow local refinement. Such extensions were already avail-
able in CAD for the design of small details in large objects, 
and they were applied in IGA in the last years.

Among this kind of splines with local refinement prop-
erties, we mention the following: hierarchical B-splines 
(HB-splines), introduced in [99] and first used in IGA in 
[207], which realize local refinement by using splines of dif-
ferent levels, from coarsest to finest; truncated hierarchical 
B-splines (THB-splines) [114], which span the same space 
as hierarchical splines in [207] with a more local basis; 
T-splines, for which basis functions are directly defined on 
a mesh with T-junctions (or hanging nodes), introduced for 
CAD in [192, 193], and applied first to IGA in [15, 84]; 
locally refined-splines (LR-splines), first defined in [80] and 
almost immediately applied to IGA [130], which are similar 
to T-splines with the difference that the functions are defined 
on a different mesh that contains information about the con-
tinuity of the splines across edges or faces; finally, poly-
nomial splines over hierarchical T-meshes (PHT-splines), 
introduced in [77] and first used in IGA in [171, 208], which 
are also defined on a mesh with hanging nodes, but which 
have lower continuity on the interfaces between elements 
than the previous variants.

1.3.2  Available Convergence Results

As far as convergence of adaptive IGA methods is con-
cerned, the first result goes back to [46] which considers 
IGAFEM with (truncated) hierarchical B-splines for the 
Poisson model problem. Optimal algebraic convergence 
rates have been proved independently in [47, 105]. In par-
ticular, the work [105] provides a general framework for 
finite element discretizations guaranteeing that the residual 
error estimator for general second-order linear elliptic PDEs 
satisfies the axioms of adaptivity from [53]. Based on this 
framework, the recent work [107] also proves convergence 
of adaptive IGAFEM with T-splines using the refinement 
strategy from [163, 165].

Optimal adaptive IGABEM in 2D has been analyzed 
in [94] for weakly-singular integral equations and in [109] 
for hyper-singular integral equations, where these works 
additionally consider adaptive smoothness control to 
locally reduce the differentiability of the discrete spline 
space. First results on optimal adaptive IGABEM in 3D are 
found in [103]. In the spirit of [105], the recent work [106] 
provides an abstract framework for boundary element dis-
cretizations guaranteeing that the residual error estimator 
for weakly-singular integral equations satisfies the axioms 
of adaptivity from [53]. The application to IGABEM with 
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(truncated) hierarchical B-splines is proved in [108], and 
the application to T-splines will be addressed in the present 
manuscript.

The main goal of this work is to provide a summary of all 
these convergence results and the underlying adaptive spline 
methodologies, i.e., hierarchical splines and T-splines. We 
will also provide some further information and references on 
other adaptive spline methodologies in Sect.  4.3.

1.4  Outline and Contributions

As a brief outline, Sect. 2 and 3 present the basics on tensor-
product B-splines and their application in IGA, respectively. 
In Sect. 4, we present hierarchical splines and T-splines 
along with corresponding refinement algorithms and with 
special focus on their mathematical properties. Section 5 
gives the abstract framework and the properties that guar-
antee optimal convergence of adaptive algorithms. This 
framework is applied in Sect. 6 to IGAFEM and in Sect. 7 
to IGABEM, considering both hierarchical splines and 
T-splines for either method.

More in detail, Sect. 2 recalls the definition of non-uni-
form (rational) multivariate splines along with well-known 
properties and quasi-interpolation operators. It starts with 
univariate splines and their basis of B-splines in Sect. 2.1. 
Via tensor-products, multivariate (B-)splines are introduced 
in Sect. 2.2. In Sect. 2.3, we briefly mention that the quasi-
interpolation results immediately extend to NURBS. Then, 
in Sect. 2.4, we explain how geometries of arbitrary dimen-
sion can be parametrized using these NURBS functions.

In the following Sect. 3, we introduce the considered 
model problems along with the required setting and pre-
sent standard isogeometric discretizations with multivariate 
splines on uniform tensor meshes as in Sect. 2. Section 3.1 
considers NURBS parametrizations of the physical domain, 
which can be either a single-patch or multi-patch geome-
try. In the case of FEM, the physical domain is a Lipschitz 
domain, while for BEM, it is the boundary thereof. Sec-
tion 3.2 introduces the considered PDEs in case of IGAFEM 
and introduces standard isogeometric ansatz functions. 
Although adaptivity will only be considered in a later sec-
tion, the used a posteriori error estimator is already formu-
lated on uniform tensor meshes. Section 3.3 is structured 
analogously for IGABEM for weakly-singular integral equa-
tions arising from Dirichlet boundary value problems: We 
first introduce the boundary integral equation of the model 
problem and its discretization with standard IGA methods, 
and then we formulate the used error estimator.

Splines on adaptive meshes are discussed in Sect. 4. 
We mainly focus on hierarchical splines (Sect. 4.1) and 
T-splines (Sect. 4.2), and we also provide, without entering 
into details, several comments and references on other con-
structions such as LR-splines in Sect. 4.3. For hierarchical 

splines, we define in Sect. 4.1 two well-known bases of the 
same space, namely hierarchical B-splines and truncated 
hierarchical B-splines. We further recall refinement strate-
gies and resulting admissible hierarchical meshes, and we 
present results on the hierarchical quasi-interpolation opera-
tor from [198]. We also mention the construction of simpli-
fied hierarchical splines from [43], following a refinement 
strategy that marks basis functions instead of elements. In 
Sect. 4.2, we recall T-splines on T-meshes which are defined 
as span of T-spline blending functions. The latter are in gen-
eral not linearly independent, and therefore we also con-
sider two- and three-dimensional dual-compatible T-splines, 
which indeed provide a basis. We consider a refinement 
strategy generating admissible meshes that yield dual-com-
patible T-splines, and we also present a new result stating 
that elements in an admissible T-mesh consist of at most two 
Bézier elements. Finally, we mention several extensions of 
T-splines.

Section 5 gives an abstract formulation of an adaptive 
mesh-refining algorithm and states and discusses the axi-
oms of adaptivity (Sect. 5.1) which guarantee convergence 
of adaptive mesh refinement strategies at optimal algebraic 
convergence rates. Restricted to weighted-residual error 
estimators these axioms are simplified and adapted in the 
frame of IGA to FEM (Sect. 5.2) and BEM (Sect. 5.3), 
which translates into a collection of required mesh, refine-
ment, and space properties.

In Sect. 6, we finally consider adaptive IGAFEM using 
the adaptive splines and refinement strategies of Sect. 4. 
Section 6.1 deals with hierarchical splines, and Sect. 6.2 
deals with T-splines. In each case, we provide a basis of 
the corresponding ansatz space for homogeneous Dirichlet 
problems. Moreover, we state that both approaches fit into 
the abstract framework of Sect. 5.2, where the employed 
weighted-residual estimator is reliable and efficient, i.e., 
equivalent to the total error (consisting of energy error + 
data oscillations). These results are mostly cited, but espe-
cially for hierarchical splines on THB-admissible meshes, 
some minor new arguments are required. Further, we make 
the new observation that the optimal convergence rate of 
the total error for hierarchical splines does not depend on 
the considered admissibility class of the meshes. Indeed, 
it coincides with the optimal rate for arbitrary hierarchical 
meshes without any grading assumption. For hierarchical 
splines, all results can be relatively easily transferred to the 
multi-patch case, which in particular requires an adaptation 
of the single-patch refinement algorithms given in Sect. 4. 
We conclude Sect. 6.1 with three typical numerical examples 
for adaptive IGAFEM with hierarchical splines. Especially, 
we discuss the choice of either HB-splines or THB-splines 
and give some explanation on the expected optimal conver-
gence rate.
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Section 7 considers adaptive IGABEM and is similarly 
structured as Sect. 6. Again, we state that hierarchical 
splines (Sect. 7.1) and T-splines (Sect. 7.2) fit into the 
abstract framework of Sect. 5.3. While the implied optimal 
convergence of the corresponding adaptive IGABEM is 
known for hierarchical splines on HB-admissible meshes 
of class 2 in the literature, it is completely new for hierar-
chical splines on other HB-admissible meshes of different 
class or THB-admissible meshes as well as for T-splines 
on admissible T-meshes. The proof builds on the already 
known case and uses some arguments of Sect. 6. Again, we 
present two numerical experiments in the case of hierar-
chical splines. Finally, Sect. 7.3 presents recent results on 
an adaptive IGABEM in 2D which uses both h-refinement 
and multiplicity increase to steer the local smoothness of 
the employed standard splines. Although this approach 
does not fit exactly into the framework of Sect. 5.3, similar 
techniques can be used to prove again optimal convergence 
rates for the weighted-residual error estimator. We con-
clude the section with a numerical example.

Finally, Sect. 8 provides our conclusion. There, we also 
discuss several open questions in the context of adaptive 
IGAFEM as well as IGABEM.

1.5  General Notation

Throughout the paper and without any ambiguity, | ⋅ | 
denotes the absolute value of scalars, the Euclidean norm of 
vectors, or the measure of a set. We write A ≲ B to abbrevi-
ate A ≤ cB with some generic constant c > 0 , which is clear 
from the context. Moreover, A ≃ B abbreviates A ≲ B ≲ A . 
Throughout, we use indices for non-generic meshes, e.g., Q+ 
typically denotes a refinement of some given mesh Q and Qk 
denotes the k-th mesh generated by the adaptive algorithm. 
Corresponding quantities have the same index, e.g., �+ and 
�k denote the error estimators corresponding to the meshes 
Q+ and Qk , respectively. We often use   ⋅̂   for notation on 
the parametric domain. We employ standard notation for 
Sobolev spaces, e.g., H1(�) denotes the space of square-
integrable functions on some domain � whose weak deriva-
tive is square-integrable as well. In Sect. 3.3.1, we briefly 
recall Sobolev spaces on the boundary. A list of acronyms 
is given in the following Sect. 1.5.1. The most important 
symbols are listed in the following Sect. 1.5.1.

1.5.1  List of Symbols

Name Description First appearance

� Diffusion matrix Section 3.2.1

Name Description First appearance

A�(Q̌,�0) Anchors in T-mesh Section 4.2.3
� Drift vector Section 3.2.1

B̂i,p
Univariate B-spline Section 2.1.1

B̂[Ti,p]
(Local) univariate B-spline Section 2.1.1

B̂�,�
Multivariate B-spline Section 2.1.1

B̂�

�,�
Hierarchical B-spline Section 4.1.1

B̂�,�
T-spline blending function Section 4.2.3

B̂
� Uniformly refined multivariate 

B-splines
Section 4.1.1

B̂p(T)
Univariate B-splines Section 2.1.1

B̂�(�)
Multivariate B-splines Section 2.1.1

c Reaction coefficient Section 3.2.1
Capx(s) Approximation constant for estima-

tor
Section 5.1.4

Ctot
apx

(s) Approximation constant for total 
error

Section 5.2.2

d̂ Dimension of parametric domain Section 2.2.1

d Dimension of physical domain Section 2.4
dl Perturbation term of meshes Section 5.1.3
D� Conormal derivative Section 3.2.3
� NURBS parametrization Section 2.4
�m NURBS parametrization of patch Section 3.1.2
G Fundamental solution of PDE Section 3.3.2
h Volume/boundary mesh-size func-

tion
Section 5.2.1/5.3.1

ĥ Element size in parametric domain Section 2.2.1

hQ Element size Section 3.1

Ĥ�(Q̂,�0) Hierarchical B-splines Section 4.1.1

Ĵp,T
Quasi-interpolant for univariate 

splines
Section 2.1.2

Ĵ�,�
Quasi-interpolant for multivariate 

splines
Section 2.2.2

Ĵ H

�,Q̂

Quasi-interpolant for hierarchical 
splines

Section 4.1.4

�J T

�,Q̌
Quasi-interpolant for T-splines Section 4.2.4

K Double-layer operator Section 3.3.2
lev Level of elements in hierarchical/T-

mesh
Section 4.1.1/4.2.2

mot Mother B-spline of truncated hierar-
chical B-spline

Section 4.1.2

N(Q̌) Neighbors for T-splines in index 
domain

Section 4.2.4

N(Q̂) Neighbors for T-splines in paramet-
ric domain

Section 4.2.4

N(Q) Neighbors for volume/boundary 
multi-patches

Section 6.1.5/7.1

NH(Q̂,�) Neighbors for HB-splines Section 4.1.3

NT(Q̂,�) Neighbors for THB-splines Section 4.1.3

osc Oscillations Section 5.2.2
p Polynomial degree Section 2.1.1
� Polynomial degree vector Section 2.2.1
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Name Description First appearance

�� Polynomial degree vector for para-
metrization

Section 3.1

P PDE operator Section 3.2.1
Q̌0

Initial T-mesh of index domain Section 4.2.2

Q̂0
Initial hierarchical/T-mesh in para-

metric domain
Section 4.1.3/4.2.5

Q0 Initial mesh Section 5.1.1

Q̂�
Mesh of parametric domain induced 

by knots of parametrization
Section 3.1

Q̂
� Uniformly refined mesh of paramet-

ric domain
Section 4.1.1

Q� Mesh induced by parametrization Section 3.1

ℚ̂ Admissible hierarchical/T-meshes Section 4.1.3/4.2.5

ℚ Admissible meshes Section 5.1.1

ℚ̂m
Admissible meshes of volume/

boundary patch in parametric 
domain

Section 6.1.5/7.1

ℚm Admissible meshes of volume/
boundary patch

Section 6.1.5/7.1

Sext (Q̂)
Support extension (for B-splines and 

T-splines)
Section 2.2.1/4.2.4

Sext (Q̂, k)
Multilevel support extension Section 4.1.3

S∗
ext
(Q̂) Modified support extension Section 4.1.4

� FEM/BEM ansatz space Section 3.2.1/3.3.2

�̂p(T)
Space of univariate splines Section 2.1.1

�̂�(�)
Space of multivariate splines Section 2.2.1

�̂H
�
(Q̂,�0) Space of hierarchical splines Section 4.1.1

��T
�
(Q̌,�0) Space of T-splines Section 4.2.3

T Knot vector Section 2.1.1
T0 Iinitial knot vector Section 7.3.2

T̂�

�,�
Truncated hierarchical B-spline Section 4.1.2

Trunc�+1 Truncation operator Section 4.1.2
� Vector of knot vectors Section 2.2.1
�0 Initial vector of knot vectors Section 4.2.2
�� Vector of knot vectors for parametri-

zation
Section 3.1

�� Uniformly refined vector of knot 
vectors

Section 4.1.1

T̂�(Q̂,�0) Truncated hierarchical B-splines Section 4.1.2

� Admissible knot vectors for univari-
ate refinement

Section 7.3.2

u PDE solution Section 3.2.1
U Galerkin FEM approximation Section 3.2.1
V Vertices of mesh Section 7.3.1
V� Vertices of geometry Section 3.1.3
V Single-layer operator Section 3.3.2
Z Breakpoints Section 2.1.1
�̂0 Shape-regularity constant Section 7.3.2

�̂ Parametric domain for BEM Section 3.1

� Physical domain for BEM Section 3.1
�m,m′ Interface between NURBS patches Section 3.1.2

Name Description First appearance

� Error estimator for FEM/BEM Section 3.2.3/3.3.4

�̂i,p Univariate dual functional Section 2.1.2

�̂�,� Multivariate dual functional Section 2.2.2

�̂�
�,�

Dual functional for hierarchical 
splines

Section 4.1.4

�̂�,� Dual functional for T-splines Section 4.2.4

� Admissibility parameter for hierar-
chical meshes

Section 4.1.3

� Outer normal vector Section 3.2.3
�q Volume/boundary element-patch Section 5.2.1/5.3.1
�q Volume/boundary element-patch 

(elements)
Section 5.2.1/5.3.1

� Solution of boundary integral equa-
tion

Section 3.3.2

� Galerkin BEM approximation Section 3.2.2

�̂ Parametric domain Section 3.1

� Physical domain Section 3.1
�̌�act

Active region for definition of 
T-splines

Section 4.2.3

�̌�ind
Index domain for definition of 

T-splines
Section 4.2.2

�̌�ip
Index/parametric domain for defini-

tion of T-splines
Section 4.2.2

�̂� Nested subsets of parametric domain Section 4.1.1

�m NURBS patch Section 3.1.2
⪯ Refinement relation Section 4.1.1
# Multiplicity of a breakpoint Section 2.1.1
∇� Surface gradient Section 3.3.1
[⋅] Jump Section 3.2.3
⟨⋅ ; ⋅⟩P Bilinear form induced by PDE Section 3.2.1

2  Splines on Tensor Meshes

The main purpose of this section is to introduce some 
basic concepts and notation that will be used throughout 
the paper. In Sects. 2.1 and 2.2, we recall the definition 
as well as elementary properties of univariate and multi-
variate splines and their B-spline basis. In Sect. 2.3, we 
introduce non-rational splines along with the NURBS 
basis, which are then used in Sect. 2.4 to define NURBS 
parametrizations. For a more detailed introduction and 
proofs, we refer, e.g., to [27, 28, 187].

2.1  Univariate B‑Splines

2.1.1  Definition and Properties

Given two integers p ≥ 0 and n > 0 , we define a knot vec-
tor as an ordered vector of the form
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with tj ≤ tj+1 for all 1 ≤ j ≤ n + p . We say that T is an 
open (or p-open) knot vector, if the first and last knots are 
repeated exactly p + 1 times, i.e., t1 = … = tp+1 < tp+2 and 
tn < tn+1 = … = tn+p+1 . For simplicity, we will assume that 
t1 = 0 and tn+p+1 = 1 in the following.

We also introduce the ordered set of breakpoints 
Z = {z1,… , zn� } , which accounts for knots without repeti-
tions. We denote by #zj the multiplicity of the breakpoint 
zj , such that 

∑n�

j=1
#zj = n + p + 1 and

For 2 ≤ j ≤ n� − 1 , i.e., for all internal knots, the multiplicity 
satisfies #zj ≤ p + 1 . Later on, and in particular for FEM, we 
will require lower multiplicity.

From the knot vector T  , a set of n B-splines is defined 
using the Cox–de Boor recursion formula. We start defin-
ing the piecewise constant functions

For 1 ≤ k ≤ p , the B-spline functions are defined by the 
recursion

where we use the convention that fractions with zero denom-
inator are equal to zero.

Among many other properties, the B-splines are non-
negative and satisfy the partition of unity (see [187, 
Theorem 4.20])

they have local support (see [187, Theorem  4.17]), in 
particular

they are locally linearly independent in the sense that for 
any open set O ⊆ (0, 1) the functions {Bi,p|O ∶ Bi,p|O ≠ 0} 
are linearly independent (see [28, Chapter IX, (47)] and 
[187, Theorem 4.18]), and they form a basis of the space of 
piecewise polynomials of degree p with p − #zj continuous 
derivatives at the breakpoints zj , for each j = 2,… , n� − 1 
(see [28, Chapter IX, (44)]). Notice that the maximum and 
minimum allowed continuity at the breakpoints are Cp−1 and 
C−1 (i.e., no continuity) which correspond to multiplicity 

T = (t1,… , tn+p+1),

T = (z1,… , z1
⏟⏞⏟⏞⏟
#z1 times

, z2,… , z2
⏟⏞⏟⏞⏟
#z2 times

,… , zn� ,… , zn�
⏟⏞⏞⏟⏞⏞⏟
#zn� times

).

�Bi,0(t) ∶=

{
1 if ti ≤ t < ti+1,

0 otherwise.

B̂i,k(t) =
t − ti

ti+k − ti
B̂i,k−1(t) +

ti+k+1 − t

ti+k+1 − ti+1
B̂i+1,k−1(t),

n∑
i=1

B̂i,p(t) = 1, for all t ∈ (0, 1),

(2)supp(B̂i,p) = [ti, ti+p+1], for i = 1,… , n,

#zj = 1 and #zj = p + 1 , respectively. We denote the basis 
of B-splines as

and the spline space spanned by them as

It is easy to see, from the recursion formula in the defini-
tion, that the definition of the B-spline B̂i,p , for i = 1,… , n , 
depends only on the local knot vector Ti,p = (ti,… , ti+p+1) , 
which is closely related to the support of the function 
(2). When necessary, and in particular when dealing with 
T-splines, we will stress this fact by using the equivalent 
notation

Finally, we note that the breakpoints in Z generate a partition 
of the interval (0, 1), and we denote by Ij ∶= (zj, zj+1) the 
local elements for j = 1,… , n� − 1 , and by ĥj ∶= zj+1 − zj 
their corresponding element sizes. For each element Ij , 
which can be uniquely written as (ti, ti+1) for a certain index 
p + 1 ≤ i ≤ n , we introduce its support extension

being the union of the supports of B-splines that do not van-
ish on Ij.

Assuming that the maximum multiplicity of the internal 
knots is less than or equal to the degree p, i.e., the B-spline 
functions are at least continuous, the (right-hand) deriva-
tive of each B-spline B̂i,p is given by the expression [187, 
Sect. 4.2]

2.1.2  Quasi‑Interpolation Operators

Let Clocuni ≥ 1 be such that the following local quasi-uni-
formity is satisfied

for all j = 1,… , n� − 2 . Clearly, for a given a knot vector 
T  , such a constant always exists and we will use it to stress 
certain dependencies on the ratios ĥj∕ĥj+1.

There are several ways to define quasi-interpolation and 
projection operators onto the space of splines �̂p(T) . In 
this work, we are interested in the theoretical properties of 
these operators, and not in their actual computation. For this 

B̂p(T) ∶= {B̂i,p ∶ i = 1,… , n},

�̂p(T) ∶= span(B̂p(T)).

(3)B̂[Ti,p] ∶= B̂i,p.

(4)Sext (Ij) ∶= [ti−p, ti+p+1],

B̂�
i,p

=
p

ti+p − ti
B̂i,p−1 −

p

ti+p+1 − ti+1
B̂i+1,p−1.

(5)C−1
locuni

≤ ĥj

ĥj+1

≤ Clocuni
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reason, we will focus on two particular operators, and refer 
the reader to [183] for further discussion on quasi-interpo-
lation operators.

To define the quasi-interpolation operators, we first need 
to define a set of linear functionals �̂i,p associated to the 
B-splines. Then, the quasi-interpolant takes the form

Notice that, when �̂i,p(B̂j,p) = �ij , with �ij the Kronecker sym-
bol, the linear functionals form a dual basis, and the quasi-
interpolant becomes a projector, i.e.,

The first operator that we use was introduced in [26] (see 
also [187, Sect. 4.6]) and is the one traditionally used in IGA 
[16, 20]. We will denote it by Ĵ dB

p,T
 (where dB stands for de 

Boor). In this case, the functionals are defined as

where Dk stands for the k-th derivative, and �i(t) = Gi(t)�i(t) , 
with

and

where g is the transition function defined in [187, Theo-
rem 4.37]. Note that it is trivial to see from (7) that

Moreover, we notice that the definition of each dual func-
tional is based on the local knot vector, and we will stress 
this fact with the alternative notation

The second operator is defined in [45, 202], to which we 
refer for the details. We will denote it by Ĵ Bp

p,T
 , since it is 

sometimes called Bézier projection. We start defining, for 
each element Ij , the local L2-projection PIj

 into the space of 
polynomials of degree p on Ij . Since B-splines span piece-
wise polynomials, the local L2-projection PIj

 can be written 

(6)Ĵp,T ∶ L2(0, 1) → �̂p(T), v̂ ↦

n∑
i=1

�̂i,p (̂v)B̂i,p.

Ĵp,T v̂ = v̂ for all v̂ ∈ �̂p(T).

(7)�̂i,p (̂v) ≡ �̂ dB
i,p
(̂v) ∶=

ti+p+1

�
ti

v̂(s)Dp+1�i(s) ds,

�i(t) ∶=
(t − ti+1)… (t − ti+p)

p!
,

Gi(t) ∶= g

(
2t − ti − ti+p+1

ti+p+1 − ti

)
,

v̂|
supp(B̂i,p)

= 0 ⟹ �̂ dB
i,p
(̂v) = 0.

(8)�̂ dB[Ti,p] ∶= �̂ dB
i,p
.

as in (6) considering the restriction of the functions to Ij , 
namely

Then, the functionals �̂i,p ≡ �̂Bp

i,p
 are defined as convex com-

binations of the corresponding functionals of the local 
projection

with coefficients ci,Ij ≥ 0 and 
∑n�−1

j=1
ci,Ij = 1 for 1 ≤ i ≤ n . The 

functionals form a dual basis. For the following results, the 
concrete choice of the coefficients ci,Ij is not relevant. Among 
the three suggested choices given in [45, Sect. 6], we con-
sider the following one: for each basis function B̂i,p , we 
choose a local element Ik(i) ⊆ supp(�Bi,p) such that

In our case, this is valid for any element thanks to (5), with 
hidden constants that depend only on the degree p and the 
constant Clocuni . Then, the coefficients are taken as

and the dual functionals simply become �̂Bp

i,p
= �̂

Ik(i)

i,p
.

The importance of these two quasi-interpolants comes 
from the following stability result. The proofs can be found 
in [20, Propositions 2.2] and [45, Theorem 2], respectively.

Proposition 1 Let either Ĵp,T = Ĵ dB
p,T

 or Ĵp,T = Ĵ
Bp

p,T
 . Then, for 

any interval Ij , it holds that

where the constant C > 0 depends only on the degree p and 
the constant Clocuni.

2.2  Multivariate B‑Splines

The generalization of univariate B-splines to the multivariate 
setting is done by tensorization. In this section, we introduce 
the notation for the tensor-product basis functions and spaces.

(9)
PIj

(̂v|Ij ) =
n∑

i = 1

supp(B̂i,p) ∩ Ij ≠ �

�̂
Ij

i,p
(̂v)B̂i,p|Ij .

�̂i,p ∶=
n�−1∑

j = 1

Ij ∩ supp(B̂i,p) ≠ �

ci,Ij �̂
Ij

i,p
,

|Ik(i)| ≃ |supp(B̂i,p)|.

ci,Ij ∶=

{
1 if Ij = Ik(i),

0 otherwise,

‖Ĵp,T v̂‖L2(Ij) ≤ C‖v̂‖L2(Sext (Ij)) for all v̂ ∈ L2(0, 1),
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2.2.1  Definition and Properties

Let d̂ be the space dimension, which will be d̂ = 2, 3 in 
practical cases. Let the integers pj ≥ 0 and nj > 0 , and let 
Tj = (tj,1,… , tj,nj+pj+1) be a pj-open knot vector for each 
j = 1,… , d̂ . We set the degree vector � ∶= (p1,… , p

d̂
) and 

� ∶= (T1,… , T
d̂
) . Then, multivariate B-splines are defined 

as products of the form

for � = (i1,… , i
d̂
) and 1 ≤ ij ≤ nj for each j = 1,… , d̂ , where 

it is understood that B̂ij,pj
 is defined from the knot vector Tj . 

Analogously to the univariate case, we will denote the 
B-spline basis as

while the spline space is the spanned space, which is 
denoted by

It is worth noting that ���(�) = ⊗
�d
j=1

��pj
(Tj) , i.e., it can 

defined as tensor-product of the univariate spaces. Multivari-
ate B-splines have basically the same properties as univari-
ate B-splines: they are non-negative and form a partition of 
unity, they have local support, and they are locally linearly 
independent.

Analogously to the univariate case, from the knot vector 
in each direction we define the set of breakpoints, or knots 
without repetitions, Zj ∶= {zj,1,… , zj,n�

j
} , for j = 1,… , d̂ . 

Analogously to the partition of the interval in the univari-
ate case, the breakpoints form a rectilinear grid of the form

For a generic element Q̂� ∈ Q̂ , we define the element size as

We also define its support extension as the union of the 
(open) supports of basis functions that do not vanish in Q̂� , 
and due to the tensor-product structure, this is defined from 
the univariate support extensions as

for � = (k1,… , k
d̂
) . Here, Sext (Ij,kj ) is the univariate support 

extension in the j-th direction given by (4).

B̂�,�(�) ∶= B̂i1,p1
(t1)⋯ B̂i

d̂
,p

d̂
(t
d̂
),

B̂�(�) ∶= {B̂�,� ∶ � = (i1,… , i
d̂
), 1 ≤ ij ≤ nj},

�̂�(�) ∶= span(B̂�(�)).

Q̂ ∶={Q̂� = I1,k1 ×… × I
d̂,k

d̂

∶

Ij,kj = (zj,kj , zj,kj+1) for 1 ≤ kj ≤ n�
j
− 1}.

ĥ
Q̂�

∶= |Q̂�|1∕d̂.

(10)Sext (Q̂�) ∶= Sext (I1,k1 ) ×… × Sext (Id̂,k
d̂

)

2.2.2  Quasi‑Interpolation Operators

The quasi-interpolation operators and dual bases from 
Sect. 2.1.2 can be generalized to the multivariate setting. The 
first quasi-interpolant Ĵ dB

�,�
∶ L2((0, 1)d̂) → �̂�(�) is defined 

as tensor-product

where the tensorization is interpreted in the sense of [28, 
Chapter XVII], see also [20, Sect. 2.2]. This kind of quasi-
interpolant will be used for T-splines in Sect. 4.2.

For the second quasi-interpolant, instead of applying ten-
sorization, we define it in a similar way as in the univariate 
case. As in (6), it is defined by constructing a dual basis. To 
define the dual basis, for each basis function B̂�,� , we choose 
an element �Q�(�) ⊆ supp(�B�,�) with size equivalent to the size 
of the support. Then, introducing a local projector in Q̂�(�) , 
as in (9), and with an analogous notation for the local dual 
basis, the dual functional associated to this basis function is 
given by �̂Bp

�,�
∶= �̂

Q̂�(�)

�,�
 . This type of quasi-interpolant will be 

used for hierarchical B-splines in Sect. 4.1.
Since the multivariate quasi-interpolation operators are 

defined from a dual basis they are also projectors, i.e.,

where we can choose Ĵ�,� either equal to Ĵ dB
�,�

 or to Ĵ Bp

�,�
 . 

Moreover, for the two operators we have a stability result 
analogous to the one already presented in the univariate set-
ting in Proposition 1. The result for Ĵ�,� = Ĵ dB

�,�
 of the follow-

ing proposition is proved in [16, Lemma 3.2]. For the second 
quasi-interpolant Ĵ�,� = Ĵ dB

�,�
 , the result is proved in [45, 

Theorem 2], see also [47, Sect. 3.1].

Proposition 2 Let either Ĵ�,� = Ĵ dB
�,�

 or Ĵ�,� = Ĵ
Bp

�,�
 . Then, for 

any element Q̂ ∈ Q̂ , it holds that

The constant C > 0 depends only on the polynomial degrees 
p1,… , p

d̂
 and local quasi-uniformity (5) in each direction.

2.3  Non‑uniform Rational B‑Splines

Non-uniform rational B-splines (NURBS) are a generalization 
of B-splines. When used to build geometry parametrizations, 
as we will do in Sect. 2.4, they have the advantage of giv-
ing exact representations of conic sections, which cannot be 

�J dB
�,�

∶= �J dB
p1,T1

⊗…⊗�J dB
p�d ,T�d

,

Ĵ�,�v̂ = v̂ for all v̂ ∈ �̂�(�),

‖Ĵ�,�v̂‖L2(Q̂) ≤ C‖v̂‖
L2(Sext (Q̂))

for all v ∈ L2((0, 1)d̂).
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achieved with piecewise polynomials, see [177, Sect. 1.4] for 
more details.

We start in the univariate setting. Given the B-spline 
basis, we define the weight function as a linear combination 
of B-splines

with positive coefficients wi > 0 for i = 1,… , n . Then, the 
set of NURBS basis functions is formed by the rational 
functions

Analogously, in the multivariate case, if we introduce the 
set of multi-indices I ∶= {� = (i1,… , i

d̂
) ∶ 1 ≤ ij ≤ nj} , the 

weight function is defined as

and provides the multivariate NURBS basis functions

Note that, although the NURBS basis functions are defined 
starting from B-splines, they are not constructed by tensor-
product due to the presence of the weights.

Finally, we can also define a quasi-interpolant for 
NURBS. Using the generic notation Ĵ�,� for a B-spline 
quasi-interpolant, we define the corresponding NURBS 
quasi-interpolant by

It can be readily seen that this operator is a projector onto 
the NURBS space provided that Ĵ�,� is a projector onto the 
spline space. Moreover, if Ĵ�,� is as in Proposition 1 or Prop-
osition 2, Ĵ Ŵ

�,�
 satisfies the same stability and approximation 

properties as Ĵ�,� , where the constants depend additionally 
on Ŵ  , see [16] and [20, Sect. 4] for details.

2.4  B‑Splines and NURBS Geometries

A spline or NURBS geometry is built as a linear combina-
tion of B-splines or NURBS basis functions, by associating 
a control point to each basis function. More precisely, let 
the set of d̂-variate NURBS be defined as in (12) and let 

Ŵ ∶=

n∑
i=1

wiB̂i,p,

R̂i,p ∶=
wiB̂i,p∑n

j=1
wjB̂j,p

=
wiB̂i,p

Ŵ
.

(11)Ŵ ∶=
∑
�∈I

w�B̂�,�

(12)R̂�,� ∶=
w�B̂�,�∑
�∈I w�B̂�,�

=
w�B̂�,�

Ŵ
.

Ĵ Ŵ
�,�

(̂v) ∶=
Ĵ�,�(Ŵ v̂)

Ŵ
.

�� ∈ ℝd with d ≥ d̂ be the associated control points. The 
parametrization of the NURBS geometry is then given by

The parametrization of a spline geometry is built com-
pletely analogously, replacing the rational basis functions by 
B-splines. Note that, as mentioned above, particular choices 
of the weight function Ŵ  will allow the exact representation 
of conic geometries by NURBS. Moreover, it is also worth 
noting that, for a NURBS geometry, each component (�)i 
belongs to a space of rational splines, namely

Examples of a spline curve with d̂ = 1 and d = 2 , and a 
spline surface with d̂ = 2 and d = 3 , are respectively given in 
Figs. 1 and 2. For more details on the properties of NURBS 
geometries and different methods to construct them, we refer 
to [68, 89, 127, 177].

3  Model Problems and Isogeometric 
Analysis

In this section we introduce the basic concepts of IGA plus 
some important assumptions required for the numerical 
analysis of the method. In Sect. 3.1, we start with an expla-
nation on the description of the considered geometry, i.e., a 
Lipschitz domain in the case of FEM and its boundary in the 
case of BEM, along with some important assumptions on the 
NURBS parametrizations that define it. Then, in Sect. 3.2 

(13)�(�) ∶=
∑
�∈I

��R̂�,�(�).

(�)i ∈
{
Ŝ∕Ŵ ∶ Ŝ ∈ �̂�(�)

}
, for i = 1,… , d.

Fig. 1  Quadratic spline curve, constructed from the knot vector 
T = (0, 0, 0, 1∕4, 2∕4, 3∕4, 3∕4, 1, 1, 1) , along with its control points 
in ℝ2
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we present the concept of IGA in the setting of FEM: we 
give a model problem written in terms of a PDE, we show 
how it is discretized with isogeometric methods, and pre-
sent a residual-based error estimator. Finally, we present in 
Sect. 3.3 analogous ideas in the setting of isogeometric BEM 
for the discretization of a model problem written as a bound-
ary integral equation.

3.1  Parametrization of the Physical Domain

We introduce here the assumptions of the physical domain. 
We start introducing the assumptions for the single-patch 
case, which will be valid throughout the paper. Then, we 
describe the assumptions required for multi-patch domains, 
and finally introduce a further assumption which is needed 
for BEM.

3.1.1  General Setting and Single‑Patch Domains

In the following, we will always assume that our geometry 
is described through a spline or NURBS parametrization 
as defined in Sect. 2.4. Let �� be the vector of polynomial 
degrees, �� = (T�,1,… , T

�,d̂
) the multivariate open knot vec-

tor, with multiplicity smaller or equal to p�,j for the internal 
knots in the j-th direction, and let Q̂� be the corresponding 
tensor-mesh of the parametric domain

�̂ ∶= (0, 1)d̂.

Introducing a weight function Ŵ� as in (11), let � be a 
NURBS parametrization as in (13), with control points in 
ℝd . We define the physical domain as

In the case of FEM, it holds that d = d̂ and | ⋅ | will denote 
the d-dimensional volume. In the case of BEM, where we 
will only work on the boundary �  of some Lipschitz domain, 
we will write �̂  and �  instead of �̂ and � . Then, d̂ = d − 1 
and | ⋅ | will denote the (d − 1)-dimensional surface measure.

The image through � of the mesh in the parametric 
domain automatically defines a mesh in the physical domain

see an example in Fig. 3. Moreover, for any element Q ∈ Q� 
we define the element size as

These definitions are trivially extended to any mesh in the 
parametric domain.

By definition of NURBS (and B-splines), it is obvious 
that

where Q̂ denotes the closure of Q̂ . However, in order to have 
a valid mesh, it is necessary to avoid the presence of sin-
gularities in the (inverse of the) parametrization, for which 
further assumptions are required.

In the following, we assume that � is a bi-Lipschitz home-
omorphism1, which in particular implies that the inverse �−1 
exists. Moreover, it implies that the Gram determinant is 
bounded from above and from below, namely there exists a 
constant C� > 0 such that 

for almost all � ∈ �̂ , where D� is the Jacobian matrix of the 
parametrization. Note that when d̂ = d the Gram determi-
nant reduces to | det(D�(�))| . When d̂ = d , we additionally 
assume that

so that Q�-elementwise second derivatives of spline func-
tions in the physical domain are well-defined. Moreover, 

𝛺 ∶= �( �𝛺) ⊂ ℝ
d.

(14)Q� ∶= {Q = �(Q̂) ∶ Q̂ ∈ Q̂�};

hQ ∶= |Q|1∕d̂.

�|
Q̂
∈

(
C∞(Q̂)

)d

for all Q̂ ∈ Q̂�,

(15a)C−�d
�

≤ √
det(D�⊤(�)D�(�)) ≤ C

�d
�

�−1|
Q
∈
(
C2(Q)

)d̂

for all Q ∈ Q�,

Fig. 2  Quadratic spline surface, constructed from the knot vectors 
T1 = T2 = (0, 0, 0, 1∕3, 2∕3, 1, 1, 1) , along with its control points in ℝ3

1 For �𝜔 ⊆ ℝ
�d and 𝜔 ⊆ ℝd , a mapping � ∶ �̂ → � is bi-Lipschitz if it 

is bijective and � as well as its inverse �−1 are Lipschitz continuous.
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being bi-Lipschitz guarantees the boundedness of the first 
derivatives of � and its inverse. In particular, these assump-
tions imply the existence of C� > 0 with (15a) and for all 
i, j, k ∈ {1,… , d̂},

where (�)i and (�−1)i respectively denote the i-th compo-
nent of � and �−1 , and the second derivatives are defined 
elementwise.

Finally, we remark that under the assumptions on the 
parametrization � the size of the elements in the parametric 
and the physical domain is comparable, i.e., for any element 
Q = �(Q̂) it holds that

and the hidden constants depend only on �.

3.1.2  Extension to Multi‑patch Domains

A single mapping � can only be used to parametrize simple 
domains that are images of the unit square or cube. To deal 
with more complex geometries, we introduce the concept of 
multi-patch domains, where each patch is constructed with 
a NURBS parametrization.

In detail, we assume that the domain � is constructed with 
a partition into M ∈ ℕ patches in the sense that

where each patch �m is defined with a NURBS parame-
trization of the form

and the assumptions made in Sect. 3.1 are valid for each �m . 
Again, in the case of BEM, we will write �m instead of �m . 
We denote by ��m

 and ��m
 the degree and the knot vector 

associated to the parametrization of each patch, and by Q̂�m
 

(15b)

‖‖‖
�
�tj

(�)i
‖‖‖L∞(�̂)

≤ C
F
,

‖‖‖
�
�xj

(�−1)i
‖‖‖L∞(�)

≤ C
F
,

‖‖‖
�2

�tj�tk
(�)i

‖‖‖L∞(�̂)
≤ C

F
,
‖‖‖

�2

�xj�xk
(�−1)i

‖‖‖L∞(�)
≤ C

F
,

hQ ≃ ĥ
Q̂
,

� =

M⋃
m=1

�m,

�m ∶ �̂ ⟶ �m,

and B̂��m
(��m

) the corresponding mesh and the B-spline 
basis, respectively. Then, defining Q�m

 as in (14), we can 
define the multi-patch mesh

As before, this definition can be trivially extended to refined 
meshes.

In order to construct suitable discrete spaces in the multi-
patch domain, we must require that the meshes are conforming 
at the interfaces, and the patches glue together with C0 conti-
nuity. Let us denote the interfaces by �m,m� ∶= �m ∩�m�  for 
m ≠ m′ . We assume that the two following conditions hold 
true for all m,m′ with m ≠ m′:

(P1)  �m,m′ is either empty, or a vertex, or the image of a 
full edge, or the image of a full face of �̂ for both 
parametrizations.

(P2)  For each B-spline �̂m ∈ B̂��m
(��m

) such that 

 there exists a unique function �̂m� ∈ B̂��
m�
(��m�

) such that 
(�̂m◦�

−1
m
)|�m,m�

= (�̂m�◦�−1
m� )|�m,m�

.

 The assumptions imply that the meshes are conforming at the 
interfaces and the coincident knot vectors are related by an aff-
ine transformation, including also knot repetitions. Moreover, 
the control points and the weights associated to the interface 
functions of adjacent patches must also coincide. As a con-
sequence, the mesh Q� is globally unstructured, but locally 
structured on each patch, see Fig. 4.

(16)Q� ∶=

M⋃
m=1

Q�m
.

(�̂m◦�
−1
m
)|�m,m�

≠ 0,

Fig. 3  Mesh in the parametric domain (left) and its image through � 
in the physical domain (right)

Fig. 4  An example of a multi-patch domain formed by three patches 
(left), and their corresponding control points (right). The control 
points associated to interface functions of adjacent patches coincide
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3.1.3  A Further Assumption for BEM

In the case of BEM, we require a further assumption. Here, 
the boundary �  of some d-dimensional Lipschitz domain 
is defined as a multi-patch geometry through NURBS par-
ametrizations. More precisely, we have that � =

⋃M

m=1
�m , 

where each

is a NURBS parametrization. Let us denote by

the set of vertices of the geometry. For each vertex � ∈ V� , 
we define the subdomain covered by its neighboring ele-
ments as

Following [103, Sect. 5.4.1], we assume that the following 
condition holds true: 

(P3)  For every vertex � ∈ V� , there exists a set 
�𝜋�(�) ⊂ ℝd−1 that is an interval for d = 2 and a poly-
gon for d = 3 and a bi-Lipschitz mapping 

 such that �−1
z
◦�m|Q̂ is an affine mapping for all 

m ∈ {1,… ,M} and all Q̂ ∈ Q̂�m
 with Q ∶= �m(Q̂) ⊂ 𝜋�(�).

 The assumption means that each subdomain ��(�) can 
be flattened and that the inverse of the bi-Lipschitz map-
ping �� restricted to Q essentially coincides with the 
inverse of �−1

m
 , see Fig. 5. In particular, this prevents the 

case ��(�) = �  . We stress that the same assumption is 
also made in [185, Assumption 4.3.25] for curvilinear 
triangulations.

�m ∶ (0, 1)d−1 → 𝛤m ⊂ ℝ
d

V� ∶=

M⋃
m=1

{�m (̂�) ∶ �̂ ∈ {0, 1}d−1},

��(�) ∶=
⋃{

Q ∶ Q ∈ Q� ∧ � ∈ Q
}

�� ∶ �̂�(�) ⟶ ��(�)

3.2  Isogeometric Analysis for FEM (IGAFEM)

We now describe IGA based on tensor-product B-splines, 
i.e., without adaptive refinement. For more details about 
IGA we refer to [20, 71, 129].

3.2.1  Model Problem and Galerkin Approximation

Let 𝛺 ⊂ ℝd with d ≥ 2 be a bounded Lipschitz domain as in 
[159, Definition 3.28]. In practice, � is a multi-patch domain 
defined as in Sect. 3.1.2 with d̂ = d . We consider a general 
second-order linear elliptic PDE with homogenous Dirichlet 
boundary condition

where

with � ∈ W1,∞(�)d×d and symmetric, � ∈ L∞(�)d , and 
c ∈ L∞(�).

We interpret P in its weak form and define the corre-
sponding bilinear form

The bilinear form is clearly continuous, i.e., there exists a 
positive constant Ccont > 0 such that

Additionally, we suppose ellipticity of ⟨⋅ ; ⋅⟩P on H1
0
(�) , i.e., 

there exists Cell > 0 such that

Note that ellipticity is for instance satisfied if the matrix � 
is uniformly positive definite and the vector � ∈ �(div,�) 
satisfies that − 1

2
div� + c ≥ 0 almost everywhere in �.

According to the Lax–Milgram theorem, for arbitrary 
f ∈ L2(�) problem (17) admits a unique solution u ∈ H1

0
(�) 

to the weak formulation

Finally, we note that the additional regular ity 
� ∈ W1,∞(�)d×d (instead of only the natural assumption 
� ∈ L∞(�)d×d ) is only required for the well-posedness of 
the residual a posteriori error estimator, see Sect. 3.2.3 
below.

(17)
Pu = f in �,

u = 0 on � ∶= ��,

(18)Pu ∶= −div(�∇u) + � ⋅ ∇u + cu,

⟨w ; v⟩P ∶= ∫
�

(�∇w) ⋅ ∇v + (� ⋅ ∇w)v + cwv d�.

⟨w ; v⟩P ≤ Ccont‖w‖H1(�)‖v‖H1(�) for all v,w ∈ H1(�).

⟨v ; v⟩P ≥ Cell‖v‖2H1(�)
for all v ∈ H1

0
(�).

(19)⟨u ; v⟩P = ∫
�

fv d� for all v ∈ H1
0
(�).

Fig. 5  Graphical representation of assumption (P3), in a parametriza-
tion of the sphere with 60 patches and one single element per patch. 
The three elements forming ��(�) on the left are colored in different 
tones of gray, and the corresponding polygon �̂�(�) is the hexagon 
shown in the middle. The mapping �−1

�
◦�m is an affine transformation
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Let � ⊂ H1
0
(𝛺) be an arbitrary discrete subspace and let 

U ∈ � be the corresponding Galerkin approximation to the 
solution u ∈ H1

0
(�) , i.e.,

We note the Galerkin orthogonality

as well as the resulting Céa type quasi-optimality

with CCéa ∶= Ccont∕Cell.

3.2.2  Isogeometric Discretization

For the discretization of the model problem with the IGA 
method, we start with the case of a single-patch domain, and 
then generalize the method to the multi-patch case.

The single-patch case Let us assume that � = �(�̂) , 
with a NURBS parametrization � of degree �� constructed 
from the knot vector �� as in Sect. 3.1. We consider a dis-
crete space of splines ���(�) ⊇ ����

(��) , which is obtained 
by refinement of the space used to build the parametriza-
tion. We note that both h-refinement and p-refinement can 
be applied, see [129] for details.

We will however use a milder assumption for the dis-
crete space �̂�(�) , and allow to use a lower degree than 
for the parametrization, while the mesh and the continuity 
given by � must be respected. In particular, we assume 
that Q̂� and Q̂ , the meshes respectively associated to the 
discrete spaces �̂��

(��) and �̂�(�) , are nested, in the sense 
that the corresponding sets of breakpoints satisfy Z�,j ⊆ Zj 
for j = 1,… , d̂  . We also assume that the continuity of 
�̂�(�) along the knot lines of Q̂� is always less or equal 
than the one of �̂��

(��) . Note that this is always satisfied if 
���(�) ⊇ ����

(��) . Moreover, to obtain conforming spaces 
in H1(�) we assume that the continuity across elements is 
not lower than C0.

The discrete space in the physical domain is defined by 
push-forward using the NURBS parametrization, namely

We can easily define a basis for this space by push-forward 
of the B-spline basis functions, that is

(20)⟨U ;V⟩P = ∫�

fV d� for all V ∈ �.

⟨u − U ;V⟩P = 0 for all V ∈ �,

‖u − U‖H1(𝛺) ≤ CCéa min
V∈�

‖u − V‖H1(𝛺)

(21)��(�) ∶=
{
V = V̂◦�−1 ∶ V̂ ∈ �̂�(�)

}
.

(22)B�(�) ∶=
{
B�,� = B̂�,�◦�

−1 ∶ B̂�,� ∈ B̂�(�)
}
.

For the solution of the discrete problem (20), we define the 
discrete space with vanishing boundary conditions

In practice, and thanks to the use of the open knot vectors, 
vanishing boundary conditions are enforced by removing 
the first and last basis functions from the univariate B-spline 
spaces.

It is worth noting that the space �̂�(�) is associated to 
a mesh in the parametric domain, which we denote by Q̂ 
and which is a refinement of Q̂� . As in (14), this mesh is 
mapped through � to define the mesh Q of � associated 
to the space �.

Remark 1 The assumption on the continuity along the knot 
lines of Q̂� is in fact a condition on the knots. Let us assume 
for simplicity the same degrees p and p� in every direction, 
and the same multiplicities of the internal knots, m and m� , 
referring respectively to spaces �̂�(�) and �̂��

(��) . Then 
the condition reads

It is important to note that, if the condition is not respected, 
the optimal convergence rate may not be achieved, even for 
smooth solutions, see the numerical tests in [51].

Remark 2 In IGA, it is common to follow the isoparametric 
paradigm, and to define the discrete space as the push-for-
ward of a NURBS space [129]. Although our parametriza-
tion is constructed via NURBS, we have preferred to limit 
ourselves to (non-rational) spline spaces for the sake of clar-
ity and to avoid the cumbersome presence of the weight 
during the mathematical analysis. The analysis of IGA with 
uniform NURBS discretizations has already been carried out 
in [16], see also [20, Sect. 4]. The results of this work can be 
extended to adaptive methods with rational splines without 
major (but notational) difficulties.

The multi-patch case For the definition of the multi-
patch space we follow the same approach as in [20, Sect. 3], 
see also [139]. For each patch, let �̂�m

(�m) satisfy the same 
assumptions with respect to �̂��m

(��m
) as in the single-patch 

case. By push-forward, we define the corresponding space 
��m

(�m) and its local basis B�m
(�m) as in the single-patch 

case. Then, the multi-patch discrete space is given as

and finally the discrete space with vanishing boundary con-
ditions is simply

� ∶= ��(�) ∩ H1
0
(�).

p − m ≤ p� − m�.

�̃ ∶=
{
V ∈ C0(�) ∶ V|�m

∈ ��m
(�m), for m = 1,… ,M

}
,
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Since each local space is associated to a mesh, which we 
denote by Qm , we can define the multi-patch mesh analo-
gously to (16), i.e., Q ∶=

⋃M

m=1
Qm.

In order to construct a global basis for the multi-patch 
space, besides the assumptions on the parametrization given 
in Sect. 3.1.2, we need an analogous assumption to guaran-
tee that the refined meshes are conforming. In particular, we 
assume that the following condition holds true: 

(P2’)  For each �m ∈ B�m
(�m) such that �m|�m,m′

≠ 0 , there 
exists a unique function �m� ∈ B�m�

(�m� ) such that 
�m|�m,m�

= �m� |�m,m�
.

With this assumption, we can build a basis of the multi-
patch space � by gluing together functions of adjacent 
patches in a procedure which is analogous to the construc-
tion of the connectivity array in standard finite elements. 
To define a basis of �̃ , let us denote by n the dimension of 
�̃ . We define for each patch a mapping

in such a way that, for any �m ∈ B�m
(�m) and �m� ∈ B�m�

(�m� ) 
with m ≠ m′,

Then, we define the basis of the multi-patch basis

where each basis function is given by

The conditions described above guarantee that the basis 
functions are continuous at the interfaces, see an example 
in Fig. 6.

Once we have the basis for �̃ , a basis for � is easily 
constructed by removing the basis functions that do not 
vanish on the boundary similarly to the single-patch case.

Remark 3 The construction of splines with C1 continuity (or 
higher) in multi-patch domains is an important subject of 
research not only in IGA but in general in computer aided 
geometric design. Different kinds of constructions have 
recently been proposed in the literature. For the interested 
reader, we mention [133, 134, 154, 169, 170, 203, 212]. The 
analysis of adaptive methods in multi-patch domains with 
high continuity is beyond the current state of the art, with 

� ∶= �̃ ∩ H1
0
(�).

gm ∶ B�m
(�m) → {1,… , n} for m = 1,… ,M,

gm(�m) = gm� (�m� ) ⟺ �m,m� ≠ � and

�m|�m,m�
= �m� |�m,m�

.

B ∶= {Bj ∶ j = 1,… , n},

Bj|�m
∶=

{
�m if gm(�m) = j,

0 otherwise.

preliminary steps in [34], and in particular beyond the scope 
of this paper.

3.2.3  A Posteriori Error Estimator

Despite not having introduced the spline spaces with local 
refinement, we can already introduce the error estimator 
that will drive the adaptive refinement. Let the mesh Q 
be defined as above, and let Q ∈ Q . For almost every 
� ∈ �Q ∩� on the interior skeleton of the mesh, there 
exists a unique element Q� ∈ Q with � ∈ �Q� and Q′ ≠ Q . 
We denote the corresponding outer normal vectors by � 
and �′ . With the notation

we define the normal jump as

With this definition, we employ the weighted-residual a pos-
teriori error estimator

where, for all Q ∈ Q with element size hQ , the local refine-
ment indicators read

 We refer, e.g., to the monographs [3, 206] for the analysis 
of the residual a posteriori error estimator (23) in the frame 
of standard FEM with piecewise polynomials of fixed order.

D
�
(⋅) ∶= (�∇(⋅)) ⋅ �, D

�
� (⋅) ∶= (�∇(⋅)) ⋅ ��,

[D
�
U](�) ∶= (D

�
U|Q)(�) + (D

�
�U|Q� )(�).

(23a)𝜂 ∶= 𝜂(Q) with 𝜂(S)2 ∶=
∑
Q∈S

𝜂(Q)2 for all S ⊆ Q,

(23b)�(Q)2 ∶= h2
Q
‖f −PU‖2

L2(Q)
+ hQ‖[D�

U]‖2
L2(�Q∩�)

.

Fig. 6  An example of a C0 basis function of the multi-patch space, 
defined in the same domain as in Fig. 4
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Remark 4 The additional regularity � ∈ W1,∞(�)d×d (instead 
of only � ∈ L∞(�)d×d ) is needed to ensure that D

�
(⋅) is 

well-defined.

Remark 5 If � ⊂ C1(𝛺) , then the jump contributions in (23) 
vanish and �(Q) consists only of the volume residual, i.e., 
�(Q)2 = h2

Q
‖f −PU‖2

L2(Q)
.

3.3  Isogeometric Analysis for BEM (IGABEM)

The potential benefits of using IGA for the solution of 
boundary integral equations were already mentioned in the 
conclusions of [129], but it has only been considered first in 
[178]. The research on IGABEM has steadily grown since 
then, although not as fast as for IGAFEM, with applications 
in acoustics [61, 82, 196, 205], elasticity [13, 168], electro-
magnetics [83, 195, 204], lifting flow [63], potential flow 
[118, 140, 141], and solid mechanics [156, 190], see also 
the recent book [17] for a comprehensive survey of the topic 
and a complete review of the existing literature. An imple-
mentation of (non-adaptive) IGABEM is available in the 
open-source library Bembel [81]. Although some of the pre-
viously mentioned works consider locally refined T-splines, 
the mathematical research on adaptive IGABEM methods 
is rather limited. Results for the two-dimensional case are 
found in [93–95, 100, 109], where [95] is also the first work 
that considers Galerkin instead of collocation IGABEM. The 
three-dimensional case has only recently been considered in 
[103, 106, 108].

3.3.1  Sobolev Spaces for BEM

For arbitrary d ≥ 2 , let 𝛺 ⊂ ℝd be a bounded Lipschitz 
domain as in [159, Definition 3.28] and � ∶= �� its boundary. 
In practice, �  is a multi-patch domain defined as in Sect. 3.1.2 
with ̂d = d − 1 . Before we give the model problem and discuss 
its discretization, we have to introduce the involved Sobolev 
spaces on �  . For � ∈ [0, 1] , we define the Hilbert spaces 
H±�(� ) with corresponding norms as in [159, p. 99] by use 
of Bessel potentials on ℝd−1 and liftings via bi-Lipschitz map-
pings that describe �  . For � = 0 , this procedure yields that 
H0(� ) = L2(� ) with equivalent norms. Therefore, we set 
‖ ⋅ ‖H0(� ) ∶= ‖ ⋅ ‖L2(� ).

For � ∈ (0, 1] , any measurable subset 𝜔 ⊆ 𝛤  , and all 
v ∈ H�(� ) , we define the associated Sobolev–Slobodeckij 
norm

with

‖v‖2
H� (�) ∶= ‖v‖2

L2(�)
+ �v�2

H� (�)

Here, ∇� (⋅) denotes the usual (weak) surface gradient which 
is well-defined for almost all � ∈ �  . It is well known that 
‖ ⋅ ‖H� (� ) provides an equivalent norm on H�(� ) , see, e.g., 
[199, Lemma 2.19] and [159, Theorem 3.30 and p. 99] for 
� ∈ (0, 1) and [160, Theorem 2.28] for � = 1.

For � ∈ (0, 1] , H−�(� ) is a realization of the dual space 
of H�(� ) according to [159, Theorem 3.30 and p. 99]. With 
the duality bracket ⟨⋅ ; ⋅⟩ , we define the following equivalent 
norm on H−�(� )

In [159, p.  76], it is stated that H𝜎1 (𝛤 ) ⊂ H𝜎2 (𝛤 ) for 
−1 ≤ 𝜎1 < 𝜎2 ≤ 1 , where the inclusion is continuous, dense, 
and compact. In particular, H𝜎(𝛤 ) ⊂ L2(𝛤 ) ⊂ H−𝜎(𝛤 ) forms 
a Gelfand triple in the sense of [185, Sect. 2.1.2.4] for all 
� ∈ (0, 1] , where � ∈ L2(� ) is interpreted as a function in 
H−�(� ) via

The spaces H�(� ) can also be defined as trace spaces or via 
interpolation, where the resulting norms are always equiva-
lent with constants which depend only on the dimension d 
and the boundary �  . For a more detailed introduction to 
Sobolev spaces on the boundary, the reader is referred to 
[128, 159, 185, 199].

3.3.2  Model Problem and Galerkin Approximation

Again, we consider a general second-order linear PDE on the 
d-dimensional bounded Lipschitz domain � with partial dif-
ferential operator

where the coefficients � ∈ ℝd×d, � ∈ ℝd , and c ∈ ℝ now 
additionally supposed to be constant. Moreover, we assume 
that � is symmetric and positive definite.

Let G ∶ ℝd ⧵ {0} → ℝ be a corresponding fundamental 
solution in the sense of [159, p. 198], i.e., a distributional solu-
tion of PG = � , where � denotes the Dirac delta function. For 
� ∈ L∞(� ) , we define the single-layer operator as

�v�2
H� (�) ∶=

⎧
⎪⎨⎪⎩

∫
�

∫
�

�v(�)−v(�)�2
��−��d−1+2� d� d� if � ∈ (0, 1),

‖∇� v‖2L2(�) if � = 1.

‖�‖H−� (� ) ∶= sup
�⟨v ;�⟩ ∶ v ∈ H�(� ), ‖v‖H� (� ) = 1

�

for all � ∈ H−�(� ).

⟨v ;�⟩ ∶= ⟨v ;�⟩L2(� ) = ∫
�

v� d�

for all v ∈ H�(� ),� ∈ L2(� ).

Pu ∶= −div(�∇u) + � ⋅ ∇u + cu,
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According to [159, pp. 209 and 219–220] and [124, Cor-
ollary 3.38], this operator can be extended for arbitrary 
� ∈ (−1∕2, 1∕2 ] to a bounded linear operator

In [159, Theorem 7.6], it is stated that V  is always elliptic up 
to some compact perturbation. We assume that it is elliptic 
even without perturbation, i.e.,

This is particularly satisfied for the Laplace problem or for 
the linear elasticity problem, where the case d = 2 requires 
an additional scaling of the geometry � , see, e.g., [199, 
Chapter 6]. Moreover, the bilinear form ⟨V ⋅ ; ⋅⟩ is continu-
ous due to (24), i.e., it holds with Ccont ∶= ‖V‖H−1∕2(� )→H1∕2(� ) 
that

Given a right-hand side f ∈ H1(� ) , we consider the weakly-
singular boundary integral equation

Such equations arise from the solution of Dirichlet prob-
lems of the form Pu = 0 in � with u = g on �  for some 
g ∈ H1(� ) , see, e.g., [159, pp. 226–229]. The normal deriva-
tive � ∶= (�∇u) ⋅ � of the weak solution u then satisfies the 
integral equation (27) with f ∶= (K + 1∕2)g , i.e.,

where

denotes the double-layer operator [159, pp. 218–223]. If �  
is piecewise smooth and if g ∈ L∞(� ) , for all � ∈ �  where 
�  is locally smooth and g is continuous there holds the 
representation

see [185, Sect. 3.3.3]. Due to (25)–(26) the Lax–Milgram 
lemma guarantees existence and uniqueness of the solu-
tion � ∈ H−1∕2(�) of the equivalent variational formulation 
of (27)

(V�)(�) ∶= ∫
�

G(� − �)�(�) d� for all � ∈ � .

(24)V ∶ H−1∕2+�(� ) → H1∕2+�(� ).

(25)⟨V� ;�⟩ ≥ Cell‖�‖2
H−1∕2(� )

for all � ∈ H−1∕2(� ).

(26)
⟨V� ; �⟩ ≤ Ccont‖�‖H−1∕2(� )‖�‖H−1∕2(� )

for all � , � ∈ H−1∕2(� ).

(27)V� = f .

(28)V� = (K + 1∕2)g,

(29)K ∶ H1∕2(� ) → H1∕2(� )

Kg(�) = ∫
�

g(�)
(
�∇�G(�, �) + �G(�, �)

)
⋅ �(�) d�;

⟨V� ;�⟩ = ⟨f ;�⟩ for all � ∈ H−1∕2(�).

In particular, we see that V ∶ H−1∕2(� ) → H1∕2(� ) is an 
isomorphism.

In the Galerkin BEM, the test space H−1∕2(�) is replaced 
by some discrete subspace � ⊂ L2(𝛤) ⊂ H−1∕2(𝛤) . Again, 
the Lax–Milgram lemma applies and guarantees the exist-
ence and uniqueness of the solution � ∈ � of the discrete 
variational formulation

In fact, � can be computed by solving a linear system of 
equations. Note that (24) even implies that V� ∈ H1(� ) 
for arbitrary � ∈ � . The additional regularity f ∈ H1(� ) 
instead of f ∈ H1∕2(� ) is only needed to define the 
residual error estimator  (32) below, which requires that 
f − V ∈ H1(� ) . As for the FEM problem, we also note the 
Galerkin orthogonality

as well as the resulting Céa-type quasi-optimality

where CCéa ∶= Ccont∕Cell . For a more detailed introduc-
tion to boundary integral equations and BEM, the reader is 
referred to the monographs [128, 159, 185, 199].

3.3.3  Isogeometric Discretization

For the solution of the discrete problem with isogeomet-
ric methods, we assume that the boundary of the domain 
𝛤 = 𝜕𝛺 ⊂ ℝd (and not necessarily � ) is defined as a multi-
patch geometry through NURBS parametrizations. More 
precisely, we suppose that � =

⋃M

m=1
�m , where

is a NURBS parametrization and the assumptions of 
Sect. 3.1 are valid. In particular, each �m is a bi-Lipschitz 
homeomorphism. Moreover, we suppose the properties 
(P1)–(P3) regarding the conformity of the meshes in multi-
patch domains given in Sect. 3.1.2 hold true.

On each patch, we first define the local space of mapped 
splines ��m

(�m) with the local basis B�m
(�m) via push-for-

ward as in the IGAFEM case (21)–(22). Then, we define the 
discrete isogeometric space as

Note that, in contrast to IGAFEM, continuity of the discrete 
functions at the interfaces is not required for the weakly-sin-
gular boundary integral equation (27) as � only needs to be 
contained in L2(� ) . A basis for this space is clearly given by

(30)⟨V� ;�⟩ = ⟨f ;�⟩ for all � ∈ �.

(31)⟨f − V� ;�⟩ = 0 for all � ∈ �,

‖𝜙 −𝛷‖H−1∕2(𝛤 ) ≤ CCéa min
𝛹∈�

‖𝜙 − 𝛹‖H−1∕2(𝛤 ),

�m ∶ (0, 1)d−1 → 𝛤m ⊂ ℝ
d

� ∶= {V ∈ L2(� ) ∶ V|�m
∈ ��m

(�m), for m = 1,… ,M}.
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Remark 6 In contrast to weakly-singular integral equa-
tions, hypersingular integral equations, which result from 
Neumann problems (see, e.g., [159, Chapter 7]), require 
continuous trial functions. Assuming also the conformity 
property (P2’), corresponding basis functions can be con-
structed as for IGAFEM in Sect. 3.2.2.

3.3.4  A Posteriori Error Estimator

Let Q be the mesh on �  , defined as above. Due to the regu-
larity assumption f ∈ H1(� ) , the mapping property (24), 
and � ⊂ L2(𝛤 ) , the residual satisfies that f − V� ∈ H1(� ) 
for all � ∈ � . This allows to employ the weighted-residual 
a posteriori error estimator

where, for all Q ∈ Q with element size hQ , the local refine-
ment indicators read

 This estimator goes back to the works [52, 56], where reli-
ability is proved for standard 2D BEM with piecewise poly-
nomials on polygonal geometries, while the corresponding 
result for standard 3D BEM is found in [54]. The recent 
work [106] generalizes these results to PDEs beyond the 
Laplace equation and beyond standard discretizations based 
on piecewise polynomials.

4  Splines on Adaptive Meshes

The design of adaptive isogeometric methods requires suitable 
adaptive spline spaces that enable local mesh refinement. Here, 
we focus on two of the main solutions that break the structure 
of standard multivariate tensor-product splines: hierarchical 
splines in Sect. 4.1 and T-splines in Sect. 4.2. We stress that, at 
the moment and up to our knowledge, a thorough analysis on 
optimal convergence of resulting adaptive algorithms is only 
available for these two. Section 4.3 finally collects alternative 
adaptive spline models and briefly comments on them.

4.1  Hierarchical Splines

Hierarchical spline surfaces were introduced in [99] by con-
sidering a sequence of overlays to enable an efficient local 

B ∶=

M⋃
m=1

B�m
(�m).

(32a)𝜂 ∶= 𝜂(Q) with 𝜂(S)2 ∶=
∑
Q∈S

𝜂(Q)2 for all S ⊆ Q,

(32b)�(Q)2 ∶= hQ|f − V�|2
H1(Q)

.

editing of the geometric model. A simple selection algo-
rithm to properly identify the B-splines at different refine-
ment levels needed to define a suitable basis for hierarchical 
spline spaces was proposed in [142, 143]. More recently, a 
slightly different hierarchical B-spline basis was proposed 
in [207] and since then the hierarchical approach was widely 
used by different authors in IGA, see, e.g., [121, 186, 191, 
207]. In order to overcome some limitations of hierarchi-
cal B-splines, the truncated basis for the same hierarchical 
spline space was introduced in [114] leading to the defi-
nition of truncated hierarchical B-splines (THB-splines). 
Their application in IGA has been investigated by several 
authors for second order [30, 75, 113, 120] and fourth order 
PDEs [4, 120], and also for trimmed domains [69, 70, 179, 
181]. Implementation aspects related to (T)HB-splines were 
addressed in [29, 36, 40, 111, 137]. Finally, we mention that 
the idea of considering the linear span of (tensor-product) 
B-splines on different, hierarchically ordered grid levels has 
also been used for wavelet approaches, see, e.g., [67, 74, 
180].

4.1.1  Definition and Properties

Let

be a nested sequence of N tensor-product spline spaces 
�̂�(�

�) , for � = 0,… ,N − 1 , defined without loss of gen-
erality on the open hyper-cube �̂ ∶= (0, 1)d̂.

At any level � , we consider the B-spline basis 
B̂
�

∶= B̂�(�
�) of degree � defined on the rectilinear grid 

Q̂
�

 , analogously to the one-level case described in 
Sect. 2.2. Any (non-empty) element Q̂ of the grid Q̂

�

 is the 
Cartesian product of d̂ open intervals defined by consecu-
tive breakpoints. We abbreviate its level lev(Q̂) ∶= � . The 
knot vector T�

i
 in the coordinate direction i, for i = 1,… , d̂ , 

is associated to the grid at level � and contains non-
decreasing real numbers so that each breakpoint z�

j
 appears 

in the knot vector as many times as specified by a certain 
multiplicity. For d̂ = 1 , an example of grids and B-spline 
bases of three different levels is shown in Fig. 7.

We assume open knot vectors in any direction at level 
0 and multiplicities of internal knots between one and pi . 
To guarantee the nested nature of the spline spaces given 
by (33), we also assume dyadic mesh refinement between 
consecutive hierarchical levels so that an element of level 
� is uniformly refined in 2d̂ elements of level � + 1 , see 
Figs. 7 and 8 for d̂ = 1 and d̂ = 2 , respectively. In addition, 
any newly inserted knot appears with multiplicity one.

(33)���(�
0) ⊂ ���(�

1) ⊂ … ⊂ ���(�
N−1)
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Remark 7 Note that more general refinement possibilities 
can also be covered within the hierarchical spline model 
[115].

In order to define the spline hierarchy, we consider a 
nested sequence of closed subsets of �̂0 ∶= �̂ , given by

where we assume that �̂� is the union of the closure of 
elements of level � − 1 . By considering the set of active 
elements at level � , for � = 0,… ,N − 1 , we can define the 
hierarchical mesh as follows:

For d̂ = 2 , an example of domain hierarchy on three refine-
ment levels is shown in Fig. 8.

We say that a mesh Q̂+ is a refinement of Q̂ , and we denote 

it by Q̂ ⪯ Q̂+ (or Q̂+ ⪰ Q̂ ), if it is obtained from Q̂ by succes-
sive splitting via dyadic refinement of some of its elements. 
Note that, under our assumptions, the fine mesh is associated 
to an enlargement of the subdomains (�̂�

+
)
�=0,…,N+

 , such that 

N ≤ N+ , �̂0 = �̂0
+
 , �N+

+ = � , and �𝛺� ⊆ �𝛺�

+
 for � = 1,… ,N.

�𝛺0 ⊇ �𝛺1 ⊇ … ⊇ �𝛺N−1 ⊇ �𝛺N = �,

(34)
�Q ∶=

{
�Q ∈ �Q

�

∶ �Q ⊆ �𝛺� ∧ �Q ⊈ �𝛺�+1,

� = 0,… ,N − 1
}
.

Given a hierarchical mesh Q̂ , the set of hierarchical 
B-splines (HB-splines) Ĥ�(Q̂,�0) ∶= Ĥ

N−1
 can be con-

structed according to the following steps: 

1. Ĥ
0
∶= B̂

0
;

2. for � = 0,… ,N − 2

where

Steps 1–2 define a selection mechanism which activates 
and deactivates B-splines at different levels of resolution by 
taking into account the hierarchical domain configuration. 
After initializing the set of hierarchical B-splines with the 
B-splines of level 0, for any subsequent level � , the set Ĥ

�+1
 

of HB-splines of level � + 1 includes

• B-splines of coarser levels whose support is not con-
tained in �̂�+1 ( ̂H

�+1

A
);

• B-splines of level � + 1 whose support is contained in 
�̂�+1 ( ̂H

�+1

B
).

Ĥ
�+1

∶= Ĥ
�+1

A
∪ Ĥ

�+1

B
,

�H
�+1

A
∶=

{
�B�

�,�
∈ �H

�

∶ supp(�B�

�,�
) ⊈ �𝛺�+1

}
,

�H
�+1

B
∶=

{
�B�+1
�,�

∈ �B
�+1

∶ supp(�B�+1
�,�

) ⊆ �𝛺�+1
}
.

Fig. 7  An example of grids (a) of three hierarchical levels for d̂ = 1 . 
The univariate B-splines of degree 3 defined on level 0, 1 and 2 are 
shown in (b–d), respectively. All internal knots have multiplicity one

Fig. 8  An example of grids and domains (gray regions) of levels 0 
(a), 1 (b), 2 (c) for d̂ = 2 . The hierarchical mesh is also shown (d)
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Note that the HB-spline basis Ĥ�(Q̂,�0) with respect to 
the mesh Q̂ can also be defined as

Fig. 9 shows an example of cubic hierarchical B-splines for 
d̂ = 1.

The following proposition shows that Ĥ�(Q̂,�0) is 
indeed a basis for the hierarchical spline space

Properties (i)–(iii) in Proposition 3 are proved in [115, 198, 
207]. The characterization (iv) is taken from [198, Sect. 3].

Proposition 3 The hierarchical basis Ĥ�(Q̂,�0) satisfies the 
following properties: 

 (i) The HB-splines in Ĥ�(Q̂,�0) are nonnegative and 
linearly independent.

 (ii) The intermediate spline spaces are nested, i.e., 

span �H
�

⊆ span �H
�+1

 , for � = 0,… ,N − 2.
 (iii) Given  a  mesh  Q̂+ ⪰ Q̂  ,  i t  ho lds  tha t 

��H
�
(�Q,�0) ⊆ ��H

�
(�Q+,�

0).
 (iv) It holds the explicit characterization �̂H

�
(Q̂,�0) =

{
Ŝ ∶ Ŝ|�̂⧵�̂�+1 ∈ �̂�(�

�)|�̂⧵�̂�+1 , � = 0,… ,N − 1
}

 . 

�H�(
�Q,�0) =

{
�B�

�,�
∈ �B

�

∶ supp(�B�

�,�
) ⊆ �𝛺�

∧ supp(�B�

�,�
) ⊈ �𝛺�+1, � = 0,… ,N − 1

}
.

�̂
H
�
(Q̂,�0) ∶= span Ĥ�(Q̂,�0).

In particular, hierarchical splines are polynomials 
of degree � on each element Q̂ ∈ Q̂.

The dimensions of bivariate and trivariate hierarchi-
cal B-spline spaces were investigated in [112] and [21], 
respectively, for the case of maximal smoothness. In [162], 
a more comprehensive analysis covering also reduced reg-
ularity was presented.

4.1.2  Truncated Hierarchical B‑Splines

The HB-spline basis is composed by B-splines defined 
on grids of different resolution which interact with each 
other on refined elements. Thanks to the refinable nature 
of the B-spline model, it is possible to reduce the over-
lapping of B-splines introduced at successive levels with 
the coarser ones by exploiting a truncation mechanism 
[114].

By recalling the nested nature of the sequence of spline 
spaces in (33), let �S ∈ ���(�

�) ⊂ ���(�
�+1) be a spline of 

level � expressed in terms of B-splines of level � + 1 as

The truncation of Ŝ with respect to level � + 1 is defined as

and leads to a truncated function whose support is either 
equal or reduced when compared to the one of function Ŝ , 
i.e., supp(trunc�+1�S) ⊆ supp(�S) , for all Ŝ ∈ �̂�(�

�) . In par-
ticular, the contribution of B-splines of level � + 1 which 
will be included in the hierarchical basis is removed from 
the expression of Ŝ given by (35). For d̂ = 1 , an example 
of truncation applied to a quadratic univariate B-spline is 
shown in Fig. 10.

Analogously to the HB-spline case, given a hierarchical 
mesh Q̂ , the set of THB-splines T̂�(Q̂,��) ∶= T̂

N−1
 can be 

constructed according to the following steps: 

1. T̂
0
∶= Ĥ

0
;

2. for � = 0,… ,N − 2

where

(35)
Ŝ =

∑

B̂�+1
�,�

∈B̂
�+1

c�+1
�,�

(Ŝ)B̂�+1
�,�

.

trunc�+1Ŝ =
∑

B̂�+1
�,�

∈B̂
�+1

⧵Ĥ
�+1

B

c�+1
�,�

(Ŝ)B̂�+1
�,�

,

T̂
�+1

∶= T̂
0

A
∪ T̂

�+1

B
,

Fig. 9  An example of cubic HB-splines (b) and THB-splines (c) 
defined on a domain hierarchy consisting of three levels (a). All inter-
nal knots have multiplicity one



Mathematical Foundations of Adaptive Isogeometric Analysis  

1 3

4499

In this case, the two steps of the constructions define a selec-
tion mechanism which does not only activate and deactivate 
but also truncates B-splines of different levels by taking into 
account the hierarchical domain configuration. After initial-
izing the set of THB-splines with the (H)B-splines of level 
0, for any subsequent level � , the set of THB-splines of level 
� + 1 ( ̂T

�+1 ) includes

• truncated B-splines of coarser levels whose support is 
not contained in �̂�+1 ( ̂T

�+1

A
);

• B-splines of level � + 1 whose support is contained in 
�̂�+1 ( ̂T

�+1

B
).

By defining the successive truncation of a B-spline of level 
� as

and TruncN(B̂N−1
�,�

) ∶= B̂N−1
�,�

 , we can also define the THB-
spline basis as follows:

�T
�+1

A
∶=

{
trunc�+1(�T�

�,�
) ∶

�T�

�,�
∈ �T

�

∧ supp(�T�

�,�
) ⊈ �𝛺�+1

}
,

�T
�+1

B
∶= �H

�+1

B
.

Trunc�+1(B̂�

�,�
) ∶= truncN−1

(
…

(
trunc�+1(B̂�

�,�
)
)
…
)
,

Any HB-spline B̂�

�,�
∈ Ĥ�(Q̂,�0) generates a corresponding 

THB-sp l ine  T̂�

�,�
∶= Trunc�+1(B̂�

�,�
) ∈ T̂�(Q̂,��) ,  fo r 

� = 0, ...,N − 1 and it is denoted as the mother B-spline of 
T̂�

�,�
 , namely

Note that, being defined in terms of the successive applica-
tion of the truncation mechanism, each THB-spline is char-
acterized by a support that is either equal or smaller than the 
one of its mother B-spline. However, as for finite elements 
defined in meshes with hanging nodes, the support of THB-
splines is more complicated and in general not even convex 
or connected. Figs. 9(c) and 11 show examples of THB-
splines for d̂ = 1 and d̂ = 2 , respectively.

The following properties hold according to [114, 115].

Proposition 4 The truncated hierarchical basis T̂�(Q̂,��) 
satisfies the following properties: 

 (i) The THB-splines in T̂�(Q̂,��) are nonnegative, lin-
early independent, and form a partition of unity.

 (ii) The intermediate spline spaces are nested, namely 
span�T

�

⊆ span�T
�+1

.
 (iii) It holds that span T̂

�

= span Ĥ
�

 , for � = 0,… ,N − 1 , 
and span T̂�(Q̂,��) = �̂H

�
(Q̂,�0).

We also note that, in contrast to tensor-product B-splines, 
THB-splines and HB-splines are not locally linearly independ-
ent. In particular, their restriction to a single element can be 
linearly dependent.

Applications of THB-splines for adaptive CAD model 
reconstruction were presented in [33, 138]. The truncation 
approach was also considered to define truncated decoupled 
hierarchical B-splines [161], hierarchies of spaces spanned by 
generating systems [215], (extended) truncated hierarchical 
Catmull-Clark subdivision [209, 210], truncated hierarchical 
box splines [116, 132], and truncated T-splines [211].

4.1.3  Refinement Strategies

We have introduced above the concept of mesh refinement 
in the sense that Q ⪯ Q+ . However, the theoretical analysis 
of adaptive isogeometric methods requires to impose some 
grading conditions on how the local refinement should be per-
formed. To obtain hierarchical mesh configurations suitable 
for the theoretical analysis, we follow the approach originally 

T̂�(Q̂,��) =
{
Trunc�+1(B̂�

�,�
) ∶B̂�

�,�
∈ B̂

�

∩ Ĥ�(Q̂,�0),

� = 0,… ,N − 1
}
.

(36)mot T̂�

�,�
∶= B̂�

�,�
.

Fig. 10  Top: a univariate cubic B-spline of level � (in black) rep-
resented as linear combination of functions of level � + 1 (in gray). 
Bottom: the original B-spline (solid dashed) and its truncated version 
(black solid line) by considering ��+1 = [0.25, 1]
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introduced in [46] for THB-splines and in [164] for HB-
splines, and further elaborated in [36] by introducing a general 
framework for the design and implementation of refinement 
algorithms with (T)HB-splines. The refinement rule for HB-
splines limited to two-level interaction was already presented 
in [105]. These refinement rules control the interaction of 
hierarchical basis functions of different levels and generate 
suitably graded meshes for the considered hierarchical basis. 
Note that the effect of the truncation can be suitably exploited 
to generate less refined meshes for THB-splines than the ones 
obtained for HB-splines, while simultaneously guaranteeing 
limited interaction between hierarchical basis functions of dif-
ferent levels. However, THB-splines additionally require the 
truncation procedure and have a more complicated, although 
smaller, support than HB-splines.

The first notion we need to introduce extends the concept 
of support extension introduced in (10) for the multivariate 
tensor-product case to the hierarchical setting. The multilevel 
support extension of an element Q̂ ∈ Q̂� with respect to level 
k, with 0 ≤ k ≤ � , is defined as

where Sext (Q̂�) is the support extension of (10) corresponding 
to the mesh Q̂

k
.

The concept of admissible hierarchical meshes is based on 
the auxiliary domains 

Sext (�Q, k) ∶= Sext (�Q
�), with �Q� ∈ �Q

k
and �Q ⊆ �Q�,

 for � = 0,… ,N − 1 , with �̂0
H
∶= �̂0 . The domain �̂�

H
 repre-

sents the region of �̂� where all the active basis functions of 
level � − 1 , namely functions in Ĥ�(Q̂,�0) ∩ B̂

�−1
 , are zero. 

A similar property is valid for the domain �̂�

T
 : all the basis 

functions of level � − 1 truncated with respect to level � , i.e., 
functions in T̂

� such that their mother is in B̂
�−1

 , vanish in 
�̂�

T
 . By definition, it holds that �𝜔�

H
⊆ �𝜔�

T
 (see also Fig. 12).

A mesh Q̂ is H-admissible (respectively, T -admissible) 
of class � if it holds that

for all � = �,� + 1,… ,N − 1 . By definition, it holds that 
�𝜔�

H
⊆ �𝜔�

T
 , which immediately yields that any H-admissible 

mesh of class � is also T -admissible of class � . Admissibil-
ity of a mesh guarantees the following proposition, see [36, 
Definition 3].

Proposition 5 If Q̂ is an H-admissible (respectively T
-admissible) mesh of class � , with � ≥ 2 , then, the basis 
functions in Ĥ�(Q̂,�0) (resp. T̂�(Q̂,�0) ) that take non-zero 
values over any element Q̂ ∈ Q̂ can only be of � successive 
levels.

Remark 8 Note that Proposition 5 is not true for HB-splines 
Ĥ�(Q̂,�0) on T -admissible meshes (instead of H-admissible 
meshes), see Fig. 13 for a simple example of this kind.

Remark 9 Note that in [30, 46, 47] a T -admissible mesh 
was denoted strictly admissible. Reference [36] introduced 
H-admissible meshes, which were there called strictly H
-admissible. Similarly, T -admissible meshes were called 
strictly T -admissible there. Instead, the property of Propo-
sition 5 was referred to as admissible in these references. We 
also mention that these references even prove that the basis 
functions that take non-zero values over Q̂ can indeed only 
be of levels lev(Q̂) − � + 1,… , lev(Q̂).

The structure of admissible hierarchical configurations 
guarantees, first, a suitable grading of the mesh, and, sec-
ond, that differences between the levels of neighboring 
elements are always bounded, as stated in the following 
proposition.

(37a)

�𝜔�

H
∶=

⋃{
�Q ∶ �Q ∈ �Q

�

∧ Sext (�Q,� − 1) ⊆ �𝛺�

}
,

(37b)�𝜔�

T
∶=

⋃{
�Q ∶ �Q ∈ �Q

�

∧ Sext (�Q,�) ⊆ �𝛺�

}
,

(38)�𝛺� ⊆ �𝜔�−𝜇+1
H

, (resp. �𝛺� ⊆ �𝜔�−𝜇+1
T

),

Fig. 11  Two bi-quadratic mother B-splines (left) and corresponding 
THB splines (right) defined on a hierarchical mesh with three levels 
(bottom). All internal knots have multiplicity one
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Proposition 6 Let Q̂ be an H-admissible (resp. T -admis-
sible) hierarchical mesh of class � . For any Q̂, Q̂� ∈ Q̂ , let 

� ∶= min{lev(Q̂), lev(Q̂�)} . If there exists �̂ ∈ B̂
�

 , (resp. 
�̂ ∈ B̂

�+1
 ), such that supp(�̂) ∩ Q̂ ≠ � and supp(�̂) ∩ Q̂� ≠ � , 

then it holds that

Proof We proceed by contradiction. Let us assume 
there exist Q̂, Q̂� ∈ Q̂ as in the hypothesis such that 
|lev(Q̂) − lev(Q̂�)| ≥ � . We assume without loss of general-
ity that � = lev(�Q) < lev(�Q�) =∶ �

� and thus

|lev(�Q) − lev(�Q�)| < 𝜇.

Let Q̂′′ be the ancestor of Q̂′ of level �� − � + 1 . By the 
assumptions on �̂  , it clearly satisfies that Q̂ ∩ Sext (Q̂

��, k) ≠ � 
for k = �

� − � (respectively k = �
� − � + 1 ). As a conse-

quence, we get with (39) and (34) that Sext (�Q��, k) ⊈ �𝛺�
�−𝜇+1 . 

We conclude from the definition in (37) that �Q� ⊈ �𝜔�
�−𝜇+1

H
 

(respectively �̂�
�−�+1

T
 ), which contradicts the definition of H

-admissibility, and of T -admissibility, see (38).   ◻

As an immediate consequence, we have an analogous result 
for adjacent elements if the interior multiplicities in all knot 
vectors T�

i
 are less or equal than pi so that all B-splines are at 

least continuous.

Corollary 1 Suppose that the interior multiplicities in all 
knot vectors T�

i
 , i = 1,… d̂ , � = 0,… ,N − 1 , are less or 

equal than pi . Let Q̂ be a hierarchical mesh which is either 
H-admissible or T -admissible of class � . For any Q̂, Q̂� ∈ Q̂ 

with Q̂ ∩ Q̂� ≠ � , it holds that

The refinement algorithms to generate suitable admissible 
meshes recursively refine all the elements in a certain neigh-
borhood of any marked element to produce the refined mesh 
for the next step of the adaptive loop, while simultaneously 
preserving a fixed class of admissibility.

Given an element Q̂ ∈ Q̂ with lev(Q̂) =∶ � , its H-neigh-
borhood and its T -neighborhood with respect to � are defined 
as

(39)� ≤ �
� − �.

|lev(�Q) − lev(�Q�)| < 𝜇.

Fig. 12  Examples of the domains �̂1

H
 (dark gray) and �̂1

T
 (light gray) 

for different degrees and mesh configurations. All internal knots have 
multiplicity one

Fig. 13  A T -admissible mesh for � = (1, 1) and � = 2 with three lev-
els: HB-splines of level 0, 1, 2 are non zero on the element of the fin-
est level in the bottom left corner. THB-splines of only levels 1, 2 are 
non zero on the same element
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r e s p e c t i v e l y ,  w h e n  � − � + 1 ≥ 0  ,  a n d 
NH(Q̂,�) ∶= NT(Q̂,�) ∶= � for � − 𝜇 + 1 < 0 . Recall that 
we consider open elements, whereas the support extension is 
a closed set. The conditions in the two sets are thus equiva-
lent to �Q� ⊆ Sext (�Q,� − 𝜇 + 1) and ∃ Q̂�� ∈ Q̂

�−�+2
 with 

�Q�� ⊆ Sext (�Q,� − 𝜇 + 2), �Q�� ⊆ �Q� , respectively. An example 
of H-neighborhood and the T -neighborhood for � = (2, 2) 
and � = 2 is shown in Fig. 14.

By exploiting the neighborhoods to define the refine-
ment patch associated to each set of a marked element, 
we can generate admissible meshes and encapsulate a 
certain structure naturally connected with the support of 
hierarchical basis functions. Algorithm 1 and 2 present 
the admissible refinement procedure for HB-splines and 
THB-splines, respectively. In both algorithms, given a 
set of marked (active) elements, we iteratively also mark 
the elements in the H-neighborhood (Algorithm 1) or T
-neighborhood (Algorithm 2) of the marked ones until 
these neighborhood sets are empty (and no additional ele-
ments are marked). Then, we refine the hierarchical mesh 
by replacing the set of marked elements with its children. 
Note that the difference between the two algorithms only 
affects the computation of the neighborhood. The output 
of the two algorithms coincides with the output of the 
recursive refinement modules introduced in [46] and [36] 
for T -admissible and H-admissible meshes, respectively. 
H-admissible refinements were also considered in [105, 
Algorithm 3.1] and [164] for � = 2 and � ≥ 2 , respec-
tively. Details for the implementation of the two refine-
ment algorithms can be found in [36]. 

NH(Q̂,�) ∶=
{
Q̂� ∈ Q̂ ∩ Q̂�−�+1 ∶

Q̂� ∩ Sext (Q̂,� − � + 1) ≠ �
}
,

NT(Q̂,�) ∶=
{
Q̂� ∈ Q̂ ∩ Q̂�−�+1 ∶

Q̂� ∩ Sext (Q̂,� − � + 2) ≠ �
}
,

A selection of meshes generated by the two algorithms 
when the finest element in the bottom left corner of the 
current mesh is marked for refinement is shown in Fig. 15 
for � = (1, 1) and � = 2 . Note that at each refinement step, 
the T -neighborhood is always empty and, consequently, 
only the marked element is refined. A more significa-
tive comparison is shown in Fig. 16, where a diagonal 
refinement of the unit square is considered for � = 3 and 
� = (2, 2) , � = (3, 3) , � = (4, 4) after six refinement levels, 
see also [36, Sect. 5.1] for different values of �.

The properties of the refine modules were detailed in 
[46, 49] and [105, 164] for T  - and H-admissible meshes, 
respectively, and subsequently revisited in [36] in a unified 
framework. Proposition 7 guarantees that Algorithm 1 and 
Algorithm 2 generate a refined hierarchical mesh charac-
terized by the same admissibility properties of the input 
mesh, see [36, Proposition 2].

Proposition 7 Let Q̂ , M̂ , and � be the input arguments 
of Algorithm 1 (respectively Algorithm 2), where Q̂ is H
-admissible (respectively T -admissible) of class � . Then, the 
considered algorithm returns a refined hierarchical mesh, 
Q̂+ ⪰ Q̂ , which is H-admissible (respectively T -admissible) 
of class �.

For fixed � and fixed H-admissible or T -admissible 
refinement, we abbreviate ℚ̂ ∶= ������(Q̂0) as the set 

Fig. 14  For the light gray element Q̂ (a), we plot in dark gray its H
-neighborhood (b) and T -neighborhood (c), for � = (2, 2) and � = 2 . 
All internal knots have multiplicity one
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of meshes that can be obtained by iterative application of 
admissible refinement to the initial mesh Q̂0 ∶= Q̂

0
 . In 

fact, ������(Q̂0) coincides with the whole set of admissi-
ble meshes that are obtained by refinement of Q̂0 , see [164, 
Propositions 3.1.8 and 4.2.3] for the H-admissible and T
-admissible meshes, respectively. See also [105, Prop. 5.1] 
for the proof in the case of H-admissible meshes with � = 2.

The following proposition provides a bound on the pos-
sible overrefinement of the algorithm to preserve admissi-
bility. It was proved in [49, Theorem 13] and [164, Theo-
rem 3.1.12] for T  - and H-admissible refinement algorithms, 
respectively. The case � = 2 for HB-splines was also 
addressed in [105, Sect. 5.4]. The original versions for tri-
angular meshes go back to [24] and [200] .

Proposition 8 There exists a uniform constant C > 0 
such that for arbitrary sequences (Qk)k∈ℕ0

 in ℚ with 
Qk+1 = ������(Qk,Mk) for some Mk ⊆ Qk and all k ∈ ℕ0 , 
it holds that

The constant C depends only on the dimension ̂d , the degrees 
pi , and the initial mesh Q̂0.

#Qk − #Q0 ≤ C

k−1∑
j=0

#Mj for all k ∈ ℕ0.

Fig. 15  H-admissible (b) and T -admissible (c) meshes generated 
by Algorithm  1 and 2, respectively, by refining three times the fin-
est element in the bottom left corner of the mesh with � = (1, 1) and 
� = 2 . The initial mesh and a marked element at step 0 are shown as 
well (a). At each step, the dark gray elements appear by refinement of 
the neighborhood of the previous marked element. All internal knots 
have multiplicity one

Fig. 16  Diagonal refinement of the unit square, starting from a uni-
form 4 × 4 mesh, after six refinement steps: H-admissible (left) and 
T -admissible (right) meshes generated by Algorithm 1 and 2, respec-
tively. Results for � = 3 and � = (2, 2) , � = (3, 3) , � = (4, 4) . At each 
refinement step, we mark a strip of 2⌈ p+1

2
⌉ cells centered at the diago-

nal. This naturally guarantees that in each step functions of the finest 
level are activated. All internal knots have multiplicity one
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4.1.4  Hierarchical Quasi‑Interpolation

The THB-spline property of preservation of coefficients 
[115] enables the definition of hierarchical quasi-interpo-
lation operators that do not require additional computations 
with respect to the tensor-product case [198].

For each level � = 0,… ,N − 1 , we consider the quasi-
interpolant into the B-spline space of level �

with I� ∶= {� ∶ B̂�

�,�
∈ B̂

�

} , and each functional �̂�
�,�
(̂v) is 

defined via a local projection onto one element that belongs 
to the support of the corresponding B-spline as described in 
Sect. 2.2.2, see also [45].

By construction of (T)HB-splines, it is easy to see that 
for each (T)HB-spline of level � there exists within its 
support an element in Q̂ of the same level, which is con-
tained in �̂� ⧵ �̂�+1 (i.e., it is in Q̂ ∩ Q̂

�

 ). Its size is obvi-
ously equivalent to the size of the support, in the sense that 
their ratio is uniformly bounded. With this choice of the 
element, the hierarchical quasi-interpolant Ĵ H

�,Q̂
 can then 

be defined as

where I�
Q̂

 is the set of indices corresponding to active basis 
functions of level � , namely

with B̂�

�,�
= mot T̂�

�,�
 . According to [198, Theorem 4], the 

quasi-interpolant is in fact a projector as stated in the follow-
ing proposition.

Proposition 9 For an arbitrary hierarchical (not necessarily 
admissible) mesh Q̂ , it holds that

As a simple corollary and from the definition of the dual 
functionals, the quasi-interpolant is also a local projector. 
Let us define for Q̂ ∈ Q̂

�

 a modified support extension, 
given by

where

(40)Ĵ�,�� ∶ L2(�̂) → �̂
�

�
(��), v̂ ↦

∑
�∈I�

�̂�
�,�
(̂v)B̂�

�,�
,

Ĵ H

�,Q̂
∶ L2(�̂) → �̂

H
�
(Q̂,�0), v̂ ↦

N−1∑
�=0

∑
�∈I�

Q̂

�̂�
�,�
(̂v)T̂�

�,�
,

(41)I�
Q̂
∶=

{
� ∶ B̂�

�,�
∈ B̂

�

∩ Ĥ�(Q̂,�0)
}
,

Ĵ H

�,Q̂
Ŝ = Ŝ for all Ŝ ∈ �̂

H
�
(Q̂,�0).

S∗
ext
(Q̂) ∶=
⋃{

�̂�

�,�
∶ T̂�

�,�
∈ T̂�(Q̂,�0) ∶ �̂�

�,�
∩ Q̂ ≠ �

}
,

identifies the extended support of the THB-spline T̂�

�,�
 , i.e., 

the support when only the first level of truncation has been 
applied. The THB-splines on a T -admissible mesh consid-
ered in the definition of S∗

ext
(Q̂) vary from level 

max(0,� − � + 1) to � , see Remark 9.

Corollary 2 For any Q̂ ∈ Q̂ it holds that

Remark 10 Actually, the locality result is also valid for a set 
of elements smaller than S∗

ext
(Q̂) , where the extended support 

�̂�

�,�
 is replaced by supp(T̂�

�,�
).

The next property can be found in [48, Theorem 4], and 
it implies that the number of active elements contained in 
S∗
ext
(Q̂) is uniformly bounded.

Proposition 10 Let Q̂ be a T -admissible mesh of class � , and 

let Q̂ ∈ Q̂ ∩ Q̂
�

 . Then, the set S∗
ext
(Q̂) is connected. Moreo-

ver, for any Q̂� ∈ Q̂ with �Q� ⊆ S∗
ext
(�Q) it holds that

where the hidden constants depend on the degrees pi , the 
admissibility class � , the dimension d̂ , and the initial mesh 
Q̂0.

The next result is a stability property analogous to 
Proposition 2 in the tensor-product case. The proof can be 
found in [48] for a slightly modified operator onto the space 
�̂H
�
(Q̂,�0) ∩ H1

0
(�̂) , but works the same in our case. On H

-admissible meshes of class � = 2 , a similar result is also 
given in [105].

Proposition 11 Let Q̂ be either an H-admissible or T -admis-
sible mesh of class � . There exists a constant C such that for 
any element Q̂ ∈ Q̂ it holds that

for all v̂ ∈ L2(�̂) . The constant C depends only on the 
dimension d̂ , the degrees pi , and the initial mesh Q̂0.

Finally, with the help of the local projector, we prove a 
result regarding a local characterization for refined spaces. 
We note that this result does not require admissibility. We 
start introducing some notation. Let Q̂ be a hierarchical 
mesh, and Q̂+ another hierarchical mesh obtained by 

�̂�

�,�
∶= supp(trunc�+1B̂�

�,�
)

(Ĵ H

�,Q̂
Ŝ)|

Q̂
= Ŝ|

Q̂
if Ŝ|

S∗ext (Q̂)
∈ �̂

H
�
(Q̂,�0)|

S∗ext (Q̂)
.

|Q̂�| ≃ |S∗
ext
(Q̂)|,

||Ĵ H

�,Q̂
v̂||

L2(Q̂)
≤ C||̂v||

L2(S∗ext (Q̂))
,
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refinement, i.e., Q̂ ⪯ Q̂+ . We recall the definition of the sets 
of indices I�

Q̂
 given by (41), and define analogously the sets 

I�
Q̂+

 for levels � = 0,… ,N+ − 1 . This allows us to introduce 
their splitting in disjoint index sets as follows

for � = 0,… ,N − 1 and � = 0,… ,N+ − 1 , respectively, with

i.e., indices related to functions which are active in both 
meshes, although they may differ by truncation, and

indices of basis functions that are respectively removed or 
added after refinement. We also introduce the set of elements 
in the support of the new functions, the domain they cover, 
and its (closed) complementary, respectively denoted by

Proposition 12 Let Q̂, Q̂+ be two hierarchical meshes with 
Q̂ ⪯ Q̂+ . Moreover, for every � ∈ I

�,fix

Q̂→Q̂+

 , � = 0,… ,N − 1 , 

we choose the element for the coefficients in (40) to be in 
Q̂ ∩ Q̂+ ∩ Q̂

�

 . Then it holds that

Proof Let

and

where B̂�

�,�
= mot T̂�

�,�
 or B̂�

�,�
= mot T̂�

+,�,�
 , be the two hierar-

chical quasi-interpolants expressed in terms of the truncated 
bases. For the operator (46), we choose for every � ∈ I

�,fix

Q̂→Q̂+

 

the same element as for (45). By using the index sets intro-
duced in (42) and (43), we can rewrite the inner sums in (45) 
and (46) respectively as

I�
Q̂
∶= I

�,fix

Q̂→Q̂+

∪ I
�,old

Q̂
, I�

Q̂+

∶= I
�,fix

Q̂→Q̂+

∪ I
�,new

Q̂+

,

(42)I
�,fix

Q̂→Q̂+

∶= I�
Q̂
∩ I�

Q̂+

,

(43)I
�,old

Q̂
∶= I�

Q̂
⧵ I�,fix

Q̂→Q̂+

, I
�,new

Q̂+

∶= I�
Q̂+

⧵ I�,fix
Q̂→Q̂+

,

(44)

�R+ ∶= {�Q ∈ �Q+ ∶ ∃� ∈ {0,… ,N+ − 1} ∃� ∈ I
�,new

�Q+

such that �Q ⊂ supp(�T�

+,�,�
)},

�𝛺�R+
∶=

⋃{
�Q ∶ �Q ∈ �R+

}
, �𝛺�Q ∶= �𝛺 ⧵ �𝛺�R+

.

(ĴH
�,Q̂

Ŝ)|�̂
Q̂

= Ŝ|�̂
Q̂

for all Ŝ ∈ �̂
H
�
(Q̂+,�

0).

(45)Ĵ H

�,Q̂
Ŝ =

N−1∑
�=0

∑
�∈I�

Q̂

�̂�
�,�
(Ŝ)T̂�

�,�
,

(46)Ĵ H

�,Q̂+

Ŝ =

N+−1∑
�=0

∑
�∈I�

Q̂+

�̂�
+,�,�

(Ŝ)T̂�

+,�,�
,

and

For any index � ∈ I
�,f ix

Q̂→Q̂+

 , the definition of �̂
Q̂

 and our 

assumptions for the coefficients of the quasi-interpolants 
show that

For any index � ∈ I
�,old

Q̂
 or � ∈ I

�,new

Q̂
 , we have

Consequently, since Ĵ H

�,Q̂+

 is a projector onto the space 

�̂H
�
(Q̂+,�

0) , we obtain that

This concludes the proof.   ◻

Corollary 3 Let Q̂, Q̂+ be two hierarchical meshes with 
Q̂ ⪯ Q̂+ . Then, their associated spaces of hierarchical 
splines coincide in �̂

Q̂
 , i.e., it holds that

Finally, we remark that although our construction is 
based on [45, 198], hierarchical quasi-interpolation with 
HB-splines and THB-splines was also studied in [142] and 
[35, 197], respectively.

4.1.5  Hierarchical Splines Refined by Functions

An alternative viewpoint for the construction of hierarchical 
splines is to consider a refinement algorithm which does not 
refine the elements, but instead it refines basis functions. 
In the context of adaptive methods for PDEs, this idea can 
be traced back at least to [117, 144], and it was recently 
improved by Sabin in [182] to easily deal with possible 

∑
�∈I�,fix

Q̂→Q̂+

�̂�
�,�
(Ŝ)T̂�

�,�
+

∑
�∈I�,old

Q̂

�̂�
�,�
(Ŝ)T̂�

�,�

∑
�∈I�,fix

Q̂→Q̂+

�̂�
+,�,�

(Ŝ)T̂�

+,�,�
+

∑
�∈I�,new

Q̂+

�̂�
+,�,�

(Ŝ)T̂�

+,�,�
.

T̂�

�,�
|�̂

Q̂

= T̂�

+,�,�
|�̂

Q̂

, ��
�,�
(Ŝ) = ��

+,�,�
(Ŝ).

T̂�

�,�
|�̂

Q̂

= 0, T̂�

+,�,�
|�̂

Q̂

= 0.

(Ĵ H

�,Q̂
Ŝ)|�̂

Q̂

=

N−1∑
�=0

∑
�∈I�,f ix

Q̂→Q̂+

�̂�
�,�
(Ŝ)T̂�

�,�
|�̂

Q̂

=

N−1∑
�=0

∑
�∈I�,f ix

Q̂→Q̂+

�̂�
+,�,�

(Ŝ)T̂�

+,�,�
|�̂

Q̂

= (Ĵ H

�,Q̂+

Ŝ)|�̂
Q̂

= Ŝ|�̂
Q̂

.

�̂
H
�
(Q̂,�0)|�̂

Q̂

= �̂
H
�
(Q̂+,�

0)|�̂
Q̂

.
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linear dependencies of basis functions. The basic idea is to 
replace any marked basis function with their children, that 
are the basis functions of the next level appearing in (35).

In terms of the analysis of adaptive methods, refinement by 
functions is studied in [2]. To avoid possible linear dependencies of 
basis functions, the authors suggest to use what they call absorbing 
generators, which in fact are equivalent to the simplified hierarchi-
cal splines in [43]. In the latter, basis functions are refined (deacti-
vated) according to the elements in their support, but only children 
of refined basis functions can be activated. Their definition can be 
done with a recursive algorithm similar to the one of HB-splines 
in Sect. 4.1.1: 

1. Ĥ
0

s
∶= B̂

0
;

2. for � = 0,… ,N − 2

where Ĥ
�+1

s,A
 is defined analogously to Ĥ

�+1

A
 in the HB-splines 

case, while Ĥ
�+1

s,B
 is given by the sets of children

and the coefficients c�+1
�,�

(�̂) are defined in (35).
In [43] it is proved that, for every � = 0,… ,N − 1 , the set of 

simplified HB-splines is contained in the set of HB-splines, namely 
�H

�

s
⊆ �H

�

 . Indeed, with the unique nonnegative coefficients from ∑
�̂∈Ĥ

� c�̂ �̂ = 1 , it even holds that �H
�

s
=
{
�𝛽 ∈ �H

�

∶ c�𝛽 > 0
}
 . 

Moreover, the first three properties of Proposition 3 are proved for 
these simplified hierarchical splines in the same paper. In [2], the 
authors introduce a refinement algorithm by functions that, analo-
gously to the admissibility property presented above, prevents the 
interaction of coarse and fine functions, and they prove that the 
algorithm has linear complexity with respect to the number of 
marked basis functions, see Proposition 8 for the analogous result 
in an element-wise version.

The definition of a multilevel quasi-interpolant for sim-
plified hierarchical splines is also given in [43]. This quasi-
interpolant generalizes the one introduced by Kraft for 
HB-splines in [142] to general knot vectors. However, the 
quasi-interpolant is not a projector.

Regarding a posteriori error estimation, an estimator based 
on basis functions was introduced in [43], although as far as 
we know only the upper bound of the error has been proved.

4.2  T‑Splines

An alternative for the development of adaptive isogeometric 
methods is the use of T-splines, which were introduced for 

Ĥ
�+1

s
∶= Ĥ

�+1

s,A
∪ Ĥ

�+1

s,B
,

�H
�+1

s,B
∶=

⋃
�𝛽∈�H

�+1
s

supp(�𝛽)⊂𝛺�+1

{
�B�+1
�,�

∈ �B
�+1

∶ c�+1
�,�

(�𝛽) ≠ 0
}
,

CAD and computer graphics by T. Sederberg et al. in [192, 
193]. They were soon recognized as an interesting tool to 
develop adaptivity in IGA [15, 84]. A sound mathematical 
theory for approximation with T-splines was missing at that 
time and in [42] the first counterexample of linearly depend-
ent T-splines was presented along with preliminary results 
about linear independence. The mathematical analysis of 
T-splines made a big step forward with the introduction of 
analysis suitable T-splines in [152] and the equivalent con-
cept (under the mild assumption that facing T-junctions do 
not exist) of dual-compatible T-splines in [18], for which 
it was possible to construct a dual basis, and consequently 
to prove linear independence. While these concepts were 
first restricted to cubic T-splines, they were generalized to 
arbitrary degree in [19], and equivalence was proved under 
the same assumption. The characterization of the space and 
some other important properties were analyzed in [38, 150]. 
These works are mostly restricted to the two-dimensional 
case, although the definition of dual-compatible T-splines 
extends to three-dimensional one.

Algorithms for automatic refinement with T-splines were 
first studied in [192] and for analysis suitable T-splines in 
[189]. Refinement algorithms that guarantee the dual com-
patibility property by alternating the direction of refinement 
were introduced in [165] and were later generalized to the 
trivariate case (with odd degree) in [163, 164]. The advan-
tage of these refinement algorithms over previous ones is 
that they guarantee linear complexity and also shape-regu-
larity of the mesh avoiding the presence of undesired ani-
sotropic elements.

In this section we present the definition of T-splines, 
focusing on dual-compatible T-splines and describe the con-
cept of admissible T-meshes and the refinement algorithms 
introduced in [163–165]. For the presentation we mainly 
follow the survey [20], which collects results from previous 
papers, and [163]. We will restrict ourselves to the case of 
T-splines of odd degree, because the analysis of trivariate 
T-splines in [163] has not been extended to arbitrary degree 
so far.

4.2.1  The Basic Idea of T‑Splines

T-splines are a generalization of B-splines, where the func-
tions are defined from a mesh of rectangular elements with 
T-junctions, the so-called T-mesh, see Fig. 17. The lines of 
the T-mesh play a similar role as the knot indices in the 
tensor-product case and a knot value is associated to each of 
these lines. A T-spline function is then associated to each 
vertex of the T-mesh (or to each element if the degree is 
even), in what we call the anchors. Each of these functions 
is defined analogously to a B-spline, and the local knot vec-
tor in the j-th direction is obtained by tracing a line from the 
anchor in this direction, and considering the intersections of 
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this line with the T-mesh. For example, in Fig. 17 with 
degree � = (5, 3) , the function anchored at the node with 
indices (9, 8) has local knot vectors 

(
1

16
,
1

8
,
1

4
,
3

8
,
1

2
,
9

16
,
5

8

)
 

and 
(
5

16
,
3

8
,
1

2
,
5

8
,
3

4

)
.

We notice that, due to knot repetitions in the open knot 
vectors, the first p knot spans in each direction have zero 
length. These elements with zero measure are colored in 
gray in Fig. 17, and the white region will be called the index/
parametric region. Moreover, we recall that for B-splines, 
a knot vector of n + p + 1 knots defines n functions. To take 
this into account, the anchors are limited to what is called 
the region of active anchors, given by the white and light 
gray elements in Fig. 17.

Although the idea of T-splines is not complex, the rig-
orous definition and analysis of their properties require 
some involved notation, which we present in the following 
subsections.

4.2.2  T‑Meshes Refined by Bisection

For simplicity, we will limit ourselves to T-meshes where the 
elements are refined by bisection. We also restrict ourselves 
to dimension d̂ = 2, 3 , as this is the state of the art, although 
some advances for arbitrary dimension were introduced in 
[164]. Moreover, as we said above we also limit the pres-
entation to odd polynomial degrees. For the definition and 
properties of even and mixed degree T-splines, we refer to 
[19, 165], see also Remark 11 below.

For the ease of reading, we repeat here some of the defini-
tions of the tensor-product case. Let us introduce for 
1 ≤ j ≤ d̂ , an odd degree pj ≥ 3 , the number of univariate 
functions nj , the set of indices I0

j
= {1, 2,… , nj + pj + 1} , 

and the open knot vector T0
j
 = (tj,1,… , tj,nj+pj+1) = (tj,i)i∈I0

j
 , 

with tj,pj+1 = 0 and tj,nj+1 = 1 . We also assume that internal 
knots are not repeated, that is

Again, we abbreviate � ∶= (p1,… , p
d̂
) as well as 

�0 ∶= (T0
1
,… , T0

d̂
).

The starting point is the Cartesian grid

which is a uniform partition of the index domain

We also introduce the index/parametric domain

In Fig. 17, �̌�ip is formed by white elements, while �̌�ind 
is given by all the elements of the mesh. We also define 
�̂ ∶= (0, 1)d̂.

For any integer k > 0 , we define the set of rational indices

With this, we can define for 1 ≤ j ≤ d̂ and for k ≥ 0 , the 
ordered knot vectors at stage k

in a recursive way: starting from T0
j
 , for k > 0 and for any 

new index r ∈ Ik
j
⧵ Ik−1

j
 , we define

which is well defined because r − 1

2k
, r +

1

2k
∈ Ik−1

j
 . Note that 

we are not inserting new knots between the repeated knots 
of the open knot vector.

We also define, for an arbitrary hyperrectangular ele-
ment in the index domain Q̌ = 𝛱

�d
i=1

(ai, bi) , the bisection 
operator in the j-th direction (compare with [163, Defini-
tion 2.5] and [62, Sect. 4.1])

tj,i < tj,i+1 for i = pj + 1,… , nj.

Q̌0 ∶=
{
(l1, l1 + 1) ×… × (l�d, l�d + 1) ∶

1 ≤ lj ≤ nj + pj for 1 ≤ j ≤ �d
}
,

�̌�ind ∶= 𝛱
�d
j=1

(1, nj + pj + 1).

�̌�ip ∶= 𝛱
�d
j=1

(pj + 1, nj + 1).

Ik
j
∶= I0

j
∪

{
i + r ∶ i ∈ I0

j
, pj + 1 ≤ i ≤ nj,

r ∈
{

1

2k
,… ,

2k − 1

2k

}}
.

Tk
j
∶= (tj,r)r∈Ik

j

tj,r ∶=
1

2

(
t
j,r−

1

2k
+ t

j,r+
1

2k

)
,

Fig. 17  A two-dimensional T-mesh with degree (p1, p2) = (5, 3) . For 
the three (blue) nodes � ∈ {(6, 4), (9, 8), (15, 13)} , their corresponding 
local knot vectors are indicated by red crosses. In the axes we indi-
cate the indices in I0

j
 and, between parentheses, the value of the cor-

responding knots. (Color figure online)



 A. Buffa et al.

1 3

4508

where

That is, the element is bisected in the j-th direction only if 
the corresponding knots in this direction are different, oth-
erwise it is left unchanged. In particular, due to the pres-
ence of the open knot vector, the first and last pj “columns” 
of elements in the j-th direction are never bisected in this 
direction.

Setting the level of the elements of the starting mesh 
Q̌ ∈ Q̌0 equal to zero, lev(Q̌) ∶= 0 , we associate to each 
level � ∈ ℕ0 the direction of bisection

and we also set the level of the elements obtained by 
bisection

With this choice, the elements will be split into two in alter-
nating directions determined by their level, see the examples 
in Figs. 18 and 19. Note that if an element Q̌ is unchanged 
via bisection because its indices refer to repeated knots, see 
(47), we still implicitly distinguish Q̌ and Q̌� ∶= ������(Q̌) 
by equipping the latter with a different level.

A T-mesh in the index domain, or simply index T-mesh, is 
defined as Q̌ ∶= Q̌N by successively applying bisection for 
k = 0,… ,N − 1 , in the form

with Q̌k ∈ Q̌k . The index T-mesh defines a partition of the 
index domain �̌�ind into disjoint hyperrectangles. Noting that 
bisection is applied alternating the direction of refinement, 
it is easy to see that any element Q̌ ∈ Q̌ can be written as 
� d̂

j=1
(aj, bj) , with aj, bj ∈ I

kj(Q̌)

j
 and

Thus, we can define its parametric image as

where tj,aj , tj,bj ∈ T
kj(Q̌)

j
 . With this definition, from the index 

T-mesh Q̌ we can infer a T-mesh in the parametric domain, 
or parametric T-mesh, which is given by the parametric 

(47)������j(Q̌) ∶=

{
{Q̌1

j
, Q̌2

j
} if tj,aj ≠ tj,bj ,

{Q̌} if tj,aj = tj,bj ,

Q̌1
j
= 𝛱 j−1

i=1
(ai, bi) ×

(
aj,

aj + bj

2

)
×𝛱

�d
i=j+1

(ai, bi),

Q̌2
j
= 𝛱 j−1

i=1
(ai, bi) ×

(aj + bj

2
, bj

)
×𝛱

�d
i=j+1

(ai, bi).

dir(�) ∶= (� mod d̂ ) + 1,

lev(Q̌�) ∶= lev(Q̌) + 1, Q̌� ∈ ������dir(lev(Q̌))(Q̌).

Q̌k+1 ∶= (Q̌k ⧵ {Q̌k}) ∪ ������dir(lev(Q̌k))
(Q̌k),

kj(Q̌) ∶= ⌊(lev(Q̌) + �d − j)∕�d⌋.

�����(Q̌) ∶= 𝛱
�d
j=1

(tj,aj , tj,bj ),

images with non-zero measure of the elements in the index 
T-mesh

We plot in Fig. 20a the parametric T-mesh associated to 
the index T-mesh of Fig. 17. Notice that any element in the 
parametric T-mesh has a corresponding element in the index 
T-mesh, while the opposite is not true. Therefore, we can 
define for any Q̂ ∈ Q̂ its index preimage

and we can set the level of Q̂ as the level of its index preim-
age, lev(Q̂) ∶= lev(�����(Q̂)) . Note that it always holds that 
�����(�Q) ⊂ �̌�ip.

(48)�Q ∶= {�Q = �����(Q̌) ∶ Q̌ ∈ Q̌ and |�Q| ≠ 0}.

�����(�Q) ∶= Q̌, with �Q = �����(Q̌),

Fig. 18  Example of bisection for d̂ = 2 . The initial element of level 
0 is bisected in the x-direction ( dir(0) = 1 ) to obtain two elements 
of level 1. These are then bisected in the y-direction ( dir(1) = 2 ) to 
obtain the four elements of level 2

Fig. 19  Example of bisection for d̂ = 3 . The initial element of level 
0 is bisected in the x-direction ( dir(0) = 1 ) to obtain two elements 
of level 1. These are then bisected in the y-direction ( dir(1) = 2 ) to 
obtain four elements of level 2, which are bisected in the z-direction 
( dir(2) = 3 ) to get eight elements of level 3
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4.2.3  T‑Spline Blending Functions

After defining the T-mesh, it remains to define the T-spline 
blending functions. We start by defining the region of active 
anchors, which is usually called the active region, as

and the set of anchors, sometimes also called nodes,

In Fig. 17 the region of active anchors is given by the white 
and light gray elements.

Remark 11 We are restricting ourselves to the case of odd 
degree. For even degree, the anchors are associated to ele-
ments, while for mixed degree they are associated to either 
vertical or horizontal edges in the two-dimensional case, 
and to edges (two odd, one even degree) or faces (one odd, 
two even degrees) in the three-dimensional case, see, e.g., 
[20] for details.

For each element Q̌ = 𝛱
�d
i=1

(ai, bi) ∈ Q̌ , we define its skel-

eton in the j-th direction, for j = 1,… , d̂ , as

and the skeleton of a T-mesh in the j-th direction as

Then, to each anchor � = (z1,… , z�d) ∈ A�(Q̌,�0) and to 
each direction j ∈ {1,… , d̂} , we associate the correspond-
ing ordered global index vector

�̌�act ∶= 𝛱
�d
j=1

(⌈pj∕2⌉ + 1, nj + pj + 1 − ⌈pj∕2⌉),

A�(Q̌,�0) ∶= {� ∈ �̌�act ∶ � vertex of some Q̌ ∈ Q̌}.

����j(Q̌) ∶= 𝛱 j−1

i=1
[ai, bi] × {aj, bj} ×𝛱

�d
i=j+1

[ai, bi],

����j(Q̌) ∶=
⋃
Q̌∈Q̌

����j(Q̌).

I
gl

j
(�, Q̌) ∶= {s ∈ [1, nj + pj + 1] ∶

(z1,… , zj−1, s, zj+1,… , z�d) ∈ ����j(Q̌)},

and the local index vector Iloc
j
(�, Q̌) ⊂ ℝ

pj+2 being the vector 

of pj + 2 consecutive indices of Igl
j
(�, Q̌) having zj as its 

middle entry, in the ((pj + 3)∕2)-th position. This is equiva-
lent to trace a line from the anchor parallel to the j-th axis, 
and considering in each direction the first ⌊(pj + 2)∕2⌋ inter-
sections with the skeleton of the T-mesh as in Fig. 17. Once 
we have defined the local index vector, we define the local 
knot vector in the j-th direction as

and we remark that there exists an integer k such that Tj(�, Q̌) 
is a subvector of Tk

j
 , not necessarily with consecutive indi-

ces. Recalling the notation from (3), we can now define the 
T-spline blending function associated to each anchor as

Note that, in general, the restriction of a T-spline function to 
an element of Q̂ is not a polynomial.

Following [20, Def. 7.5], we define the Bézier mesh as the 
collection of maximal open sets �QB ⊂ �𝛺 such that each func-
tion B̂�,� restricted to Q̂B is a polynomial of degree � . Note that 
the Bézier mesh does in general not coincide with the para-
metric T-mesh Q̂ , as the restriction of T-splines to elements in 
Q̂ are in general only piecewise polynomials. The elements of 
the Bézier mesh are called Bézier elements. We note that, in 
the two-dimensional case, the Bézier mesh can be obtained by 
applying suitable extensions to the elements of the paramet-
ric T-mesh, see an example in Fig. 20b, and [193, Sect. 5.2] 
as well as [20, Sect 7.3] for more details. Although a similar 
construction is not available in the three-dimensional case, the 
Bézier mesh can be obtained from the local knot vectors of 
all the blending functions or, in the case of dual-compatible 
T-splines (see below), by using the perturbed regions defined 
in [163, Sect. 5]. Note that the Bézier mesh is always finer than 
the parametric T-mesh.

Finally, we define the T-spline space as the space spanned 
by the T-spline blending functions,

We notice that, in general, it is not guaranteed that the 
T-spline blending functions are linearly independent [42]. 
For this reason they are called blending functions and not 
basis functions. This gives the motivation to introduce dual-
compatible T-splines.

4.2.4  Dual‑Compatible T‑Splines

In order to obtain linearly independent T-spline blending func-
tions, and to define a quasi-interpolant, we rely on the concept 

Tj(�, Q̌) ∶= (tj,r)r∈Iloc
j
(�,Q̌),

(49)�B�,�(�) ∶= �B[T1(�, Q̌)](t1)… �B[T�d(�, Q̌)](t�d).

��T
�
(Q̌,�0) ∶= span{�B�,� ∶ � ∈ A�(Q̌,�0)}.

Fig. 20  Parametric T-mesh and corresponding Bézier mesh, for the 
index T-mesh in Fig. 17 and degree � = (5, 3)
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of dual-compatibility as presented in [20]. We start with the 
definition of overlap, see [20, Def. 7.1] and [163, Proposi-
tion 6.1]. We remark that this definition is slightly different 
from the one in [18, 19], which uses the local index vectors 
instead of the local knot vectors.

We say that two local knot vectors T � = (t�
1
,… , t�

p+2
) and 

T �� = (t��
1
,… , t��

p+2
) overlap if they are both sub-vectors, with 

consecutive indices, of the same knot vector. That is, there 
exists a knot vector T = (t1,… , ts) and two integers s′, s′′ such 
that

Furthermore, we say that the index T-mesh Q̌ , along with 
the knot vectors Tk

j
 , is a dual-compatible T-mesh if for every 

��, ��� ∈ A�(Q̌,�0) with �′ ≠ �′′ , there exists a direction j 
such that the local knot vectors Tj(��, Q̌) and Tj(���, Q̌) are 
different and overlap, cf. [20, Def. 7.2]. We say that it is a 
strongly dual-compatible T-mesh  i f  for every 
��, ��� ∈ A�(Q̌,�0) with �′ ≠ �′′ , their local knot vectors 

overlap in d̂ − 1 directions, cf. [163, Def. 6.4]. For d̂ = 2 
both conditions are equivalent, while for d̂ = 3 any strongly 
dual-compatible T-mesh is also dual-compatible, see the 
remark in [163, Sect. 6].

Dual-compatible T-meshes take their name from the 
fact that they allow the construction of a dual basis. Using 
the notation introduced in (8), we define, for each anchor 
� ∈ A�(Q̌,�0) , the dual functional

It can be shown that the dual functionals (50) form a dual 
basis, see [20, Propoposition 7.3]. The dual basis allows to 
prove that dual-compatible T-splines are a partition of unity, 
linearly independent [20, Proposition 7.4], and also locally 
linearly independent [147, Theorem 3.2].

Proposition 13 Let Q̌ be dual-compatible. Then, the func-
tions {�B�,� ∶ � ∈ A�(Q̌,�0)} are linearly independent, and 
also locally linearly independent, i.e., they are linearly inde-
pendent on any open set O ⊂ �𝛺 . Moreover, if the constant 
functions are contained in ��T

�
(Q̌,�0) , these functions form 

a partition of unity.

The dual basis also allows to prove the following result, 
closely related to local linear independence, see [20, Proposi-
tion 7.6] and [147, Theorem 4.1].

Lemma 1 Let Q̌ be a dual-compatible T-mesh. Then, for any 
Bézier element Q̂B there are at most (p1 + 1)… (p

d̂
+ 1) basis 

functions that do not vanish in Q̂B.

t�
i
= ti+s� , t��

i
= ti+s�� , for all i = 1,… , p + 2.

(50)�𝜆�,� ∶= �𝜆dB[T1(�, Q̌)]⊗…⊗ �𝜆dB[T�d(�, Q̌)].

Moreover, from the dual basis we can define the 
quasi-interpolant

According to [20, Proposition  7.3], this operator is a 
projector.

Proposition 14 Let Q̌ be a dual-compatible T-mesh. Then, 
the functionals (50) form a dual basis, and the operator (51) 
is a projector in the sense that

For each element Q̂ of the parametric T-mesh Q̂ , we define 
the set of anchors such that their corresponding basis functions 
do not vanish in Q̂ , as

Analogously to the definition in (4) for the B-spline case, 
we define the support extension as the union of supports of 
basis functions that do not vanish on Q̂ i.e.,

For a Bézier element Q̂B , we define analogously A(Q̂B) and 
Sext (Q̂B) , by simply replacing Q̂ by Q̂B in the definitions.

Then, from the definition of the dual functionals, as an 
immediate corollary of Proposition 14, the quasi-interpolant 
is a local projector.

Corollary 4 Let Q̌ be a dual-compatible T-mesh, and Q̂ its 
associated parametric T-mesh. For any Q̂ ∈ Q̂ , it holds that

Moreover, we have the following stability result, which 
is proved in [20, Proposition 7.7].

Proposition 15 Let Q̌ be a dual-compatible T-mesh, and let 
Q̂ be the corresponding T-mesh in the parametric domain. 
Then, for all Bézier element Q̂B and all v̂ ∈ L2(�̂) , we have 
that

where C > 0 depends only on the dimension d̂ , the degrees 
pj , and the coarsest knot vectors T0

j
.

Now, the main issue is to define a refinement strategy that 
delivers dual-compatible T-splines and such that the size of 

(51)
�J T

�,Q̌
∶ L2( �𝛺) → ��T

�
(Q̌,�0), �v ↦

∑
�∈A�(Q̌,�0)

�𝜆�,�(�v)�B�,�.

�J T

�,Q̌
�v = �v for all �v ∈ ��T

�
(Q̌,�0).

A(�Q) ∶= {� ∈ A�(Q̌,�0) ∶ supp(�B�,�) ∩ �Q ≠ �}.

Sext (Q̂) ∶=
⋃

�∈A(Q̂)

supp(B̂�,�),

(�J T

�,Q̌
�v)|�Q = �v|�Q if �v|

Sext (�Q)
∈ ��T

�
(Q̌,�0)|

Sext (�Q)
.

‖�J T

�,Q̌
�v‖

L2(�QB)
≤ C‖�v‖

L2(Sext (�QB))
,
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any element Q̂ and any Bézier element Q̂B is comparable to 
the size of its support extension.

4.2.5  Refinement Strategy: Admissible T‑Meshes

We now introduce the refinement algorithm that derives 
from [163, 165]. As we mentioned above, the reason to use 
this algorithm instead of [189] is that it guarantees linear 
complexity, and it also preserves the shape-regularity of the 
mesh. To proceed, we need to define some concepts related 
to the index T-mesh.

For any element Q̌ in the index T-mesh with Q̌ ⊆ �̌�ip , 
we denote its middle point as �Q̌ , and define the set of its 
generalized neighbors

where the vector ��(k) is defined differently for the two-
dimensional case [165, Def. 2.4]

and for the three-dimensional case [163, Def. 2.4]

see some examples for uniform meshes in Fig. 21 and for a 
non-uniform mesh in Fig. 22.

Remark 12 In the two-dimensional case, for a uniform 
even-leveled mesh, Ngen(Q̌) is obtained by extending Q̌ by 
(p − 1)∕2 elements to the left and right, and by (p + 1)∕2 
elements above and below2, while for a uniform odd-leveled 
mesh, we have to extend by (p + 1)∕2 elements to the left and 
right, and by (p − 1)∕2 elements above and below, which cor-
responds to the gray area in Fig. 21. For non-uniform meshes, 
Ngen(Q̌) is formed by elements which intersect the same area. 
Similar considerations apply in the three-dimensional case.

We also define the set of neighbors

Ngen(Q̌) ∶= {Q̌� ∈ Q̌ ∶ Q̌� ⊆ �̌�ip ∧ ∃� = (x1,… , x�d) ∈ Q̌�

with |xj − (�Q̌)j| < (��(lev(Q̌)))j, for j = 1,… ,�d},

��(k) ∶=

�
1

2k∕2
(⌊ p1

2
⌋ + 1

2
, ⌈ p2

2
⌉ + 1

2
) k = 0 mod 2,

1

2(k+1)∕2
(⌈ p1

2
⌉ + 1

2
, 2⌊ p2

2
⌋ + 1) k = 1 mod 2,

��(k) ∶=

⎧⎪⎨⎪⎩

1

2k∕3
(p1 +

3

2
, p2 +

3

2
, p3 +

3

2
) k = 0 mod 3,

1

2(k−1)∕3
(
p1+3∕2

2
, p2 +

3

2
, p3 +

3

2
) k = 1 mod 3,

1

2(k−2)∕3
(
p1+3∕2

2
,
p2+3∕2

2
, p3 +

3

2
) k = 2 mod 3,

N(Q̌) ∶= {Q̌� ∈ Ngen(Q̌) ∶ lev(Q̌�) < lev(Q̌)}.

Fig. 21  Visualization of the generalized neighborhood on uniform 
leveled meshes, for simplicity represented in �̌�ip , and for different 
degrees. For the element Q̌ in dark gray, its generalized neighborhood 
Ngen(Q̌) is formed by all the gray elements

Fig. 22  Visualization of the generalized neighborhood for degree 
� = (5, 3) in �̂ . For the element Q̂ in dark gray, its generalized neigh-
borhood Ngen(Q̂) is formed by all the gray elements, while the neigh-
borhood N(Q̂) is constituted only by the light gray elements

2 This is respectively the length of edge and face extensions of 
T-junctions, see [152] or [20, Sect. 7.3].
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With a slight abuse of notation, we define the set of (general-
ized) neighbors for a parametric element Q̂ ∈ Q̂ as

An example of these definitions is given in Fig. 22.

Remark 13 As an immediate consequence of these defini-
tions, and because we assume that pj ≥ 2 for j = 1,… , d̂ , 
for any Q̂ ∈ Q̂ it holds that

Remark 14 In the refinement algorithm, the neighbors will 
play the same role as the H-neighborhood and T -neighbor-
hood of Sect. 4.1.3 for (T)HB-splines.

For any point � = (x1,… , x�d) ∈ �̌�ind we define its projec-
tion into the index/parametric domain as �̃ ∶= (̃x1,… , x̃

d̂
) , 

where x̃j = min(max(xj, pj + 1), nj + 1) . Then, for any ele-

ment Q̌ ∈ Q̌, Q̌ ⊆ �̌�ip , we define its boundary prolongation 
in the index T-mesh as the set of elements

and for any set of elements M̌ ⊆ Q̌ we will also denote

Several examples of boundary prolongations are shown in 
Fig. 23a.

With this notation, we are now in the position to introduce 
our refinement algorithm, which is based on [165, Algo-
rithm 2.9] and [163, Algorithm 2.9], with the difference of 

Ngen(Q̂) ∶= {Q̂� ∈ Q̂ ∶ �����(Q̂�) ∈ Ngen(�����(Q̂))},

N(Q̂) ∶= {Q̂� ∈ Q̂ ∶ �����(Q̂�) ∈ N(�����(Q̂))}.

{�Q� ∈ �Q ∶ �Q ∩ �Q� ≠ �} ⊆ Ngen(�Q).

����(Q̌)∶ = {Q̌� ∈ Q̌ ∶ ��Q̌� ∈ 𝜕Q̌},

����(M̌) ∶=
⋃
Q̌∈M̌

����(Q̌).

the bisection of elements outside �̌�ip , see Remark 15 below. 
First, given an index T-mesh Q̌ and Q̌ ∈ Q̌ , we say that the 
bisection of Q̌ is admissible if N(Q̌) = � , cf. [165, Def. 2.11] 
and [163, Def. 3.1].

Algorithm 3 provides a refinement algorithm for index 
T-meshes such that the bisections in the last step can be 
performed in such an order that each one is admissible, 
see [165, Proposition 2.13] and [163, Theorem 3.3]. Given 
an index T-mesh Q̌ and a set of elements M̌ to be refined 
with 

⋃
M̌ ⊆ �̌�ip , we apply Algorithm 3 to obtain a refined 

index T-mesh, which we denote by ������_�����(Q̌,M̌) . 
The algorithm recursively marks all the neighbors of 
marked elements that are contained in �̌�ip . To avoid 
the appearance of undesired T-junctions outside �̌�ip , 
the boundary prolongation of marked elements is also 
marked, which is equivalent to extend any T-junction from 
the boundary of the index/parametric domain �̌�ip to the 
boundary of the index domain �̌�ind . An example is shown 
in Fig. 23b. In this example, the neighbors of marked ele-
ments are marked, resulting in the refinement of other ele-
ments in the white region �̌�ip . Then, also boundary pro-
longations of marked elements are marked, resulting in 
the bisection of elements in the gray region outside �̌�ip . 
Some gray elements are marked but not bisected. Their 
level has been implicitly increased by one, and they might 
be bisected the next time they are marked. 

Algorithm 3 refines the index T-mesh, but in prac-
tice the marked elements will be given in the parametric 
T-mesh. For this reason we need to introduce a second 
algorithm. Given a parametric T-mesh Q̂ , its correspond-
ing index T-mesh Q̌ , and a list of marked elements 
�M ⊆ �Q , we apply Algorithm 4 to obtain a refined para-
metric T-mesh, which we denote by ������(Q̂,M̂) . Note 
that Algorithm 4 passes the marked elements to their index 
preimage, then it applies Algorithm 3 to obtain the refined 
index T-mesh, and finally returns its parametric image. 

Fig. 23  The left figure shows the boundary prolongations of the dark 
gray elements, which are given by the gray elements. The right figure 
shows the result of applying Algorithm 3, after marking the dark gray 
elements on the left figure. The degree is p1 = p2 = 3 . Light gray ele-
ments are outside �̌�ip



Mathematical Foundations of Adaptive Isogeometric Analysis  

1 3

4513

An example of the application of the refinement algo-
rithm is shown in Fig. 24, starting from a uniform para-
metric T-mesh of 4 × 4 elements, and marking always the 
element in the bottom left corner.

We define ������(Q̂) as the set of all meshes that can 
be obtained via iterative application of ������ to Q̂ . More-
over, denoting by Q̂0 the parametric image of Q̌0 , which is 
obtained as in (48), we define the set of admissible para-
metric T-meshes

Remark 15 Unfortunately, the admissible refinement in [163, 
165] does not take care of repeated knots that appear due to open 

ℚ̂ ∶= ������(Q̂0).

knot vectors. To our knowledge, two different remedies have 
been proposed: in [107], the refinement is performed directly on 
the parametric domain, and the (index) T-mesh is then extended 
taking into account the repetitions due to the open knot vector; 
in [62], refinement is performed on the (index) T-mesh, but the 
algorithm does not bisect intervals with zero length. We have 
followed the same approach as in [107] with a notation simi-
lar to [62], because we believe this notation may be useful for 
future research on adaptivity with smoothness control, which 
requires repeated internal knots. Our refinement algorithm pro-
vides exactly the same output as [107, Algorithm 2.1]. In fact, 
Algorithm 4 generates the same parametric T-meshes as [165, 
Algorithm 2.9] for d̂ = 2 and [163, Algorithm 2.9] for d̂ = 3.

Remark 16 The combination of Algorithm 3 and 4 guaran-
tees that to each parametric T-mesh corresponds a unique 
index T-mesh, which is the same as in [107]. It is worth not-
ing that this is not true in general, and if we do not apply the 
refinement algorithms above, the same parametric T-mesh 
could be generated by two different index T-meshes due to 
the bisection of elements outside �̌�ip . Note that a change in 
the index T-meshes implies a change in the basis functions, 
and consequently in the discrete space.

In the following, we present the most important theo-
retical results that derive from the refinement algorithm 
and that were mainly proved in [163–165]. The first result 
states dual-compatibility of admissible meshes. It follows 
from [165, Theorem 3.6] for d̂ = 2 and from [163, Theo-
rem 6.6] for d̂ = 3 , see also Remark 15.

Proposition 16 Let Q̂ ∈ ℚ̂ , and let Q̌ be its corresponding 
admissible index T-mesh. Then, Q̌ is strongly dual-compat-
ible, and thus it is dual-compatible.

The next result states nestedness of the spaces obtained 
by the refinement algorithm, which is highly non-trivial 
and not necessarily satisfied by general T-splines. It is 
proved in [165, Corollary 5.8] for d̂ = 2 and in [164] for 
d̂ = 3 . Note that ��T

�
(Q̌0,�

0) coincides with the usual spline 
space �̂�(�

0) and the next result in conjunction with Prop-
osition 13 thus implies that the T-spline blending functions 
form a partition of unity.

Proposition 17 Let Q̂ ∈ ℚ̂ and Q̂+ ∈ ������(Q̂) , and let Q̌ 
and Q̌+ be their associated index T-meshes. Then,

The next proposition provides local quasi-uniformity 
of admissible meshes. Making use of the equivalence of 
the algorithms mentioned in Remark 15, the assertion 

��T
�
(Q̌,�0) ⊆ ��T

�
(Q̌+,T

0).

Fig. 24  Application of Algorithm  4 starting from a 4 × 4 parametric 
T-mesh, with degree � = (5, 3) , and marking always the element in the 
bottom left corner. The plot shows the refined parametric T-meshes 
after 1, 2, 3, and 6 refinement steps. The marked element Q̂ is high-
lighted in dark gray, while all the elements in gray belong to its gen-
eralized neighborhood Ngen(Q̂) , and the elements in light gray belong 
to its neighborhood N(Q̂) , and therefore are marked by the refinement 
algorithm. Note that also the neighbors of these elements, which we 
do not highlight, are marked for refinement by the algorithm



 A. Buffa et al.

1 3

4514

follows from [165, Lemma 2.14] for d̂ = 2 and from [163, 
Lemma 3.5] for d̂ = 3 , where the same result was proved 
for the index T-mesh.

Proposition 18 Let Q̂ ∈ ℚ̂ . For any Q̂ ∈ Q̂ , it holds that

The following result is new. It relates Bézier elements 
to the elements of the considered admissible T-mesh. 
The proof is rather technical and is thus postponed to 
Sect. 4.2.8. Without providing an explicit bound, the fact 
that the number of Bézier elements on an element is uni-
formly bounded and that the Bézier elements are of com-
parable size also follows easily from [107, Lemma 2.5].

Lemma 2 Let Q̂ ∈ ℚ̂ and Q̂ ∈ Q̂ . Then, Q̂ consists either of 
one Bézier element equal to Q̂ , or two Bézier elements of 
measure |Q̂|∕2.

As an immediate consequence of the previous lemma, 
we obtain a result analogous to Proposition 15 for ele-
ments in the parametric T-mesh.

Proposition 19 Let Q̂ ∈ ℚ̂ and Q̂ ∈ Q̂ . Then, for all 
v̂ ∈ L2(�̂) , we have that

where C > 0 depends only on the dimension d̂ , the degrees 
pj , and the coarsest knot vectors T0

j
.

The next proposition bounds the number as well as the 
support of T-spline basis functions that live on a given ele-
ment. The first assertion is an immediate consequence of 
Lemma 1 and Lemma 2. The second assertion is already 
proved in [107, Lemma 2.5]. A similar result is also given 
in [62, Proposition 4.9] for d̂ = 2.

Proposition 20 Let Q̂ ∈ ℚ̂ and Q̌ its correspond-
ing index T-mesh. For any Q̂ ∈ Q̂ , there exist at most 
2(p1 + 1)… (p

d̂
+ 1) anchors � ∈ A�(Q̌,�0) such that 

Q̂ ∩ supp(B̂�,�) ≠ � . Moreover, there exists q ∈ ℕ depending 
only on the dimension d̂ and the degrees pj such that there 

exists �S ⊆ �Q with Sext (�Q) ⊆
⋃�

�Q� ∶ �Q� ∈ �S
�
 , #Ŝ ≤ q , and 

⋃�
Q̂� ∶ Q̂� ∈ Ŝ

�
 is connected.

We conclude this section with a proposition from [165, 
Sect. 6] for d = 2 and from [163, Sect. 7] for d = 3 , respec-
tively, which states that the possible overrefinement of 

|lev(Q̂) − lev(Q̂�)| ≤ 1 for all Q̂� ∈ Ngen(Q̂).

‖�J T

�,Q̌
�v‖

L2(�Q) ≤ C‖�v‖
L2(Sext (�Q))

,

Algorithm 4 to preserve admissibility is bounded up to some 
uniform constant by the number of marked elements. Indeed, 
these references even provide explicit upper bounds for the 
constant along with numerical experiments on the quality 
of these bounds.

Proposition 21 There exists a uniform constant C > 0 
such that for arbitrary sequences (Qk)k∈ℕ0

 in ℚ with 
Qk+1 = ������(Qk,Mk) for some Mk ⊆ Qk and all k ∈ ℕ0 , 
it holds that

The constant C depends only on the dimension ̂d , the degrees 
pj , and the coarsest knot vectors T0

j
.

4.2.6  The Role of the Bézier Mesh

The results of the previous section were presented consid-
ering the elements of the parametric T-mesh. However, the 
implementation of isogeometric methods with T-splines is 
usually based on the Bézier mesh. Indeed, numerical integra-
tion is usually performed on Bézier elements, since they are 
the maximal sets where the restriction of the T-spline func-
tions are polynomials. Moreover, the evaluation of T-spline 
functions on the local Bézier element can be made through 
Bézier extraction [188], a local change of basis to represent 
T-splines as linear combinations of Bernstein polynomials. 
The Bézier mesh and the matrix of the Bézier extraction 
operators have been also used in [158] to analyze the lin-
ear dependence of T-splines and also to develop refinement 
algorithms for T-splines [60].

We remark that, thanks to Lemma  2, for admissible 
meshes it is easy to pass from the Bézier mesh to the para-
metric T-mesh and vice versa. Therefore, the refinement 
algorithm could be easily adapted to take as input marked 
elements on the Bézier mesh. In practice, numerical quad-
rature must be computed on Bézier elements, so it may be 
natural to compute the estimator directly on Bézier elements.

4.2.7  Recent Developments on T‑Splines

Here we give some details about other sets of T-meshes that 
have appeared in recent years, which relax the constraints 
of dual-compatible T-meshes. We stress that all these works 
are restricted to the two-dimensional case.

Bracco and Cho introduced in [31] a generalization of 
dual-compatible T-meshes. They replace the concept of 
overlap by a certain shifting of the anchors, which is then 
used to introduce the class of weakly dual-compatible 

#Qk − #Q0 ≤ C

k−1∑
j=0

#Mj for all k ∈ ℕ0.
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T-meshes. They prove that any dual-compatible T-mesh in 
the sense of [18, 19] is also weakly dual-compatible. How-
ever, it is important to remark that this does not hold true 
with the definition of dual-compatibility in [20], which we 
are considering, and there are examples of weakly dual-
compatible T-meshes that are not dual-compatible and vice 
versa.

Wei et al. introduced in [211] a refinement strategy with 
similar ideas to the one in [165], limited to bicubic degree. 
Marked elements are split into four subelements, with their 
level increased by one, and to obtain linear independence the 
refinement is propagated to other elements in just one direc-
tion, with their level increased by one half. Making use of 
the concept of truncated T-splines (which resembles the one 
for THB-splines), they prove that for T-meshes constructed 
with their refinement strategy, linear independence holds 
if the face extensions of the T-mesh, which determine the 
Bézier mesh, do not intersect.

Different and more involved constraints are introduced by 
Li and Zhang in [151] to define AS++ T-splines, for which 
it is possible to prove linear independence and to construct 
a dual basis. A refinement algorithm for the set of AS++ 
T-splines is presented in [213]. Although the presentation is 
limited to bicubic T-splines, the authors plan to generalize 
their approach to arbitrary degree.

It is important to note that, although the aforementioned 
works introduce interesting refinement algorithms for 
T-splines, none of them presents a rigorous analysis of the 
algorithm’s complexity as in Proposition 21, which is neces-
sary to develop the mathematical theory of adaptivity. For 
this reason, we have decided to focus on the dual-compatible 
T-splines studied in [163, 165].

4.2.8  Relation Between an Admissible T‑Mesh and its 
Bézier Mesh

We now give the detailed proof of Lemma 2, which states 
that any element of an admissible T-mesh contains at most 
two Bézier elements of equal size.

Proof The proof is rather technical, although the main idea 
is not complex. Let Q̌ = �����(�Q) . Suppose by contradic-
tion that Q̂ contains more than two Bézier elements. These 
must appear after the bisection of an element Q̌′ which is 
finer, in terms of the level, than Q̌ . On the one hand, since 
the bisection of Q̌′ affects the Bézier elements in Q̂ , it must 
be sufficiently close to Q̌ . On the other hand, since the mesh 
is admissible, Q̌ cannot be in the neighborhood of Q̌′ . That is, 
the two elements must be at the same time sufficiently close 
and far from each other, and we arrive at a contradiction. Let 
us now begin with the technical part.

Let Q̌ be the associated index T-mesh, let 
Q̌ = �����(�Q) = 𝛱

�d
j=1

(aj, bj) , and let us suppose that Q̂ con-
tains more than two Bézier elements to arrive at a contradic-
tion. Since we refine by bisection and alternate the refine-
ment directions, it is clear that the bisection of elements of 
the same level of Q̂ will not split it in more than two Bézier 
elements. Therefore, there must exist an element 
Q̌� = 𝛱

�d
j=1

(a�
j
, b�

j
) , with k = lev(Q̌�) > lev(Q̌) , that has been 

bisected in direction s = dir(k) , such that ������(Q̌�) ⊂ Q̌ . 
This element is translated with respect to Q̌ only in a direc-
tion different from s, in the sense that

see a two-dimensional example in Fig. 25.
Moreover, there exists an anchor such that its local index 

vector depends on the bisection of Q̌′ , and the support of the 
associated function intersects Q̂ . Putting it rigorously, there 

exists � ∈ A(Q̌) with supp(B̂�,�) ∩ Q̂ ≠ � , such that 
a�
s
+b�

s

2
∈ Iloc

s
(�, Q̌) and zj ∈ (a�

j
, b�

j
) for all j ≠ s.

Without loss of generality, we can assume that Q̌� ⊂ �̌�ip . 
Moreover, since Q̌ is admissible we can also assume that the 
bisection of Q̌′ is admissible, i.e., there exists an admissible 
T-mesh Q̌ such that

aj ≤ a′
j
< b′

j
≤ bj, for all j ≠ �s, for one�s ≠ s,

Q̌ = ������_�����(Q̌, Q̌�),

Fig. 25  For degree � = (3, 3) , the element Q̌ (light gray) is bisected in 
more than two Bézier elements after the bisection of Q̌′ (dark gray). 
The element Q̌′ is bisected by the thick black line in direction s = 1 , 
and it is translated with respect to Q̌ in direction s̃ = 2
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and only Q̌′ , and eventually ����(Q̌�) , have been bisected3. 
Denoting by Ngen(Q̌�) the generalized neighborhood in Q̌ , 
since the bisection was admissible and lev(Q̌�) > lev(Q̌) , we 
know from Proposition 18 that Q̌ ∉ Ngen(Q̌�) , otherwise it 
would also be a neighbor. As a consequence, Q̌′ and Q̌ must 
be far from each other, and in particular

Taking into account the relation between k and s = dir(k) , 
and that s̃ ≠ s , a careful (and tedious) computation gives that

It is readily seen that the length of an element of level k 
in the j-th direction is exactly (1∕2)⌊(k−j+d̂)∕d̂⌋ . Note that 
Iloc
s
(�, Q̌) consists of ps + 2 indices. Since we consider odd 

degrees, zs is in the middle position, which means that we 
only need to check (ps + 3)∕2 indices. Using the relation 
between k and s = dir(k) , the value of (��(k))s , the length 
of the elements of level k in direction s, and the number of 
indices, a careful check shows that � ∈ 𝜕Q̌�� for some ele-
ment Q̌�� ∈ Ngen(Q̌�).

As the bisection was admissible, Proposition 18 shows 
that all elements in Ngen(Q̌�) have level at least equal to k. A 
similar check in the s̃  direction and the fact that � is in one 
generalized neighbor show that Iloc

�s
(�, Q̌) is built using only 

indices corresponding to elements in Ngen(Q̌�) . As a conse-
quence, the fact that supp(B̂�,�) ∩ Q̂ ≠ � is in contradiction 
with (52).

Finally, the result of the measure of the Bézier elements 
holds because the elements are refined by bisection.   ◻

4.3  Other Splines for Adaptive Methods

Our focus in this section has been on (T)HB-splines and anal-
ysis-suitable (or dual-compatible) T-splines because the math-
ematical theory of adaptive isogeometric methods based on 
these functions is the most advanced one. However, there are 
other kinds of spline spaces with local refinement capabilities 

(52)|x�s − (�Q̌� )�s| > (��(k))�s for any � ∈ Q̌.

(��(k))s =

⎧
⎪⎨⎪⎩

�
1

2

�(k−s+1)∕2

(ps∕2) for d̂ = 2,
�

1

2

�(k−s+1)∕3

(ps + 3∕2) for d̂ = 3.

(��(k))̃s =

⎧
⎪⎨⎪⎩

�
1

2

�(k−s̃+2)∕2

(ps̃∕2 + 1) for d̂ = 2,
�

1

2

�⌊(k−s̃+3)∕3⌋
(ps̃ + 3∕2) for d̂ = 3,

which are successfully used in IGA, especially in the engineer-
ing literature, but for which the mathematical theory, especially 
the convergence theory, has not been studied yet. For com-
pleteness, we mention here the most popular ones and address 
the reader to the cited references for the details.

Probably, the most popular alternative is the one given 
by locally refined-splines, or LR-splines [37, 80]. They are 
similar to T-splines, but instead of being defined from the 
T-mesh, they are directly defined from the Bézier mesh by 
associating a certain continuity to each edge (or face in 3D). 
They have been used for IGA for the first time in [130], 
and after that they have appeared in several papers, see for 
instance [145, 146]. A refinement algorithm that alternates 
the refinement direction, similar to the one we detailed for 
T-splines, has been introduced in [39]. Recently, [175] intro-
duced another refinement algorithm which preserves (local) 
linear independence of LR-splines. A comparison of LR-
splines and THB-splines can be found in [131].

A simpler construction is the one of polynomial splines 
over hierarchical T-meshes (PHT-splines) [77]. The start-
ing point is a T-mesh, as for LR-splines, but in this case 
the continuity is the same for all edges. Assuming that the 
continuity is lower than one half of the degree, it is pos-
sible to determine the dimension of the space of piecewise 
polynomials over the T-mesh [77], and to construct a basis 
for computations [78, 149]. PHT-splines have been used in 
isogeometric methods for the first time in [171, 208]. The 
main drawback of the reduced smoothness of PHT-splines 
is that it increases the number of degrees of freedom, while 
its advantage is that basis functions are more localized, and 
their implementation and analysis is more similar to standard 
FEM. We refer to the survey [148] for more details about 
PHT-splines, including a complete list of references.

Another interesting approach for refinement is given 
by hierarchical T-splines [59, 87], where the initial mesh 
is defined by analysis-suitable T-meshes, and the refine-
ment is done by applying the algorithm of hierarchical 
splines, replacing in the construction of Ĥ

N−1
 in Sect. 4.1 

the B-splines of each level by analysis-suitable T-splines of 
different levels. The main difficulty of this approach is that, 
to build the T-splines of different levels, the initial T-mesh 
must be refined globally, but maintaining T-junctions away 
from each other in such a way that the T-mesh of the next 
level remains analysis-suitable, see [87] for details.

Finally, we remark that one of the drawbacks of (T)HB-
splines compared to T-splines or LR-splines is that it is not 
allowed to perform anisotropic refinement, since the refine-
ment direction at each level is determined by the (global) 
refinement between levels4. This constraint is alleviated in 

4 This is also true for the T-splines refinement in [164] presented in 
Sect. 4.2.5.

3 If this was not the case, we would consider Q̌ as the mesh obtained 
after refining all the elements in the neighborhood of Q̌′ , but not Q̌′ 
itself.
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the construction of patchwork B-splines in [86], which com-
bines different refinement directions for different regions of 
the domain, and even different degrees and smoothness.

5  Adaptivity: Abstract Framework

In this section, we consider an abstract adaptive algorithm 
of the form

See Algorithm 5 below for the formal statement. First, in 
Sect. 5.1, we give general properties, the so-called axi-
oms of adaptivity from [53], that guarantee convergence 
of the involved error estimator at optimal algebraic rate. In 
Sects. 5.2 and 5.3, we consider Algorithm 5 in the frame of 
FEM and BEM, respectively. These sections provide more 
concrete properties for the meshes, the refinement, and the 
ansatz spaces which ensure the axioms of adaptivity and 
thus guarantee optimal convergence. In Section 6 below, we 
will show that adaptive IGAFEM and IGABEM fit into the 
framework of Sects. 5.2 and 5.3, respectively.

5.1  Axioms of Adaptivity

We provide a set of sufficient properties for the error estima-
tor as well as for the mesh refinement so that Algorithm 5 
below guarantees convergence of the estimator at optimal 
algebraic rate. These properties are known as axioms of 
adaptivity and have been introduced in [53]. In one way or 
another, the axioms arose over the years in various works 
throughout the literature. In [53, Sect. 3.2], a historical over-
view on their development can be found. We especially high-
light the milestones on rate-optimality [24, 57, 58, 92, 200].

This section is essentially a summary of the results from 
[53]. As in [53], we mainly focus on the error estimator. 
This is motivated by the fact that the adaptive algorithm 
has no other information than the error estimator to steer 
the mesh refinement. However, at least for FEM, we will 
show that the corresponding error estimator is equivalent 
to the so-called total error (which is the sum of error plus 
data oscillations).

5.1.1  Admissible Meshes

Let ℚ be a set of finite sets Q ∈ ℚ , which we refer to as 
admissible meshes. Concretely, we will later consider 
quadrilateral meshes of some Lipschitz-domain � or its 
boundary � ∶= �� , where admissibility will describe a 
certain grading property, see also Sects. 4.1.3 and 4.2.5 
for details. Let ������(⋅, ⋅) be a fixed refinement strat-
egy such that, for Q ∈ ℚ and marked M ⊆ Q , it holds 

(53)𝚜𝚘𝚕𝚟𝚎 ⟶ 𝚎𝚜𝚝𝚒𝚖𝚊𝚝𝚎 ⟶ 𝚖𝚊𝚛𝚔 ⟶ 𝚛𝚎𝚏𝚒𝚗𝚎

t ha t  Q+ = ������(Q,M) ∈ ℚ w i t h  M ⊆ Q ⧵Q+  , 
i.e., at least the marked elements M are refined, and 
������(Q, �) = Q . Note that in practice, one cannot 
expect that only the marked elements are refined. Indeed, 
to preserve admissibility of our considered quadrilat-
eral meshes, additional elements have to be refined. For 
arbitrary Q,Q+ ∈ ℚ , we write Q+ ∈ ������(Q) , if Q+ 
is obtained by iterative application of ������ and we 
note that Q ∈ ������(Q) . Moreover, we assume that 
each admissible mesh Q ∈ ℚ can be reached via refine-
ment starting from a fixed initial mesh Q0 ∈ ℚ , i.e., 
������(Q0) = ℚ . We suppose that #Q < #Q+ for all 
Q ∈ ℚ and all Q+ ∈ ������(Q) with Q ≠ Q+ . In prac-
tice, the latter property is trivially satisfied, but it has to be 
explicitly assumed within the abstract framework.

5.1.2  Adaptive Algorithm

On each mesh Q ∈ ℚ , we want to compute an associated 
quantity U , think of, e.g., a Galerkin approximation of some 
PDE solution u. We suppose that we are given an error 
estimator associated to each mesh Q ∈ ℚ , i.e., a function 
� ∶ Q → [0,∞) . At least heuristically, this estimator shall 
estimate the difference ‖u − U‖ . By abuse of notation, we 
also write � ∶= �(Q) , where �(S) ∶= (

∑
Q∈S �(Q)

2)1∕2 for 
all S ⊆ Q . Based on this error estimator, we consider the 
adaptive Algorithm 5 of the form (53). 

In the module solve and estimate, we compute the 
quantity Uk and the refinement indicators �k(Q) of all ele-
ments Q in the current mesh Qk , respectively. In the module 
mark, we determine up to a multiplicative constant Cmin a 
minimal set of elements Mk ⊆ Qk that satisfies the Dörfler 
marking [85]

This means that #Mk ≤ Cmin#S for all sets S ⊆ Qk with 
��2

k
≤ �k(S)

2 . If Cmin = ∞ , this is always satisfied and 

(54)� �2
k
≤ �k(Mk)

2.
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allows for uniform refinement, where Mk = Qk . We note 
that a naive implementation of the Dörfler marking (54) 
with Cmin = 1 , which gives the truly minimal set Mk , espe-
cially requires sorting of the error indicators, which leads 
to a log-linear effort. To overcome this disadvantage, [200, 
Sect. 5] proposed an algorithm to realize it with Cmin = 2 in 
linear complexity. Only recently, [176] showed that linear 
complexity can also be attained for Cmin = 1 . Based on the 
marked elements Mk , the mesh Qk is refined in the module 
������.

We stress that an actual implementation of Algorithm 5 
will also have some kind of stopping criterion, e.g., k is 
greater than some given bound K ∈ ℕ or if �k is smaller than 
some given tolerance 𝜏 > 0 . Moreover, in practice �k and Qk 
are not saved but overwritten by �k+1 and Qk+1 , respectively. 
However, the given form of the algorithm allows to present 
convergence results in a simple way.

5.1.3  The Axioms

We suppose that we are given some function of perturba-
tions dl ∶ ℚ ×ℚ → [0,∞) , and constants Cstab , Cred , Cref , 
Cdrel > 0 , and 0 ≤ 𝜌red < 1 such that there hold the follow-
ing estimator properties (E1)–(E3) for all Q ∈ ℚ and all 
Q+ ∈ ������(Q) : 

(E1)  Stability on non-refined elements: It holds that 

(E2)  Reduction on refined elements: It holds that 

(E3)  Discrete reliability:  There exists a set 
R(Q,Q+) with Q ⧵Q+ ⊆ R(Q,Q+) ⊆ Q and 
#R(Q,Q+) ≤ Cref

(
#Q+ − #Q

)
 such that 

 i.e., the perturbations are essentially controlled by the esti-
mator on the refined elements.
 Moreover, with the Dörfler parameter 0 < 𝜃 ≤ 1 of Algo-
rithm 5, let Cqo > 0 and 0 ≤ 𝜀qo < 1 satisfy the following 
property (E4) for the sequence (Qk)k∈ℕ0

 from Algorithm 5: 

(E4)  General quasi-orthogonality: It holds that 

 and for all k,N ∈ ℕ0 that 

|�+(Q ∩Q+) − �(Q ∩Q+)| ≤ Cstabdl(Q,Q+).

�+(Q+ ⧵Q)2 ≤ �red�(Q ⧵Q+)
2 + Creddl(Q,Q+)

2.

dl(Q,Q+)
2 ≤ C2

drel
�(R

(
Q,Q+)

)2
,

0 ≤ 𝜀qo < sup
𝛿>0

1 − (1 + 𝛿)(1 − (1 − 𝜌red)𝜃)

Cred + (1 + 𝛿−1)C2
stab

,

 i.e., the sum of perturbations (minus some minor estimator 
terms) is controlled by the estimator.

Remark 17 Later, in a more concrete setting, dl(Q,Q+) will 
always be the error ‖U+ − U‖ between the two Galerkin 
solutions U and U+ corresponding to the meshes Q and Q+ , 
respectively. If the involved bilinear form is symmetric, (E4) 
even with �qo = 0 follows directly from the Pythagoras iden-
tity ‖Uj+1 − Uj‖2 = ‖u − Uj‖2 − ‖u − Uj+1‖2 in the energy 
norm and reliability ‖u − Uk‖ ≲ 𝜂k of the estimator, see also 
Remark 22.

Moreover, we suppose that we are given constants Cchild , 
Cclos ≥ 1 such that there hold the following refinement prop-
erties (R1)–(R3): 

(R1)  Child estimate: For all Q ∈ ℚ , M ⊆ Q and 
Q+ ∶= ������(Q,M) , it holds that 

 i.e., one step of refinement leads to a bounded increase of 
elements.

(R2)  Closure estimate: Let (Qk)k∈ℕ0
 be an arbitrary 

sequence in ℚ such that Qk+1 = ������(Qk,Mk) 
with some Mk ⊆ Qk for all k ∈ ℕ0 . Then, for all 
k ∈ ℕ0 , it holds that 

 This inequality is trivially satisfied if only marked elements 
are refined. However, in practice, to preserve admissibility 
of the meshes, additional elements have to be refined. Then, 
(R2) states that the overall number of elements #Qk can be 
controlled by #Q0 plus the number of marked elements.

(R3)  Overlay property: For all meshes Q,Q× ∈ ℚ , there 
exists a common refinement Q+ ∈ ������(Q) ∩ 
������(Q×) which satisfies the overlay estimate 

5.1.4  Optimal Convergence for the Error Estimator

The following theorem is the main result of Sect. 5.1. It was 
already proved in [53, Theorem 4.1 and Corollary 4.8]. For 
arbitrary s > 0 , we set

k+N∑
j=k

(dl(Qj,Qj+1)
2 − �qo�

2
j
) ≤ Cqo�

2
k
,

#Q+ ≤ Cchild#Q

#Qk − #Q0 ≤ Cclos

k−1∑
j=0

#Mj.

#Q+ ≤ #Q + #Q× − #Q0.
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with ℚ(N) ∶=
{
Q ∈ ℚ ∶ #Q ≤ N

}
 , where 𝜂⋆ denotes the 

estimator corresponding to Q⋆ . By definition, it holds that 
Capx(s) < ∞ if and only if the error estimator converges as 
� = O((#Q)−s) if the optimal admissible meshes are cho-
sen. Consequently, an adaptive algorithm is called optimal 
if the sequence of adaptively generated meshes leads to 
�
�
= O((#Q

�
)−s) for all s > 0 with Capx(s) < ∞.

Theorem 1 Let Q0, � ∈ (0, 1] , and Cmin ∈ [1,∞] be the input 
arguments of Algorithm 5, and let (Qk)k∈ℕ0

 and (�k)k∈ℕ0
 be 

the meshes and estimators generated by Algorithm 5. Then, 
there hold: 

 (i) Suppose that the axioms (E1)–(E2) hold true at least 
for Qk+1 ∈ ������(Qk) and all k ∈ ℕ0 , and assume 
that limk→∞ dl(Qk,Qk+1) = 0 . Then, for all 0 < 𝜃 ≤ 1 
and all Cmin ∈ [1,∞] , the estimator converges, i.e., 

 (ii) Suppose that the axioms (E1)–(E2) hold true at least 
for Qk+1 ∈ ������(Qk) and all k ∈ ℕ0 and (E4) 
holds true as well. Then, for all 0 < 𝜃 ≤ 1 and all 
Cmin ∈ [1,∞] , the estimator converges linearly, i.e., 
there exist constants 0 < 𝜌lin < 1 and Clin ≥ 1 such 
that 

 (iii) Suppose that  the axioms (E1)– (E4)  as 
well as (R1)–(R3) hold true. Then, for all 
0 < 𝜃 < 𝜃opt ∶= (1 + C2

stab
C2
drel

)−1  a n d  a l l 
Cmin ∈ [1,∞) , the estimator converges at opti-
mal rate, i.e., for all s > 0 there exist constants 
copt ,Copt > 0 such that 

 where the lower bound relies only on (R1).
The constants Clin, �lin depend only on �red,Cqo, �qo , 
and on � . The constant Copt depends additionally on 
Cmin,Cref ,Cdrel, �drel,Cclos,Cover , #Q0 , and on s, while copt 
depends only on Cchild, #Q0 , s, and if there exists k0 with 
�k0 = 0 also on k0.
Proof In the following, we only give a sketch of the proof. 
For details, we refer to [53, Theorem 4.1 and Corollary 4.8].

Sketch of (i). Elementary calculations show that the axi-
oms (E1)–(E2) and the fact that Mk ⊆ Qk ⧵Qk+1 in combi-
nation with Dörfler marking (54) lead to estimator reduction: 
There exist constants 0 < 𝜌est < 1 and Cest > 0 such that

(55)Capx(s) ∶= sup
N≥#Q0

min
Q⋆∈ℚ(N)

(Ns𝜂⋆) ∈ [0,∞]

(56)lim
k→∞

�k = 0.

(57)�2
k+j

≤ Clin�
j

lin
�2
k

for all j, k ∈ ℕ0.

(58)coptCapx(s) ≤ sup
k∈ℕ0

(#Qk)
s�k ≤ CoptCapx(s),

Due to the assumption limk→∞ dl(Qk,Qk+1) = 0 , basic cal-
culus proves (56).

Sketch of (ii). Linear convergence (57) can be equiva-
lently reformulated as

The latter follows from estimator reduction (59) and general 
quasi-orthogonality (E4).

Sketch of (iii). The lower estimate in (58) follows ele-
mentarily from the child estimate (R1). The upper bound is 
more involved. Let j ∈ ℕ0 . Stability (E1) plus discrete reli-
ability (E3) elementarily yield the existence of some con-
s t an t  0 < q(𝜃) < 1 such  t ha t  any  re f inemen t 
Q+(j) ∈ ������(Qj) with �2

+(j)
≤ q(�)�2

j
 satisfies the Dörfler 

marking

The heart of the proof is that there exists Q+(j) ∈ ������(Qj) 
with �2

+(j)
≤ q(�)�2

j
 , which additionally satisfies that

This follows from the definition of Capx(s) , the overlay prop-
erty (R3), and quasi-monotonicity 𝜂+(j) ≲ 𝜂 for any Q ∈ ℚ 
with Q+(j) ∈ ������(Q) . The latter is a consequence of 
(E1), (E2), and (E3). Since Mj ⊆ Qj is an essentially mini-
mal set that satisfies the Dörfler marking (54), (60) gives that

The closure estimate (R2), discrete reliability (E3), and (61) 
imply that

Finally, linear convergence (57) elementarily shows that ∑k−1

j=0
𝜂−1∕s
j

≲ 𝜂−1∕s
k

 . This concludes the proof.   ◻

Remark 18 The upper bound in (58) states that the estimator 
sequence �k of Algorithm 5 converges with algebraic rate 
s if Capx(s) < ∞ . This means that if a decay with rate s is 
possible for optimally chosen admissible meshes, the same 
decay is realized by the adaptive algorithm. Together with 
the upper bound, the lower bound in (58) states that the 

(59)0 ≤ �2
k+1

≤ �est�
2
k
+ Cestdl(Qk,Qk+1)

2 for all k ∈ ℕ0.

∞∑
j=k+1

𝜂2
j
≲ 𝜂2

k
for all k ∈ ℕ0.

(60)��2
j
≤ �j

(
R(Qj,Q+(j))

)2
.

(61)#Q+(j) − #Qj ≲ 𝜂−1∕s
j

.

#Mj ≲ #R(Qj,Q+(j)).

#Qk − #Q0 ≲
k−1∑
j=0

#Mj ≲
k−1∑
j=0

#R(Qj,Q+(j))

≲
k−1∑
j=0

(#Q+(j) − #Qj) ≲
k−1∑
j=0

𝜂−1∕s
j

.
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convergence rate of the estimator sequence characterizes the 
theoretically optimal convergence rate.

5.2  Abstract Adaptive FEM

This section summarizes the results of the recent own works 
[103, 105]. For the model problem (17) of Sect. 3.2.1, i.e.,

we consider Algorithm 5 in the context of conforming FEM 
discretizations on a multi-patch geometry � as in Sect. 3.1, 
where adaptivity is driven by the weighted-residual a pos-
teriori error estimator (23), which reads

We identify the crucial properties of the underlying meshes, 
the mesh refinement, and the finite element spaces, which 
ensure that the weighted-residual error estimator fits into the 
general framework of Sect. 5.1 and which hence guarantee 
optimal convergence behavior of the adaptive algorithm in 
the sense of Theorem 1. The main result of this section is 
Theorem 2. In Sect. 6, we will see that it is applicable to 
hierarchical splines as well as T-splines.

5.2.1  Axioms of Adaptivity (Revisited)

Meshes Throughout this section, Q is a mesh of the bounded 
Lipschitz domain 𝛺 ⊂ ℝd in the following sense:

• Q is a finite set of transformed open hyperrectangles, 
i.e., each element Q has the form Q = �m(Q̂) for some 
�m from Sect. 3.1, where Q̂ =

∏d

i=1
(ai, bi) is an open d

-dimensional hyperrectangle;
• for all Q,Q� ∈ Q with Q ≠ Q′ , the intersection is empty, 

i.e., Q ∩ Q� = �;
• � =

⋃
Q∈Q Q , i.e., Q is (essentially) a partition of �.

Let ℚ be a set of such meshes. These are referred to as 
admissible. In order to ease notation, we introduce for 
Q ∈ ℚ the corresponding mesh-width function

For 𝜔 ⊆ 𝛺 , we define the element-patches5 𝜋q(𝜔) ⊆ 𝛺 of 
order q ∈ ℕ0 inductively by

Pu = f in �,

u = 0 on � ∶= ��,

�(Q)2 ∶= h2
Q
‖f −PU‖2

L2(Q)
+ hQ‖[D�

U]‖2
L2(�Q∩�)

.

h ∈ L∞(�), h|Q ∶= hQ ∶= |Q|1∕d for all Q ∈ Q.

The corresponding set of elements is defined as

i.e., �q(�) =
⋃

�q(�) . To abbreviate notation, we set 
�(�) ∶= �1(�) and �(�) ∶= �1(�) . For S ⊆ Q , we define 
�q(S) ∶= �q(

⋃
S) and �q(S) ∶= �q(

⋃
S).

We suppose that there exist constants Cshape , Clocuni > 0 
such that all meshes Q ∈ ℚ satisfy the following two mesh 
properties (M1)–(M2): 

(M1)  Shape-regularity: It holds that6

 Since there always holds that hQ ≤ diam(Q) , this implies 
that hQ ≃ diam(Q).

(M2)  Local quasi-uniformity: It holds that 

 i.e., neighboring elements have comparable size.
Mesh refinement We suppose that we are given a refine-

ment strategy ������(⋅, ⋅) as in Sects. 5.1.1 and  5.1.3. In 
particular, we suppose the existence of some initial mesh Q0 
with ������(Q0) = ℚ and the refinement axioms (R1)–(R3) 
hold true. Moreover, we assume that for all Q ∈ ℚ and 
arbitrary marked elements M ⊆ Q with refinement Q+ ∶= 
������(Q,M) , it holds that

i.e., each element Q is the union of its successors.
Finite element space With each Q ∈ ℚ , we associate a 

finite dimensional space

Let U ∈ � be the corresponding Galerkin approximation, 
defined via the variational formulation (20), to the solution 
u ∈ H1

0
(�) of problem (19).

We suppose that there exist constants qloc, qproj ∈ ℕ0 and 
for all Q ∈ ℚ a Scott–Zhang-type projector J ∶ H1

0
(�) → � 

such that the following space properties (S1)–(S3) hold for all 
Q ∈ ℚ and all refinements Q+ ∈ ������(Q) : 

(S1)  Nestedness: It holds that 

(62)
�0(�) ∶= �,

�q+1(�) ∶=
⋃{

Q ∶ Q ∈ Q, Q ∩ �q(�) ≠ �
}
.

(63)𝛱q(𝜔) ∶=
{
Q ∈ Q ∶ Q ⊆ 𝜋q(𝜔)

}
for q > 0,

diam(Q)∕hQ ≤ Cshape for all Q ∈ Q.

hQ∕hQ� ≤ Clocuni for all Q ∈ Q,Q� ∈ �(Q),

(64)Q =
⋃{

Q� ∶ Q� ∈ Q+,Q
� ⊆ Q

}
for all Q ∈ Q,

� ⊂
{
v ∈ H1

0
(𝛺) ∶ v|Q ∈ H2(Q) for all Q ∈ Q

}
.

5 Do not confuse the element-patches with the patches of Sect. 3.1.2 
that are used to describe the geometry.

6 Recall the definition diam(S) ∶= sup
{|� − �| ∶ �, � ∈ S

}
 of the 

diameter of an arbitrary non-empty set S ⊆ ℝd.
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(S2)  Local domain of definition: For all Q ∈ 
Q ⧵𝛱qloc (Q ⧵Q+) ⊆ Q ∩Q+ (i.e., Q is in a certain 
sense far away from the refined elements Q ⧵Q+ ) and 
for all V+ ∈ �+ , it holds that 

(S3)  Local projection property: For all v ∈ H1
0
(�) and 

Q ∈ Q , it holds that 

Besides (S1)–(S3), which are also required in the following 
Sect. 5.3 on abstract adaptive BEM, we suppose the existence 
of constants Cinv,Csz > 0 and qsz ∈ ℕ0 such that the following 
FEM properties (F1)–(F3) hold for all Q ∈ ℚ : 

(F1)  Inverse inequality: For all j, k ∈ {0, 1, 2} with k ≤ j , 
all V ∈ � , and all Q ∈ Q , it holds that 

(F2)  Local L2-approximation property: For all Q ∈ Q 
and all v ∈ H1

0
(�) , it holds that 

(F3)  Local H1-stability: For all Q ∈ Q and v ∈ H1
0
(�) , it 

holds that 

5.2.2  Data Oscillations

The definition of the data oscillations corresponding to the 
residual error estimator (23) requires some further notation. 
Let ℙ(�) be the set of all (transformed) tensor polynomials 
of some fixed degree (p�,… , p�) on � , i.e., with the patches 
�m from Sect. 3.1.2,

For Q ∈ ℚ and Q ∈ Q ,  let  P
Q
∶ L

2(Q) →
{
W|

Q
∶

W ∈ ℙ(�)
}
 be the L2-orthogonal projection, i.e.,

� ⊆ �+.

V+|�qproj (Q) ∈
{
V|�qproj (Q) ∶ V ∈ �

}
.

(Jv)|Q = v|Q if v|�qproj (Q) ∈
{
V|�qproj (Q) ∶ V ∈ �

}
.

h
(j−k)

Q
‖V‖Hj(Q) ≤ Cinv ‖V‖Hk(Q).

‖(1 − J)v‖L2(Q) ≤ Csz hQ ‖v‖H1(�qsz (Q)).

‖∇Jv‖L2(Q) ≤ Csz‖v‖H1(�qsz (Q)).

ℙ(�) ∶=
{
W ∶ W|�m

◦�m polynomial of degree

(p�,… , p�) for all m ∈ {1,… ,M}
}
.

for all v ∈ L2(Q) . For an interior edge in 2D or face in 3D, 
E ∈ EQ ∶=

{
Q ∩ Q

�
∶ Q� ∈ Q, dim(Q ∩ Q

�
) = d − 1

}
 , 

where dim(⋅) denotes the dimension, we define the L2
-orthogonal projection PE ∶ L2(E) →

{
W|E ∶ W ∈ ℙ(�)

}
 . 

Finally, for V ∈ � , we define the corresponding oscillations

where, for all Q ∈ Q , the local oscillations read

Remark 19 For the analysis of oscillations in the frame of 
standard FEM with piecewise polynomials of fixed order, 
we refer, e.g., to [172].

Remark 20 If � ⊂ C1(𝛺) , then the jump contributions 
in (65) vanish and osc(V,Q) consists only of the volume 
oscillations.

5.2.3  Optimal Convergence

Recall the definition (55) of the approximation constant 
Capx(s) . We say that the solution u ∈ H1

0
(�) belongs to the 

approximation class s with respect to the estimator (23), if

Further, we say that it belongs to the approximation class s 
with respect to the minimal total error if

Note that both approximation classes depend on the con-
sidered ansatz spaces, the underlying meshes, and the cor-
responding refinement strategy.

By definition, Capx(s) < ∞ (resp. Ctot
apx

(s) < ∞ ) implies 
that the error estimator � (resp. the minimal total error) on 
the optimal meshes Q decays at least with rate O

(
(#Q)−s

)
 . 

The following main theorem states that each possible rate 
s > 0 is in fact realized by Algorithm 5. It stems from [105, 
Theorem 2.1] and essentially follows from its abstract coun-
terpart Theorem 1 by verifying the axioms of Sect. 5.1.3 for 
the perturbations

‖v − PQv‖L2(Q) = min
W∈ℙ(�)

‖v −W‖L2(Q)

(65a)
osc(V) ∶= osc(V,Q)

with osc(V,S)2 ∶=
∑
Q∈S

osc(V,Q)2 for all S ⊆ Q,

(65b)
osc(V,Q)2 ∶= h2

Q
‖(1 − PQ)(f −PU)‖2

L2(Q)

+
�
E∈EQ

hQ‖(1 − PE)[D�
U]‖2

L2(E)
.

Capx(s) < ∞.

(66)
Ctot
apx

(s) ∶= sup
N≥#Q0

min
Q∈ℚ(N)

(Ns inf
V∈𝕊

�‖u − V‖H1(𝛺)

+ osc(V)) < ∞.
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For piecewise polynomials on shape-regular triangulations 
of a polyhedral domain � , optimal convergence was already 
proved in [57] for symmetric P and in [58, 92] for non-
symmetric P.

Theorem 2 Let (Qk)k∈ℕ0
 be the sequence of meshes gener-

ated by Algorithm 5 with Galerkin approximations Uk ∈ �k . 
Then, there hold: 

(i) Suppose that (M1)–(M2) and (F2)–(F3) hold true. 
Then, the residual error estimator satisfies reliability, 
i.e., there exists Crel > 0 such that for all Q ∈ ℚ , 

(ii) Suppose that (M1)–(M2) and (F1) hold true. Then, the 
residual error estimator satisfies efficiency, i.e., there 
exists Ceff > 0 such that for all Q ∈ ℚ , 

(iii) Suppose that (M1)–(M2), (S1) and (F1) hold true. Then, 
the axioms (E1)–(E2) as well as the convergence of the 
perturbations limk→∞ dl(Qk,Qk+1) = 0 are satisfied. 
These are exactly the assumptions of Theorem 1 (i), 
which implies convergence (56) of the estimator.

(iv) Suppose that (M1)–(M2), (S1) and (F1)–(F3) hold true. 
Then, the axioms (E1)–(E2) and (E4) are satisfied. 
These are exactly the assumptions of Theorem 1 (ii), 
which implies linear convergence (57) of the estimator.

(v) Suppose (M1)–(M2), (R1)–(R3), (S1)–(S3) and (F1)–
(F3) hold true. Then, the axioms (E1)–(E4) as well as 
(R1)–(R3) are satisfied. These are exactly the assump-
tions of Theorem 1 (iii), which implies optimal conver-
gence (58) of the estimator.

All involved constants Crel,Ceff ,Clin, �lin, �opt , and Copt (of 
Theorem 1) depend only on the assumptions made, the 
dimension d , the coefficients of the differential operator 
P , diam(�) , and the parametrization constant C� from 
Sect. 3.1, where Clin, �lin depend additionally on � and the 
sequence (Uk)k∈ℕ0

 (see also Remark 22), and Copt depends 
furthermore on Cmin and s. The constant copt depends only 
on Cchild, #Q0 , s, and if there exists k0 with �k0 = 0 also on 
k0 and �0.
Proof The proof is found in [105, Sect. 4] and details are 
elaborated in [103, Sect. 4.5]. Indeed, these works consider 
even more general meshes. They assume additional abstract 
mesh and refinement properties, given by (69)–(72) below. 

dl(Q,Q+) ∶= ‖U+ − U‖H1(�) for all Q ∈ ℚ,

and Q+ ∈ ������(Q).

(67)‖u − U‖H1(�) + osc(U) ≤ Crel�.

(68)C−1
eff
� ≤ inf

V∈�

�‖u − V‖H1(�) + osc(V)
�
.

Moreover, the analysis of [103, 105] requires certain prop-
erties of the space ℙ(�) , which have only been proved for 
single-patch domains in [105, Sects. 5.11 and 5.12], but 
the proof easily extends to the considered multi-patch case. 
Therefore, in the remainder of the proof, we only verify that 
the assumptions (69)–(72) are automatically satisfied in our 
setting, and the result follows from [105, Sect. 4].

Let Q ∈ ℚ . The properties (M1)–(M2) especially imply 
the uniform boundedness of the number of elements within 
an element-patch, i.e.,

To see this, we note the elementary inequality 
|�(Q)| ≤ diam(�(Q))d  . Then, (M1)–(M2) show that 
diam(�(Q)) ≲ diam(Q) ≃ |Q|1∕d . On the one hand, we see 
that |Q| ≤ |𝛱(Q)| ≲ |Q| , i.e., |�(Q)| ≃ |Q| . On the other 
hand, (M2) implies that |�(Q)| ≃ #�(Q)|Q| . This concludes 
the proof of (69).

Moreover, it is easy to see that our assumptions on C� of 
(15) along with (M1) yield that [0, 1]d is a reference element 
in the sense that for all Q ∈ Q ∈ ℚ , there exists a bi-Lip-
schitz mapping �̃Q ∶ [0, hQ]

d
→ Q with uniform Lipschitz 

constants that depend only on C� and (M1). In particular, 
one obtains the trace inequality

and the local Poincaré estimate

for the dual norm ‖w‖H−1(Q) = sup{∫
Q
wv d� ∶ v ∈ H1

0
(Q), 

‖v‖H1(Q) = 1} . The constants hidden in (70)–(71) depend 
only on C� and (M1), see, e.g., [103, Proposition 4.2.2 and 
Proposition 4.2.3] for a proof. The latter inequality (71) is 
a simple consequence of the classical Poincaré inequality.

The identities (64) and (M2) imply the existence of a uni-
form constant 0 < 𝜌 < 1 such that

i.e., children are uniformly smaller than their parents. To 
see this, one can argue by contradiction. If the assertion is 
wrong, then there exist sequences (Q�

n
)n∈ℕ and (Qn)n∈ℕ of 

such elements with

However, (64) and (M2) show the existence of Q′′
n
⊂ Qn ⧵ Q

′
n
 

with |Q��
n
| ≃ |Q�

n
| , which contradicts the latter equality.  

 ◻

(69)#𝛱(Q) ≲ 1 for all Q ∈ Q.

(70)
‖v‖2

L2(𝜕Q)
≲
�
h−1
Q
‖v‖2

L2(Q)
+ ‖v‖L2(Q)‖∇v‖L2(Q)

�

for all v ∈ H1(𝛺),

(71)h−1
Q
‖w‖H−1(Q) ≲ ‖w‖L2(Q) for all w ∈ L2(𝛺)

(72)|Q�| ≤ �|Q| for all Q ∈ Q,Q� ∈ Q+ with Q� ⫋ Q,

lim
n→∞

|Qn| − |Q�
n
|

|Qn| = lim
n→∞

|Qn ⧵ Q
�
n
|

|Qn| = 0.
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Remark 21 If the assumptions of Theorem 2 (i)–(ii) are satis-
fied, there holds in particular that

This also shows that the optimality results in [57, 58, 200] 
coincide with that of [53, 92].

Remark 22 Only general quasi-orthogonality (E4) depends 
on the sequence (Uk)k∈ℕ0

 . If the bilinear form ⟨⋅ ; ⋅⟩P is 
symmetric, then (E4) follows from the Pythagoras iden-
tity ‖u − Uj+1‖2P + ‖Uj+1 − Uj‖2P = ‖u − Uj‖2P  in the 
P-induced energy norm ‖v‖2

P
∶= ⟨v ; v⟩P and norm 

equivalence

Together with reliability (67), this proves (E4) even for 
�qo = 0 , and Cqo is independent of the sequence (Uk)k∈ℕ0

 . 
In this case, the constants Clin, �lin and Copt in Theorem 2 
are independent of (Uk)k∈ℕ . In the general case, a compact-
ness argument and a priori convergence ‖u − uk‖H1(�) → 0 
as k → ∞ guarantee that Clin,Copt > 0 and 0 < 𝜌lin < 1 exist, 
but their size may depend on the possibly slow convergence 
in the preasymptotic regime of Algorithm 5.

Remark 23 Under the assumption that ‖hk‖L∞(�) → 0 
as k → ∞ (which can be easily guaranteed by 
marking additional elements), one can show that 
𝕊∞ ∶=

⋃
k∈ℕ0

𝕊k = H1
0
(�) , see [105, Remark  2.7]. This 

allows to follow the ideas of [23] and to prove Theorem 2 if 
the bilinear form ⟨⋅ ; ⋅⟩P is only elliptic up to some compact 
perturbation, provided that the continuous problem is well-
posed. This includes, e.g., adaptive FEM for the Helmholtz 
equation. For details, the reader is referred to [23].

5.3  Abstract Adaptive BEM

This section summarizes the results of the recent own works 
[103, 106]. Given the setting of Sect. 3.3.2, we consider 
Algorithm 5 (with Uk replaced by �k ) in the context of con-
forming BEM discretizations of our model problem (27), i.e.,

on a multi-patch geometry �  as in Sect. 3.1, where adap-
tivity is driven by the weighted-residual a posteriori error 
estimator from (32), which reads

C−1
eff
‖u‖�est

s
≤ ‖u‖�tot

s
≤ Crel‖u‖�est

s
for all s > 0.

k+N�
j=k

‖Uj+1 − Uj‖2H1(𝛺)
≃

k+N�
j=k

‖Uj+1 − Uj‖2P
= ‖u − Uk‖2P − ‖u − Uk+N+1‖2P ≲ ‖u − Uk‖2H1(𝛺)

.

V� = f

�(Q)2 ∶= hQ|f − V�|2
H1(Q)

for all Q ∈ Q ∈ ℚ.

We identify the crucial properties of the underlying meshes, 
the mesh refinement, and the boundary element spaces 
which ensure that the weighted-residual error estimator fits 
into the general framework of Sect. 5.1 and which hence 
guarantee optimal convergence behavior of the adaptive 
Algorithm 5 in the sense of Theorem 1. The main result of 
this section is Theorem 3.

5.3.1  Axioms of Adaptivity (Revisited)

Meshes Throughout this section, Q is a mesh of the bound-
ary � = �� of the bounded Lipschitz domain 𝛺 ⊂ ℝd in the 
following sense:

• Q is a finite set of transformed hyperrectangles, i.e., 
each element Q has the form Q = �m(Q̂) for some �m 
from Sect. 3.1, where Q̂ =

∏d−1

i=1
(ai, bi) is an open (d − 1)

-dimensional hyperrectangle;
• for all Q,Q� ∈ Q with Q ≠ Q′ , the intersection is empty, 

i.e., Q ∩ Q� = �;
• Q is a partition of �  , i.e., � =

⋃
Q∈Q Q.

Let ℚ be a set of such meshes. These are referred to as 
admissible. In order to ease notation, we introduce for 
Q ∈ ℚ the corresponding mesh-width function

For 𝜔 ⊆ 𝛤  , we define the element-patches �q(�) of order 
q ∈ ℕ0 and the corresponding set of elements �q(�) as in 
(62)–(63), and we also use the abbreviations from there. As 
in Sect. 5.2.1, we suppose that shape regularity (M1) and 
local quasi-uniformity (M2) are satisfied.

Mesh refinement We suppose that we are given a mesh 
refinement strategy ������(⋅, ⋅) as in Sect. 5.2.1. In particu-
lar, we suppose the existence of some initial mesh Q0 with 
������(Q0) = ℚ and that the refinement axioms (R1)–(R3) 
hold true. Moreover, we even suppose a stronger version of 
(64), which ensures that there are only finitely many refer-
ence element-patches: For all Q ∈ ℚ and arbitrary marked 
elements M ⊆ Q with refinement Q+ ∶= ������(Q,M) , 
any refined element Q ∈ Q ⧵Q+ can only be uniformly 
bisected in any direction, i.e., for any Q ∈ Q , the corre-
sponding element in the parametric domain Q̂ =

∏d−1

i=1
(ai, bi) 

is split into elements in the parametric domain of the form

for some nQ,i ∈ ℕ and k ∈ {1,… , nQ,i} . Here, nQ,i − 1 is the 
number of (uniform) bisections in direction i. Note that (R1) 

h ∈ L∞(� ), h|Q ∶= hQ ∶= |Q|1∕(d−1) for all Q ∈ Q.

Q̂� =

d−1∏
i=1

(a�
i
, b�

i
) with a�

i
= ai + (bi − ai)k∕nQ,i
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yields boundedness of all nQ,i . This stronger version is used 
to prove the auxiliary results (74)–(75) below.

Boundary element spaces With each Q ∈ ℚ , we associ-
ate a finite dimensional space

Let � ∈ � be the corresponding Galerkin approximation, 
defined via the variational formulation (30), to the solution 
� ∈ H−1∕2(� ) of problem (27).

We assume that the same space proper ties 
(S1)–(S2) as in Sect.  5.2.1 hold true. Additionally, 
we assume a slightly stronger version of (S3): For all 
Q ∈ ℚ and all S ⊆ Q , there exists a linear operator 
JS ∶ L2(� ) →

�
� ∈ � ∶ ��⋃(Q⧵S) = 0

�
 with the follow-

ing property (S3’): 

(S3’)  Local projection property. Let qloc, qproj ∈ ℕ0 
from (S2). For all � ∈ L2(� ) and Q ∈ Q with 
𝛱qloc (Q) ⊆ S , it holds that 

 Clearly, (S3’) coincides with (S3) if S = Q . In contrast 
to (S3), (S3’) provides a local projection operator that can 
be additionally used as cut-off operator, which somehow 
replaces (F2) in the proof of discrete reliability (E3), see 
[106, Sect. 4.8] for details.

Besides (S1)–(S2) and (S3’), we suppose the existence 
of constants Cinv,Csz > 0 , qsupp, qsz ∈ ℕ0 , and 0 < 𝜌unit < 1 
such that the following BEM properties (B1)–(B3) hold for 
all Q ∈ ℚ : 

(B1)  Inverse inequality: For all � ∈ � , it holds that 

(B2)  Local approximation of unity: For all Q ∈ Q , there 
exists �Q ∈ � with Q ⊆ supp(𝛹Q) ⊆ 𝜋qsupp (Q) , and 

(B3)  Local L2-stability. For all � ∈ L2(� ) and all Q ∈ Q , 
it holds that 

5.3.2  Optimal Convergence

Recall the definition (55) of the approximation constant 
Capx(s) . With the definitions from Sect. 5.1.1, we say that the 

� ⊂ L2(𝛤 ) ⊂ H−1∕2(𝛤 ).

(JS�)|Q = �|Q if �|�qproj (Q) ∈
{
�|�qproj (Q) ∶ � ∈ �

}
.

‖h1∕2�‖L2(� ) ≤ Cinv ‖�‖H−1∕2(� ).

‖1 − �Q‖L2(supp(�Q))
≤ �unit�supp(�Q)�1∕2.

‖JS�‖L2(Q) ≤ Csz‖�‖L2(�qsz (Q)).

solution � ∈ H−1∕2(� ) belongs to the approximation class s 
with respect to the estimator (32) if

By definition, Capx(s) < ∞ implies that the error estimator � 
decays at least with rate O

(
(#Q)−s

)
 on the optimal meshes 

Q . The following main theorem from [106, Theorem 3.4] 
states that each possible rate s > 0 is in fact realized by 
Algorithm 5. We note that [106] even allows for systems of 
PDEs (such as the linear elasticity problem) with possibly 
complex coefficients. The theorem follows essentially from 
its abstract counterpart Theorem 1 by verifying the axioms 
of Sect. 5.1.3 for the perturbations

Such an optimality result was first proved in [96] for the 
Laplace operator P = −� on a polyhedral domain � . As 
ansatz space, [96] considered piecewise constants on shape-
regular triangulations. The work [90] in combination with 
[6] extends the assertion to piecewise polynomials on shape-
regular curvilinear triangulations of some piecewise smooth 
boundary �  . Independently, [110] proved the same result for 
globally smooth �  and a large class of symmetric and elliptic 
boundary integral operators.

Theorem 3 Let (Qk)k∈ℕ0
 be the sequence of meshes gen-

erated by Algorithm 5 with the corresponding Galerkin 
approximations �k ∈ �k . Then, there hold: 

 (i) Suppose that (M1)–(M2), (R1), and (B2) hold true. 
Then, the residual error estimator satisfies reliability, 
i.e., there exists Crel > 0 such that for all Q ∈ ℚ , 

 (ii) Suppose that (M1)–(M2), (R1), (S1) and (B1) hold true. 
Then, the axioms (E1)–(E2) and convergence of the 
perturbations limk→∞ dl(Qk,Qk+1) = 0 are satisfied. 
These are exactly the assumptions of Theorem 1 (i), 
which implies convergence (56) of the estimator.

 (iii) Suppose that (M1)–(M2), (R1), (S1) and (B1) hold 
true. Then, the axioms (E1)–(E4) are satisfied. These 
are exactly the assumptions of Theorem 1 (ii), which 
implies linear convergence (57) of the estimator.

Capx(s) < ∞.

dl(Q,Q+) ∶= ‖�+ −�‖H−1∕2(� ) for all Q ∈ ℚ

and Q+ ∈ ������(Q).

(73)‖� −�‖H−1∕2(� ) ≤ Crel�.

7 Recall the definition of the diameter of an arbitrary non-empty 
set S ⊆ ℝd−1 , diam(S) ∶= sup

{|� − �| ∶ �, � ∈ S
}
 and the defini-

tion of the distance of two arbitrary non-empty sets S1, S2 ⊆ ℝd−1 , 
dist(S1, S2) ∶= inf

{|� − �| ∶ � ∈ S1, � ∈ S2
}
 . We use the convention 

dist(Q, �) ∶= diam(� ).
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 (iv) Suppose that (M1)–(M2), (R1)–(R3), (S1)–(S2), (S3’) 
and (B1)–(B3) hold true. Then, the axioms (E1)–(E3) 
as well as (R1)–(R3) are satisfied. These are exactly 
the assumptions of Theorem 1 (iii), which implies 
optimal convergence (58) of the estimator.

All involved constants Crel,Clin, �lin, �opt , and Copt (of Theo-
rem 1) depend only on the assumptions made and the dimen-
sion d , the coefficients of the differential operator P , the 
boundary �  , and the parametrization constants C�m

 from 
Sect. 3.1, while Clin, �lin depend additionally on � and the 
sequence (�k)k∈ℕ0

 (see also Remark 25), and Copt depends 
furthermore on Cmin , and s > 0 . The constant copt depends 
only on Cchild, #Q0 , s, and if there exists k0 with �k0 = 0 , then 
also on k0 and �0.
Proof The proof is found in [106, Sect. 4]. Indeed, that work 
considers even more general meshes. It assumes additional 
abstract mesh and refinement properties (69) and (72), as in the 
FEM case, plus (74) and (75), which are automatically satisfied 
in our setting. We note that (69) and (72) follow along the lines 
of the proof of Theorem 2. Thus, in the remainder of the proof 
we only verify that (74) and (75) are satisfied.

Let Q ∈ ℚ . The flattening assumption from Sect. 3.1.3, 
(M1)–(M2), (R1), and the assumption that each element can 
only be uniformly bisected in any direction imply that there 
exist only finitely many reference element-patches of ele-
ments. This shows that each element lies essentially in the 
center of its element-patch, i.e., that7

see [103, Sect. 5.5.4] for details. Similarly, one sees that 
there exist only finitely many reference element-patches of 
points. This implies for all points � ∈ �  and v ∈ H1(� ) the 
following Poincaré-type inequality

see [103, Sect. 5.5.4].  ◻

Remark 24 In contrast to FEM, an efficiency result analo-
gous to (68) for the weighted-residual error estimator � is an 
open question. Indeed, [7] is the only available result in the 
literature. However, [7] is restricted to the two dimensional 
case 𝛺 ⊂ ℝ2 with piecewise constant ansatz functions. 
Moreover, additional (regularity) assumptions on the right-
hand side f are required. More precisely, it then holds that

with some higher order oscillation term osc.
We also mention that [6] proves a so-called weak effi-

ciency of the weighted-residual estimator, which states that

(74)diam(Q) ≲ dist(Q,𝛤 ⧵ 𝜋(Q)) for all Q ∈ Q;

(75)|v|H1∕2(𝜋({�})) ≲ diam(𝜋({�}))1∕2|v|H1(𝜋({�})),

𝜂 ≲ ‖h1∕2(𝜙 −𝛷)‖H−1∕2(𝛤 ) + osc

provided that the sought solution has additional regularity 
� ∈ L2(� ).

Remark 25 As in Remark 22, we mention that only general 
quasi-orthogonality (E4) depends on the sequence (�k)k∈ℕ0

 . 
Along the same lines, one sees that this dependence vanishes 
if the bilinear form ⟨V ⋅ ; ⋅⟩ is symmetric.

Remark 26 Let �0 ⫋ �  be an open subset of � = �� and 
let E0 ∶ L2(�0) → L2(� ) denote the extension opera-
tor that extends a function defined on �0 by zero to 
a function on �  . We define the space of restrictions 
H1∕2(�0) ∶=

{
v|�0

∶ v ∈ H1∕2(� )
}

 endowed with the 
quotient norm v0 ↦ inf

�‖v‖H1∕2(� ) ∶ v��0
= v0

�
 and its 

dual space H̃−1∕2(�0) ∶= H1∕2(�0)
∗ . According to [6, 

Sect.  2.1], E0 can be extended to an isometric operator 
E0 ∶ H̃−1∕2(�0) → H−1∕2(� ) . Then, one can consider the 
integral equation

where (VE0(⋅))|�0
∶ H̃−1∕2(�0) → H1∕2(�0) . In the literature, 

such problems are known as screen problems, see, e.g., [185, 
Sect. 3.5.3]. Theorem 3 holds analogously for the screen 
problem (76). Indeed, the works [6, 90, 96, 110] cover this 
case as well. To ease the presentation, we only focus on 
closed boundaries � = ��.

Remark 27 Let us additionally assume that � contains all 
constant functions, i.e.,

Then, under the assumption that ‖hk‖L∞(�) → 0 as k → ∞ 
(which can be easily guaranteed by marking additional ele-
ments), one can show that 𝕊∞ ∶=

⋃
k∈ℕ0

𝕊k = H−1∕2(� ) , see 
[103, Remark 5.2.9]. This observation allows to follow the ideas 
of [23] and to prove Theorem 3 even if the bilinear form ⟨V ⋅ ; ⋅⟩ 
is only elliptic up to some compact perturbation, provided that 
the continuous problem is well-posed. This includes, e.g., adap-
tive BEM for the Helmhotz equation, see [199, Sect. 6.9]. For 
details, the reader is referred to [22, 23].

6  Adaptive IGAFEM in Arbitrary Dimension

In this section, we consider two concrete realizations of the 
abstract adaptive FEM framework from Sect. 5.2, namely 
hierarchical splines in Sect. 6.1 and T-splines in Sect. 6.2. 

𝜂 ≲ ‖h1∕2(𝜙 −𝛷)‖L2(𝛤 )

(76)(VE0�)|�0
= f |�0

,

(� ↦ c) ∈ 𝕊 for all c ∈ ℝ.
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To ease the presentation, we focus on single-patch Lipschitz 
domains 𝛺 ⊂ ℝd as in Sect. 3.1. For hierarchical splines, the 
generalization to multi-patch domains is notationally more 
involved but straightforward and will thus only be sketched 
in Sect. 6.1.5, where we comment on the minor changes in 
the proof. Instead, for T-splines, since the direction of bisec-
tion on admissible T-meshes is periodically changed, one 
cannot avoid hanging nodes at the interfaces of multi-patch 
domains as in Sect. 6.1.5. This complicates the generaliza-
tion for T-splines. Indeed, such a generalization is not avail-
able yet. For hierarchical splines, the theoretical findings 
are underlined by numerical experiments in Sect. 6.1.6. For 
numerical experiments with T-splines and the considered 
refinement strategy, we refer to [119]. As in Sect. 3.2, in 
the following we restrict ourselves to the case d̂ = d , i.e., a 
d-dimensional domain 𝛺 ⊂ ℝd.

6.1  Adaptive IGAFEM with Hierarchical Splines

For the IGAFEM setting with hierarchical B-splines, we 
start with the single-patch domain. Let � ∶= (p1,… , pd) be 
a vector of positive polynomial degrees and �0 be a multi-
variate open knot vector on �̂ = (0, 1)d with induced initial 
mesh Q̂0 ∶= Q̂

0
 . We assume that ̂��(�

0) and ̂���
(��) with �� 

and �� from the parametrization � ∶ �̂ → � (see Sect. 3.1) 
are compatible to each other as in Sect. 3.2.2. Note that 
�̂�(�

0) = �̂H
�
(Q̂0,�

0) , i.e., the starting space corresponds 
to standard B-splines. We fix the admissibility parameter 
� (see (38)) as well as the basis and the kind of meshes 
that we want to consider, i.e., H-admissible or T -admis-
sible meshes, and abbreviate the set of all corresponding 
admissible meshes as ℚ̂ and the corresponding refinement 
strategy as ������(⋅, ⋅) , see Sect. 4.1.3. For all Q̂ ∈ ℚ̂ , let 
�̂ ∶= �̂H

�
(Q̂,�0) ∩ H1

0
(�̂) be the associated ansatz space in 

the parametric domain, see Sect. 4.1.1. As in Sect. 3, we 
define the corresponding quantities in the physical domain 
via the parametrization � ∶ �̂ → � , i.e., the meshes are 
given by

and the discrete space associated to Q is defined as

Q ∶=
{
�(�Q) ∶ �Q ∈ �Q

}
for all �Q ∈ �ℚ,

ℚ ∶=
{
Q ∶ �Q ∈ �ℚ

}
,

������(Q,M) ∶=
{
�(�Q) ∶ �Q ∈ ������(�Q, �M)

}
for all Q ∈ ℚ,M ⊆ Q

with �M ∶=
{
�−1(Q) ∶ Q ∈ Q

}
,

� ∶=
{
V̂◦�−1 ∶ V̂ ∈ �̂

}
.

In the following lemma, we give two bases in terms of (T)
HB-splines for �̂ . The proof is given in [105, Corollary 3.1] 
and relies on the fact that HB-splines restricted to any 
(d − 1)-dimensional hyperface of the unit cube are again 
HB-splines. Clearly, these bases can be transferred to the 
physical domain via the parametrization � . We stress that 
the chosen basis is theoretically irrelevant for the realization 
of Algorithm 5 (in particular for the solving step), see also 
Sect. 6.1.6 for a detailed discussion.

Lemma 3 Let Q̂ be a hierarchical (not necessarily admis-
sible) mesh in the parametric domain. Then, the hierarchical 
B-splines Ĥ�(Q̂,�0) ∩ H1

0
(�̂) and the truncated hierarchical 

B-splines T̂�(Q̂,�0) ∩ H1
0
(�̂) are both bases of �̂.

The given setting fits into the abstract framework of 
Sect. 5.2, and in particular the axioms for abstract adap-
tive FEM are satisfied, as we will see in Theorem 4 below. 
For T -admissible meshes, the proof of this result is implic-
itly given in [46, 47]. Independently, the theorem has been 
proved for H-admissible meshes of class � = 2 in [105], 
see also [103, Sect. 4.4–4.5] for details. We also stress that 
the last assertion (77) of the theorem is new. It states that 
the approximation class with respect to the minimal total 
error and admissible hierarchical meshes defined in (66) is 
equivalent to the one with arbitrary hierarchical meshes. In 
particular, the approximation class does neither depend on 
whether H-admissible or T -admissible meshes are consid-
ered nor on the admissibility parameter � . For its formula-
tion, we set for s > 0

with

where ℚ(N) ∶=
{
Q ∈ ℚ ∶ #Q ≤ N

}
 . Here, we say that Q 

is a hierarchical mesh if the corresponding set Q̂ defined via 
� is a hierarchical mesh in the parametric domain obtained 
by arbitrary bisections of the initial mesh Q̂0 . We also note 
that � as well as osc have actually only been defined for 
admissible meshes, but the definitions can be extended in 
an obvious way.

Theorem 4 Hierarchical splines on admissible meshes sat-
isfy the mesh properties (M1)–(M2), the refinement proper-
ties (R1)–(R3), and the space properties (S1)–(S3) and (F1)–
(F3). The involved constants depend only on the dimension 
d , the parametrization constant C� of Sect. 3.1, the degree 
� , the initial knot vector �0 , and the admissibility parameter 
� . In particular, Theorem 2 is applicable. Together with 
Theorem 1, this yields reliability (67), efficiency (68), and 

Ctot,H
apx

(s) ∶= sup
N≥#Q0

min
Q∈ℚH(N)

�
Ns inf

V∈𝕊

�‖u − V‖H1(�) + osc(V)
��
.

ℚ
H(N) ∶=

{
Q hier. mesh ∶ #Q ≤ N

}
⊇ ℚ(N),



Mathematical Foundations of Adaptive Isogeometric Analysis  

1 3

4527

linear convergence at optimal rate (57)–(58) of the residual 
error estimator  (23), when the adaptive Algorithm 5 is 
employed. Moreover, for all s > 0 , there exists C�

opt
> 0 

depending only on Cclos from (R2) (and thus in particular on 
� ) and s such that

The proof of Theorem 4 is split over Sect. 6.1.1–6.1.4, 
and it relies mostly on the properties that we have already 
introduced in Sect. 4.1. Sections 6.1.1–6.1.3 respectively 
focus on the verification of the mesh properties (M1)–(M2), 
the refinement properties  (R1)–(R3), and the space proper-
ties (S1)–(S3) and (F1)–(F3), while Sect. 6.1.4 provides the 
equivalence (77) of the approximation classes.

Remark 28 While (77) states that the approximation class is 
independent of the admissibility class of the mesh, it clearly 
depends on the degree � of the space � . An interesting ques-
tion arises: does the approximation class depend on the 
continuity of the splines in � ? In [25] it is proved that the 
approximation classes are equivalent for C0 finite elements 
and discontinuous Galerkin methods. We will show in a 
numerical test in Sect. 6.1.6 that the same does not hold true 
for high continuity splines if elements are refined by bisection: 
for certain functions, the order of the approximation class to 
which they belong decreases when we increase the continuity.

Remark 29 We also mention that the works [32, 126] have 
recently proposed local multilevel preconditioners for the 
stiffness matrix of symmetric problems which lead to uni-
formly bounded condition numbers on admissible hierarchi-
cal meshes, see also Sect. 6.1.6 for some details. An impor-
tant consequence is that the corresponding PCG solver is 
uniformly contractive. It has recently been proved in [104] 
that such a contraction is the key to prove that an adaptive 
algorithm which steers mesh refinement and an inexact PCG 
solver leads to optimal convergence not only with respect to 
the number of elements but also with respect to the overall 
computational cost (i.e., computational time).

6.1.1  Mesh properties

Shape regularity (M1) is trivially satisfied in the para-
metric domain, since each refined element is uniformly 
bisected in each direction. Due to the regularity of the 
parametrization � of Sect. 3.1, the property transfers to 
the physical domain.

Local quasi-uniformity (M2) in the parametric domain 
follows from Corollary 1. Again, the regularity of the para-
metrization guarantees the property also in the physical 
domain.

(77)Ctot,H
apx

(s) ≤ Ctot
apx

(s) ≤ C�
opt
Ctot,H
apx

(s).

6.1.2  Refinement Properties

The child estimate (R1) is trivially satisfied with 
Cchild = 2d , since each refined element in the parametric 
domain is uniformly bisected in each direction. The clo-
sure estimate (R2) is just the assertion of Proposition 8.

According to [49, Sect. 2.2] (in the case of T -admissi-
ble meshes) and [164, Sect. 3.1.4] (in the case of H-admis-
sible), the overlay

of two admissible meshes Q̂, Q̂× in the parametric domain is 
again admissible (of the same class). Obviously, this prop-
erty immediately transfers to the physical domain. For H
-admissible meshes of class � = 2 , this result is also found in 
[105, Sect. 5.5]. Clearly, the resulting mesh Q+ in the physi-
cal domain satisfies the overlay property (R3).

6.1.3  Space Properties

Nestedness Nestedness (S1) follows immediately from 
Proposition 3. The inverse inequality (F1) in the parametric 
domain follows easily via standard scaling arguments, since 
each hierarchical spline is a polynomial of fixed degree � 
on each mesh element, see Proposition 3 (iv). Due to the 
regularity of the parametrization � of Sect. 3.1, this property 
transfers to the physical domain.

Local domain of definition We start with an auxiliary 
result about element-patches.

Lemma 4 Let k1, k2 ∈ ℕ0 , and let Q,Q� ∈ Q be such that 
Q� ∈ Q ⧵�k1+k2 (Q) . Then, 𝛱k1 (Q�) ⊆ Q ⧵𝛱k2 (Q).

Proof By contradiction, let us assume that there exists 
Q�� ∈ �k1 (Q�) such that Q�� ∈ �k2 (Q) . By the definition of 
element-patches, it is clear that Q� ∈ �k1 (Q��) . Moreover, 
for any k, k� ∈ ℕ0 , it holds that �k+k� (Q) = �k(�k� (Q)) , and 
therefore Q� ∈ �k1+k2 (Q) , which contradicts the hypothe-
sis.   ◻

It suffices to prove (S2) in the parametric domain. Let 
Q̂ ∈ ℚ̂ and Q̂+ ∈ ������(Q̂) , and let us recall from (43) the 
set I�,new

Q̂+

 of indices associated to new functions of level � as 

well as the related sets R̂+, �̂R̂+
 , and �̂

Q̂
 from (44). We now 

introduce the subdomain formed by the support of their 
mother functions, namely

�Q+ ∶=
{
�Q ∈ �Q ∶ ∃�Q� ∈ �Q× with �Q ⊆ �Q�

}

∪
{
�Q� ∈ �Q× ∶ ∃�Q ∈ �Q with �Q� ⊆ �Q

}
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with �𝛺�R+
⊆ �𝛺new

+
.

We first show that there exists q1 ∈ ℕ depending on the 
degree � and the admissibility class � such that 
�𝛺�R+

⊆ �𝛺new
+

⊆ 𝜋q1(�Q ⧵ �Q+) : Note that any function T̂�

+,�,�
 as 

in the definition of �̂new
+

 was activated during refinement, 
hence the support of its mother function must intersect an 
element in the refined region Q̂� ∈ Q̂ ⧵ Q̂+ with level �′ < � . 
T h e n ,  a n y  e l e m e n t  Q̂�� ∈ Q̂ ∩ Q̂+  w i t h 
Q̂�� ∩ supp(mot(T̂�

+,�,�
)) ≠ � has obviously level �′′ > � . The 

fact that Q̂ ∈ ℚ̂ and Proposition 6 yield that ��� ≤ �
� + � − 1 . 

We conclude that all elements in Q̂ ∩ Q̂+ intersecting 
supp(T̂�

+,�,�
) have comparable level, which gives the desired 

result.
This  implies  that  �Q ⊆ �𝛺 ⧵ �𝛺�R+

= �𝛺�Q  for  any 
Q̂ ∈ Q̂ ⧵�q1 (Q̂ ⧵ Q̂+) , and by Corollary 3 (which can be 
proved along the same lines for the current case of homo-
geneous Dirichlet boundary conditions, see also  (78) 
below), (S2) holds with qloc = q1 and qproj = 0 . In fact, we 
see from Lemma 4 that property (S2) holds for any given 
qproj ∈ ℕ , with qloc = qproj + q1.

Scott–Zhang-type operator Due to the regularity of 
the parametrization � of Sect. 3.1, it is sufficient to provide 
for all Q̂ ∈ ℚ̂ an operator Ĵ ∶ H1

0
(�̂) → �̂ with the proper-

ties (S3), (F2)–(F3) in the parametric domain. We define 
this operator similarly as Ĵ H

�,Q̂
 of Sect. 4.1.4, but now have 

to take into account the homogeneous boundary 
conditions

where

B̂�

�,�
 is the mother B-spline of the THB-spline T̂�

�,�
 (see (36)), 

and �̂�
�,�

 is the corresponding dual functional from Sect. 2.2.2.
We have seen in Proposition 10 that S∗

ext
(Q̂) is connected 

and the number of contained elements is uniformly bounded. 
In particular, this yields the existence of a uniform constant 
q2 ∈ ℕ such that for any element Q̂ ∈ Q̂ of level �,

With Corollary 2, this immediately gives (S3).

�̂new
+

∶=
⋃{

supp(mot(T̂�

+,�,�
)) ∶ � ∈ I

�,new

Q̂+

,

� = 0,… ,N+ − 1
}
,

(78)Ĵ ∶H1
0
(�̂) → �̂, v̂ ↦

N−1∑
�=0

∑
�∈Ĩ

�

�̂�
�,�
(̂v)T̂�

�,�
,

Ĩ
�

∶=
{
� ∶ B̂�

�,�
∈ B̂

�

∩ Ĥ�(Q̂,�0) ∩ H1
0
(�̂)

}
,

(79)S∗
ext
(�Q) ⊆ 𝜋q2 (�Q),

Moreover, the local L2-stability of Proposition 11 is also 
valid for Ĵ  , see [48]. Together with the local projection prop-
erty (S3) and the inverse inequality (F1), the Poincaré (for 
elements away from the boundary) as well as the Friedrichs 
inequality (for elements close to the boundary) readily imply 
for all v̂ ∈ H1

0
(�̂) and Q̂ ∈ Q̂ that

see [48] or [105, Sect.  5.10] for details. We conclude 
(F2)–(F3) with qsz = q2.

6.1.4  Equivalence of Approximation Classes

The assertion (77) follows easily from the closure estimate 
(R2) and the fact that the minimal total error decreases when 
the underlying mesh is refined, which itself is an immediate 
consequence of the nestedness property in Proposition 3(iii). 
In the following, we elaborate ideas from [79, Appendix C], 
where a similar assertion on triangular meshes is proved: 
Since ℚ(N) ⊆ ℚH(N) and hence Ctot,H

apx
(s) ≤ Ctot

apx
(s) , we only 

have to prove the second inequality in (77). For any given 
mesh Q , we abbreviate the considered error quantity

Clearly, it holds that

Let N ∈ ℕ0  be arbitrary and Q⋆ ∈ ℚH(N) with 
𝜚⋆ = minQ∈ℚH(N) 𝜚 . The mesh Q⋆ results from the initial 
mesh Q0 via bisecting a sequence of marked elements 
(Mj)

k−1
j=0

 . We define a sequence of associated admissible 
m e s h e s  v i a  Qj ∶= ������(Qj−1,Mj−1 ∩Qj−1)  fo r 
j = 1,… , k , and we define Q⋆ ∶= Qk , usually called the 
admissible closure of Q⋆ . Indeed, Q⋆ is finer than Q⋆ and 
hence #Q ≤ #Q⋆ . The closure estimate (R2) shows that

For Q⋆ ≠ Q0 , this implies that #Q⋆ ≃ #Q⋆ and thus 
#Q⋆ ≤ CN for some uniform constant C > 0 . It holds that

Finally, elementary estimation yields for arbitrary M ∈ ℕ0 
and N ∶= ⌊M∕C⌋ that

‖(1 − �J)�v‖
L2(�Q) ≲ ��Q�1∕d ‖�v‖

H1(S∗ext (
�Q))

‖∇�J�v‖
L2(�Q) ≲ ‖�v‖

H1(S∗ext (
�Q)),

� ∶= inf
V∈�

�‖u − V‖H1(�) + osc(V)
�
.

�+ ≤ � for all Q+ ∈ ������(Q).

#Q⋆ − #Q0 ≲
k−1∑
j=0

#(Mj ∩Qj) ≤
k−1∑
j=0

#Mj ≲ #Q⋆ − #Q0.

min
Q∈ℚ(CN)

(
(CN)s𝜚

) ≤ (CN)s𝜚⋆ ≤ CsNs𝜚⋆ ≤ CsCtot,H
apx

(s).



Mathematical Foundations of Adaptive Isogeometric Analysis  

1 3

4529

Taking the supremum over all M ∈ ℕ0 , we conclude the 
proof of (77).

6.1.5  Extension to Multi‑patch Domains

Let now � be a multi-patch domain as in Sect. 3.1.2. For 
each m = 1,… ,M , let �m be a vector of positive polynomial 
degrees and �0

m
 be a multivariate open knot vector on 

�̂ = (0, 1)d with induced initial mesh Q̂0,m ∶= Q̂
0

m
 . We 

assume that �̂�m
(�0

m
) and �̂��m

(��m
) with ��m

 and ��m
 from 

the parametrization �m ∶ �̂ → �m (see Sect. 3.1.2) are com-
patible to each other as in Sect.  3.2.2. Note that 
�̂�m

(�0
m
) = �̂H

�m
(Q̂0,m,�

0
m
) . Moreover, we assume that �m and 

�0
m

 satisfy the compatibility condition (P2’) of Sect. 3.2.2. 
We fix the admissibility parameter � (see (38)) as well as the 
basis and the kind of meshes that we want to consider, i.e., 
H-admissible or T -admissible meshes, and abbreviate for 
each m = 1,… ,M the set of all corresponding admissible 
meshes as ℚ̂m , see Sect. 4.1.3. Moreover, we abbreviate 
ℚm ∶=

{
Qm ∶ Q̂m ∈ ℚ̂m

}
 with Qm ∶=

{
�m(Q̂) ∶ Q̂ ∈ Q̂m

}
 . 

We define the set of all admissible meshes ℚ as the set of all

such that there are no hanging nodes on any interface 
�m,m� = �m ∩�m�  with m ≠ m′ , see also (P1) of Sect. 3.1.2.

For Q ∈ ℚ , the associated ansatz space is defined as

where the multi-patch space without boundary conditions is

with the space of hierarchical splines on each patch

To obtain bases of the space � , we first define

min
Q∈ℚ(M)

(Ms𝜚) ≲ min
Q∈ℚ(CN)

(
(CN)s𝜚

)
≲ Ctot,H

apx
(s).

Q =

M⋃
m=1

Qm with Qm ∈ ℚm

� ∶= �̃ ∩ H1
0
(�),

�̃ ∶=
{
V ∈ C0(�) ∶ V|�m

∈ �
H
�m
(Q̂m,�

0

m
), for m = 1,… ,M

}
,

�
H
�m
(Q̂m,�

0
m
) ∶=

{
V̂◦�−1

m
∶ V̂ ∈ �̂

H
�m
(Q̂m,�

0
m
)
}
.

H�m
(Q̂m,�

0
m
) ∶=

{
�̂◦�−1

m
∶ �̂ ∈ Ĥ�m

(Q̂m,�
0
m
)
}
,

T�m(Q̂m,�
0
m
) ∶=

{
�̂◦�−1

m
∶ �̂ ∈ T̂�m(Q̂m,�

0
m
)
}
.

The reference [105, Proposition 3.1] shows that HB-splines 
restricted to any (d − 1)-dimensional hyperface of the unit 
cube are again HB-splines. Hence, the assumption (P2’) is 
also satisfied if the sets B�m

(�m) and B�m�
(�m� ) are replaced 

by the sets H�m
(Q̂m,�

0
m
) and H�m�

(Q̂m� ,�0
m� ) . With a similar 

proof, one can also show the assertion of [105, Proposi-
tion 3.1] for THB-splines. Thus, (P2’) is also valid for the 
sets T�m(Q̂m,�

0
m
) and T�m� (Q̂m� ,�0

m� ) . This allows to construct 

a basis of �̃ similarly as in Sect. 3.2.2 by gluing (T)HB-
splines together at interfaces. According to [105, Proposi-
tion 3.1], discarding all resulting functions that are non-zero 
on the boundary �� gives a basis of �.

To obtain admissible meshes starting from the initial 
one, we adapt the single-patch refinement strategies from 
Sect. 4.1.3. For arbitrary Q ∈ ℚ and Q ∈ Qm with corre-
sponding element Q̂ ∶= �−1

m
(Q) in the parametric domain, let 

Nm(�Q) ⊆ �Qm either denote the corresponding H-neighbor-
hood in the case of H-admissible meshes or the T -neighbor-
hood in the case of T -admissible meshes, see Sect. 4.1.3. We 
define the neighbors of Q as

i.e., apart from the standard neighbors within the patch, we 
add the adjacent elements from other patches to avoid hang-
ing nodes. Then, it is easy to see that Algorithm 6 returns 
an admissible mesh. Indeed, one can show that the set of all 
possible refinements ������(Q0) even coincides with ℚ , see 
[103, Proposition 5.4.3] in the case of H-admissible meshes 
of class � = 2 . 

We stress that Theorem 4 holds accordingly for the given 
setting. Here, the mesh properties (M1)–(M2) and the child 
estimate (R1) are trivially satisfied. The closure estimate (R2) 
can be proved similarly as in the single-patch case, see [103, 
Sect. 5.5.7] in the case of H-admissible meshes of class � = 2 . 
The overlay in (R3) can be built patch-wise as in Sect. 6.1.2. 
Nestedness (S1) follows from Proposition 3. The local domain 
of definition property (S2) and the inverse inequality (F1) 

N(Q) ∶=
{
Q� ∈ Qm ∶ Q̂� ∈ Nm(Q̂)

}

∪
⋃
m�≠m

{
Q� ∈ Qm� ∶ dim(Q ∩ Q�) = d − 1

}
,
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follow similarly as in the single-patch case. It remains to 
check the Scott–Zhang type properties (S3) and (F2)–(F3). 
To construct a suitable operator J ∶ H1

0
(�) → � , one can 

proceed similarly as in (78) by additionally gluing together 
THB-splines at interfaces and considering the average of the 
dual functions at interfaces. Then, the required properties can 
be seen as in Sect. 6.1.3. Details are left to the reader.

Remark 30 In principle, the requirement that there are no 
hanging nodes on the interface can be removed. In fact, start-
ing from a level zero mesh without hanging nodes in the 
multi-patch domain, it is possible to define spline functions 
with C0 continuity with a support that may intersect differ-
ent patches as in Sect. 3.2.2. Then, we can define the multi-
patch spaces of next levels by uniform refinement of the 
whole multi-patch domain. These spaces satisfy the condi-
tions given in the abstract setting of [115], and the recursive 
algorithm for the definition of hierarchical splines can be 
applied to construct hierarchical multi-patch basis functions, 
replacing the sequence of B-spline spaces by a sequence of 
multi-patch spaces with conforming meshes, see [41] and 
[111, Sect. 3.4]. Most of the definitions of Sect. 4.1, and 
in particular the neighborhoods, have a seamless extension 
to this setting. Although quasi-interpolants for the uniform 
multi-patch case have been introduced in [50], the complete 
adaptive theory in the non-conforming case has not been 
analyzed yet, and is beyond the scope of this work.

6.1.6  Numerical Experiments

We now apply the adaptive IGAFEM with hierarchical 
splines, analyzed in the previous sections, to the Poisson 
problem. In particular, in (17)-(18), the matrix � is the 
identity matrix, and � and c are zero. Although not directly 
covered by our analysis, we also consider non-homogeneous 
Dirichlet–Neumann boundary conditions for some cases. 
In all three numerical experiments, we set the degrees 
p1 = … = pd =∶ p . The continuity within a patch is taken to 
be Cp−1 across elements, also for the elements of the coars-
est mesh. All the numerical tests of this section are run with 
THB-splines but, as we mentioned above, the computed 
solution of the Galerkin problem is the same independently 
of the basis.

Comments on the use of HB- and THB-splines In spite 
of having the same solution for HB-splines and THB-splines, 
the choice of the basis will affect the sparsity pattern and the 
condition number of the matrix appearing in the linear sys-
tem, which can also affect the performance of the method.

In particular, the reduced support of THB-splines always 
gives a lower number of nonzero entries in the matrix when 
compared to HB-splines, but to control this number it is 
important to control the interaction between coarse and 
fine functions, for which it is necessary to use suitable 

admissible meshes. We recall from Proposition 5 that the 
number of HB-splines (resp. THB-splines) with support on 
some fixed element of an H-admissible (resp. T -admissi-
ble) is uniformly bounded, while in general this is not the 
case for HB-splines on T -admissible meshes. The examples 
in [36, 113] show that the gain in the number of nonzero 
entries when using THB-splines instead of HB-splines 
ranges between 10% and 50%, with the biggest gains in T
-admissible meshes or non-admissible ones, and the smallest 
ones in H-admissible meshes. We remark that these num-
bers depend on the degree p and the admissibility class � , 
but also on the kind of refinement (edge refinement, corner 
refinement...) required for a good approximation of the solu-
tion, see the aforementioned references for more details. We 
also note that, for non-admissible meshes, the number of 
nonzero entries in the matrix can behave as bad as O(N2

dof
) , 

with Ndof the number of degrees of freedom. For instance, 
this is the case for HB-splines in the meshes of Fig. 15(c). 
The efficient assembly of the matrix for hierarchical splines 
is also an important issue, and an active topic of research, as 
the tensor-product techniques cannot be trivially extended 
to the hierarchical case. In this sense, the recent work [174] 
proposes a method based on interpolation and the use of 
look-up tables, which allows to reduce the complexity com-
pared to Gaussian quadrature, for bivariate HB-splines on 
H-admissible meshes of class � = 2.

Regarding the condition number, all the numerical tests 
in [36, 113] show that in any hierarchical mesh the condition 
number of the mass matrix is always equal or smaller for 
THB-splines than for HB-splines. Concerning the stiffness 
matrix, although in most cases the condition number is also 
lower for THB-splines, the property is not valid in general, 
and some counterexamples have been shown in the same 
references. The numerical results from those papers do not 
show a clear behavior on how the basis and the admissibility 
class influence the condition number of the stiffness matrix, 
and as for the nonzero entries, the numbers seem to strongly 
depend on the kind of refinement (corner refinement, edge 
refinement...)

Related to the condition number, multigrid solvers and 
preconditioners for hierarchical splines have been introduced 
in [125], where the subspace of each level of the precondi-
tioner coincides with the one in the HB-splines construction 
algorithm, i.e., it is given by spanĤ

�

 . Local variants of the 
preconditioner with subspaces for each level formed by func-
tions with support in �̂� or its vicinity have been analyzed in 
[32, 126]. In these works, it has been proved that the condi-
tion number is uniformly bounded with respect to the num-
ber of levels. The numerical results of those papers show 
a better behavior of the preconditioners for THB-splines 
than for HB-splines. Moreover, the theoretical analysis also 
shows that it is necessary to use HB-splines (resp. THB-
splines) on H-admissible (resp. T -admissible) meshes to 
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obtain a bounded condition number independent of the num-
ber of levels, see [32] for details.

Nevertheless, we cannot give a clear answer about which 
basis is better to use. While THB-splines improve the spar-
sity pattern of the matrix, and in most cases behave better 
with respect to the condition number, the rectangular support 
of HB-splines may be easier to implement. Still, from the 
comments above there is one important suggestion we can 
make: the admissibility type ( H - or T -admissible) should 
be in accordance with the chosen basis. Recall that any H
-admissible mesh is also T -admissible by definition, but not 
vice versa.

Edge singularities on square In the first numerical test, 
we choose a problem that was already considered in [30, 
44]. The domain is given by the unit square � = (0, 1)2 , in 
such a way that the parametrization � is the identity. We 
impose homogeneous Dirichlet conditions on the boundary 
�� , while the source function f is chosen such that the exact 
solution is given by

which is singular at the edges {0} × (0, 1) and (0, 1) × {0} . 
In fact, it can be shown that u ∈ H�−�(�) , with 
� = 2.3 + 1∕2 = 1 + 9∕5 , for every 𝜖 > 0 . Hence, the 
expected convergence rate for uniform refinement is 
O(h9∕5) = O(N

−9∕10

dof
) with respect to the mesh size h and to 

the number of degrees of freedom Ndof , respectively.
For the simulation, we consider spaces of hierarchical 

B-splines with degree p ∈ {2, 3, 4, 5} . The initial mesh Q0 
consists of 4 × 4 elements, and Algorithm 5 is run using the 
residual a posteriori estimator (23). For marking we use 
Dörfler’s strategy (54) with parameter � = 0.25 and the con-
stant Cmin = 1 . For refinement, we use Algorithm 2 for T
-admissible meshes, with a value of the admissibility class 
� = 2.

Some meshes for the four different degrees at iteration 
k = 15 are displayed in Fig. 26. It is evident that the adaptive 
algorithm satisfactorily refines near the edges, specially for 
high degree.

In Fig. 27, we show the behavior of the error in the 
energy norm and the estimator with respect to the number of 
degrees of freedom, both for the adaptive method described 
above and for uniform refinement. It is clearly seen that 
adaptivity drastically reduces the number of degrees of free-
dom required to achieve the same numerical error. Moreo-
ver, the error and the estimator curves always converge with 
the same order, as expected from the results of reliability and 
efficiency of the estimator.

From Fig. 27, it can also be seen that the convergence is 
not equal to p/2 for high p. In fact, Fig. 28 shows the same 
convergence rate for degrees p = 4 and p = 5 , which seems 
equal to 1.8. This behavior was analyzed with heuristic 

u(x, y) = x2.3(1 − x)y2.9(1 − y),

arguments in [103, Sect. 4.6.2], noting that to obtain the 
optimal convergence rate sopt = p∕2 in the presence of edge 
singularities, it is necessary to consider anisotropic elements 
in a mesh graded towards the edges, while the bisection 
refinement that we consider attains at most a convergence 
rate equal to

where sunif is the convergence rate in case of uniform refine-
ment. In this particular test, its value is sunif = 0.9 , and in 
fact the convergence rate that we observe in Fig. 28 is twice 
this value.

Finally, we compare the behavior of the refinement 
Algorithms  1 and  2, that is, for H-admissible and T
-admissible meshes, respectively. We set the degree p = 4 , 
and the admissibility class � = 2 . For comparison, we 
also include the results of refinement without ensuring 
admissibility, that is, refining only elements marked by the 
marking strategy without any addition, which we denote 
by � = ∞ . The results presented in Fig. 29 show that the 
convergence order is the same in the three cases, both for 
the error and the estimator, as predicted by theory (for 
𝜇 < ∞ ). Moreover, in this particular case, there is small 
difference between the error obtained with the different 
admissibility types, although the use of non-admissible 

s = min(2sunif , sopt ),

Fig. 26  Test with edge singularities: meshes obtained after 15 itera-
tions of the adaptive algorithm for T -admissible meshes and � = 2
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meshes gives slightly better results in terms of degrees 
of freedom.

Corner singularity on curved L-shaped domain The 
second numerical test was presented in [36]. We consider 
the curved L-shaped domain shown in Fig. 30, which is an 
affine transformation of the benchmark in [76]. The solution 
is given by

with polar coordinates (x, y) = (r cos(�), r sin(�)) , by setting 
f = 0 and imposing non-homogeneous Dirichlet boundary 
conditions on �� . We note that the domain is formed by 
three quadratic NURBS patches, and for the discretization 

u(x, y) = r2∕3 sin(2�∕3),Fig. 27  Test with edge singularities: energy error |u − Uk|H1(�) and 
residual estimator for degree p ∈ {2, 3, 4, 5} . Comparison of uniform 
and adaptive refinement

Fig. 28  Test with edge singularities: energy error |u − Uk|H1(�) for 
degree p from 2 to 5. For high degree, the optimal convergence rate 
is not reached

Fig. 29  Test with edge singularities: residual estimator and energy 
error |u − Uk|H1(�) for degree p = 4 . Results for H-admissible and T
-admissible meshes of class � = 2 , and for non-admissible meshes
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we follow the method explained in Remark 30 so that the 
meshes may be non-conforming on the interfaces.

We consider discrete spaces of degree p ∈ {2, 3, 4, 5} , 
with Cp−1 continuity inside each patch, and C0 continuity 
across the interfaces. For the Dörfler marking (54), we 
choose the parameter � = 0.9 and Cmin = 1. To understand 
the role of the admissibility class, we consider both H
-admissible meshes as in Algorithm 1, and T -admissible 
meshes as in Algorithm 2, with the value of the admissibil-
ity class � ranging from 2 to 4. For comparison, we also 
include results for non-admissible meshes, which we denote 
as above by � = ∞ . The algorithm is run until we reach a 
maximum of 13 levels.

In Fig. 31, we show the value of the energy error and the 
residual estimator with respect to the number of degrees of 
freedom, considering degree p = 2 with uniform refinement 
and with adaptive refinement for T -admissible meshes of 
class � = 2 . As in the previous test, the error and the estima-
tor converge with the same rate, which in the case of uniform 
refinement is equal to 1/3, while for adaptive refinement the 
optimal rate of 1 is reached.

In Fig. 32, we show the results of convergence of the 
energy error with respect to the number of degrees of free-
dom for the different degrees and admissibility types consid-
ered. In all the tests, non-admissible meshes show a better 
ratio between the error and the number of degrees of free-
dom than any other choice. Moreover, T -admissible meshes 
and higher values of � require less degrees of freedom than 
H-admissible ones and lower values of � , respectively, to 
attain the same error. We note, however, that except for 
degree p = 2 the asymptotic regime has not been reached. In 

fact, from Fig. 32a and 32b it seems that, in the asymptotic 
regime, the error will be very similar for all the admissibil-
ity classes. However, H-admissible meshes with low values 
of � need more iterations to reach the asymptotic behavior. 
See also the results for the L-shaped domain in [105] and 
[103, Sect. 4.6.3].

This behavior can be better understood with the help 
of the plots in Fig. 33, where we show the mesh after 8 
refinement steps for degree p = 4 and for different types of 
admissibility. While the estimator satisfactorily marks ele-
ments to refine the mesh towards the corner, to maintain the 
admissibility of the mesh, the refinement algorithm forces 
to refine some elements away from it. This behavior is more 
significant for H-admissible meshes than for T -admissible 
meshes, and also for lower values of the admissibility class 
� than for higher ones.

Test about the approximation class The following test 
shows that the approximation class depends on the continu-
ity of the discrete spaces.

The domain is the unit square � = (0, 1)2 , we set homo-
geneous Dirichlet boundary conditions, and the right-hand 
side is chosen such that, for parameters 0 < a < b < 1 , the 
exact solution is given by

The solution is smooth everywhere except at the vertical 
lines x = a and x = b , where it is only C1 and it has edge 
singularities. To understand how the approximation class 

u(x, y) =

⎧⎪⎨⎪⎩

sin2
�
�(x − a)

b − a

�
sin(�y), if a ≤ x ≤ b,

0, elsewhere.

Fig. 30  Curved L-shaped domain: domain and initial mesh

Fig. 31  Curved L-shaped domain: energy error and residual estimator 
for degree p = 2 , for uniform refinement and adaptive refinement on 
T -admissible meshes with � = 2
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depends on the continuity, we run the adaptive algorithm 
starting from a mesh Q0 of 2 × 2 elements, with the Dörfler 
marking (54) with parameters � = 0.5 and Cmin = 1 , for fixed 

degree p = 4 and T -admissibility with � = 4 , and we change 
the continuity using C1 , C2 , and C3 hierarchical splines. We 
run two different tests: in the first one we choose a = 1∕4 
and b = 3∕4 , in such a way that the singularity lines coincide 
with lines of the mesh; in the second test we set a = 1∕5 and 
b = 4∕5 , in such a way that, since we always refine by bisec-
tion, the singularity lines can never coincide with lines of the 
mesh. We note that in the second test we increased the num-
ber of quadrature points per element, to compute accurately 
the integrals on elements crossed by the singularity lines.

The errors in the energy norm for the first test are shown 
in Fig. 34a. Similar to the edge singularity case from above, 
we see that for high continuity splines the convergence rate 
is only O(N

−3∕2

dof
) , while uniform refinement (not displayed) 

leads to O(N
−3∕4

dof
) . Instead, for C1 splines we obtain the con-

vergence rate O(N
−p∕2

dof
) , and the same rate is also obtained 

for uniform refinement (not displayed). This test shows with 
a simple example that the approximation classes depend on 
the continuity. Indeed, the results suggest that the solution 
belongs to the approximation class −2 for C1 splines, while 
it only belongs to the approximation class −3∕2 for C2 and 
C3 splines. This differs from the result in [25], which states 
that the approximation classes for C0 piecewise polynomials 
and discontinuous Galerkin methods are identical. The cor-
responding proof exploits that the solution u ∈ H1

0
(�) has 

vanishing jumps across element boundaries. Generalizing 

Fig. 32  Curved L-shaped domain: energy error |u − Uk|H1(�) for 
degree p from 2 to 5, and for different values of the admissibility 
class � , both for H-admissible and T -admissible meshes

Fig. 33  Curved L-shaped domain: mesh after 8 refinement steps for 
degree p = 4
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the argument to smooth splines would likely require that also 
the jumps of certain derivatives of u vanish, which is not the 
case for the currently considered u.

The reason why the function belongs to different classes 
is the fact that the singularity line coincides with a line of 
the mesh. Indeed, the results of the second test displayed in 
Fig. 34b show the same convergence rate, equal to O(N

−3∕2

dof
) 

independently of the continuity. It seems that, under the con-
dition of refining by bisection, the same convergence rate 
as for the smooth solution can only be recovered if the sin-
gularity lines can be aligned with the mesh. Nevertheless, 

adaptive refinement at least doubles the convergence rate 
O(N

−3∕4

dof
) for uniform refinement (not displayed).

Dirichlet–Neumann conditions on twisted thick ring 
in 3D The third numerical test was considered in [30]. The 
domain � consists of a twisted thick ring, obtained by linear 
interpolation of two surfaces, where the lower one is a quar-
ter of an annulus with inner radius equal to one and outer 
radius equal to two, and the upper one is the same surface 
rotated by 90 degrees around the z-axis, and translated by 
the vector (0.5, 0, 1), as shown in Fig. 35. We set the source 
term f = 0 and impose homogeneous Dirichlet conditions 
everywhere, except on the upper boundary where we impose 
the Neumann condition �u∕�n = 1 . In this case the exact 
solution is not known, but we plot in Fig. 36 an approximate 
solution computed in a fine mesh and the magnitude of its 
gradient. It can be seen that the boundary conditions gener-
ate singularities on the edges of the upper boundary.

For this numerical test, and due to the presence of a Neu-
mann condition �u∕�n = �N on �N , the weighted residual 
error estimator (23) is replaced by

�N(Q)
2 ∶= �(Q)2 + hQ

‖‖�N − �U∕�n‖‖2L2(�Q∩�N )
,

Fig. 34  Test about the approximation class: energy error |u − Uk|H1(�) 
for degree p = 4 and T -admissible meshes with � = 4 , with THB-
splines of different continuity

Fig. 35  Twisted thick ring: coordinates of the domain

Fig. 36  Twisted thick ring: approximate solution and the magnitude 
of the gradient
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see, e.g., [53, Sect. 11]. For the Dörfler marking (54), we 
use the values � = 0.75 and Cmin = 1 . Starting from an initial 
mesh of one single element, we run numerical tests for THB-
splines of degree p = 2, 3, 4 , and with T -admissible meshes 
with different admissibility classes.

Since the exact solution is not known, Fig. 37 shows only 
the values of the error estimator for different choices of the 
degree and the admissibility class. We also compare the 
results with the ones obtained for uniform refinement. As in 
the case of edge singularities, and since we do not allow ani-
sotropic refinement, the optimal order of convergence, which 
is equal to sopt = p∕3 , is only reached for degree p = 2 . Heu-
ristic arguments similar to those used in the 2D case tell us 
that, in general, the convergence order that we obtain for 
edge singularities in the 3D case is equal to

where again sunif is the convergence rate for uniform refine-
ment, which in this particular case is sunif ≈ 0.25 . Regarding 
the impact of the admissibility class � , as in the two-dimen-
sional examples lower values of � require more degrees of 
freedom, although the convergence rate is the same for all 
the admissibility classes. The plot of the meshes in Fig. 38 
shows that this is due to the refinement away from the singu-
larity, which is necessary to maintain the admissibility class.

6.2  Adaptive IGAFEM with T‑Splines

We now apply the adaptive IGAFEM setting to T-splines 
on a single-patch domain. Let � ∶= (p1,… , pd) be a vec-
tor of positive polynomial degrees and �0 be a multivari-
ate open knot vector on �̂ = (0, 1)d with induced initial 
index T-mesh Q̌0 (see Sect. 4.2.2). We assume that �̂�(�

0) 
and �̂��

(��) with �� and �� from the parametrization 
� ∶ �̂ → � (see Sect. 4.1.1) are compatible to each other as 
in Sect. 3.2.2. Note that ���(�

0) = ��T
�
(Q̌0,�

0) , i.e., the initial 
space corresponds to tensor-product B-splines. We choose 
the refinement strategy ������(⋅, ⋅) of Sect. 4.2.5, which 
induces the set of all admissible meshes ℚ̂ . For all Q̂ ∈ ℚ̂ 
with corresponding index T-mesh Q̌ (see Remark 16), let 
�� ∶= ��T

�
(Q̌,�0) ∩ H1

0
( �𝛺) be the associated ansatz space in 

the parametric domain, see Sect. 4.2.3. As in Sect. 3, we 
define the corresponding quantities in the physical domain 
via the parametrization � ∶ �̂ → � , i.e.,

and the discrete space on mesh Q is given by

s = min(3sunif , sopt ),

Q ∶=
{
�(�Q) ∶ �Q ∈ �Q

}
for all �Q ∈ �ℚ,

ℚ ∶=
{
Q ∶ �Q ∈ �ℚ

}
,

������(Q,M) ∶=
{
�(�Q) ∶ �Q ∈ ������(�Q, �M)

}
for all Q ∈ ℚ,M ⊆ Q

with �M ∶=
{
�−1(Q) ∶ Q ∈ Q

}
,

Fig. 37  Twisted thick ring: comparison of the error estimator for uni-
form refinement and adaptive refinement with different degree p and 
admissibility class �
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In the following lemma, we give a basis in terms of T-spline 
blending functions for �̂ . The proof is given in [105, 

� ∶=
{
V̂◦�−1 ∶ V̂ ∈ �̂

}
.

Lemma 3.2] and relies on the fact that, due to the lack of 
T-junctions in the frame region �̌�ind ⧵ �̌�ip , T-spline blend-
ing functions restricted to any (d − 1)-dimensional hyperface 
of the unit hypercube are B-splines corresponding to the 
induced mesh on this hyperface. We note that the anchors 
corresponding to these basis functions are precisely the 
ones on the boundary of the region of active anchors, see 
Sect. 4.2.3. Clearly, this basis can be transferred to the physi-
cal domain via the parametrization �.

Lemma 5 Given Q̂ ∈ ℚ̂ , the T-spline blending functions {
�B�,� ∶ � ∈ A�(Q̌,�0)

}
∩ H1

0
( �𝛺) provide a basis of �̂ . 

Here, the functions B̂�,� are defined as in (49).

The given setting fits into the abstract framework of 
Sect. 5.2, in particular it satisfies the assumptions of The-
orem 3, which has been proved in [107]. We only sketch 
the proof in Sects. 6.2.1–6.2.3. As already mentioned at 
the beginning of Sect. 6, the multi-patch case is essentially 
open. For numerical experiments validating Theorem 5, we 
refer to [119].

Theorem 5 T-splines on admissible meshes satisfy the mesh 
properties (M1)–(M2), the refinement properties (R1)–(R3), 
and the space properties (S1)–(S3) and (F1)–(F3). The 
involved constants depend only on the dimension d , the par-
ametrization constant C� of Sect. 3.1, the degree � , and the 
initial knot vector �0 . In particular, Theorem 2 is applicable. 
In conjunction with Theorem 1, this yields reliability (67), 
efficiency (68), and linear convergence at optimal rate (57)–
(58) of the residual error estimator (23), when the adaptive 
Algorithm 5 is employed.

Remark 31 We also mention that [62] has recently intro-
duced a local multilevel preconditioner for the stiffness 
matrix of symmetric problems which leads to uniformly 
bounded condition numbers for T-splines on admissible 
T-meshes. An important consequence is that the correspond-
ing PCG solver is uniformly contractive. As for hierarchi-
cal splines, see Remark 29, [104] thus allows to prove that 
an adaptive algorithm which steers mesh-refinement and an 
inexact PCG solver leads to optimal convergence rates both 
with respect to the number of elements and with respect to 
the computational cost.

6.2.1  Mesh Properties

Shape regularity (M1) is trivially satisfied in the parametric 
domain, since the direction in which an element is bisected 
periodically alternates after each refinement. Due to the reg-
ularity of the parametrization � of Sect. 3.1, the property 
transfers to the physical domain.

Fig. 38  Twisted thick ring: meshes for degree p = 3 and different val-
ues of the admissibility class � after eight refinement steps
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Local quasi-uniformity (M2) in the parametric domain 
follows from Remark  13 together with Proposition  18. 
Again, the regularity of the parametrization guarantees this 
property also in the physical domain.

6.2.2  Refinement Properties

The child estimate (R1) is trivially satisfied with Cchild = 2 , 
since each refined element in the parametric domain is only 
bisected in one direction. The closure estimate (R2) is just 
the assertion of Proposition 21.

For d = 2 , [165, Sect. 5] shows that the overlay

of two admissible meshes Q̂, Q̂× in the parametric domain is 
again admissible. The proof also extends to the three-dimen-
sional case d = 3 . Obviously, this property immediately 
transfers to the physical domain. Clearly, the resulting mesh 
Q+ in the physical domain satisfies the properties in (R3).

6.2.3  Space Properties

Nestedness (S1) follows from Proposition 17. The inverse 
inequality (F1) in the parametric domain follows easily 
from Lemma 2 and standard scaling arguments, since each 
T-spline is a polynomial of fixed degree � on each element of 
the Bézier mesh. Due to the regularity of the parametrization 
� of Sect. 3.1, the property transfers to the physical domain. 
The local domain of definition property (S2) follows eas-
ily from Lemma 5, Proposition 20, and the definition of 
T-spline blending functions, see [107, Sect. 3.3] for details.

Scott–Zhang type operator Due to the regularity of the 
parametrization � of Sect. 3.1, it is sufficient to provide for 
all Q̂ ∈ ℚ̂ an operator Ĵ ∶ H1

0
(�̂) → �̂ satisfying the proper-

ties (S3) and (F2)–(F3) in the parametric domain. We define 
this operator similarly as �J T

�,Q̌
 of Sect. 4.2.4, but now have to 

take into account the homogeneous boundary conditions

where �̂�,� is defined as in (50).
The second property of Proposition  20 particularly 

implies the existence of a uniform constant q1 such that for 
all Q̂ ∈ Q̂,

With Corollary 4, this immediately gives (S3). Moreover, 
the local L2-stability of Proposition 19 is also valid for Ĵ  as 

�Q+ ∶=
{
�Q ∈ �Q ∶ ∃�Q� ∈ �Q× with �Q ⊆ �Q�

}

∪
{
�Q� ∈ �Q× ∶ ∃�Q ∈ �Q with �Q� ⊆ �Q

}

�J ∶H1
0
( �𝛺) → ��,�v ↦

∑

� ∈ A�(Q̌,�0)
�B�,� ∈ H1

0
( �𝛺)

�𝜆�,�(�v)�B�,�,

Sext (�Q) ⊆ 𝜋q1 (�Q).

the corresponding proof only relies on estimates of the dual 
functionals. Together with the local projection property (S3) 
and the inverse inequality (F1), the Poincaré (for elements 
away from the boundary) as well as the Friedrichs inequal-
ity (for elements close to the boundary) readily imply for all 
v̂ ∈ H1

0
(�̂) and Q̂ ∈ Q̂ that

see [107, Sect. 3.3] for details. We conclude (F2)–(F3) with 
qsz = q1.

7  Adaptive IGABEM in Arbitrary Dimension

In this section, we consider two concrete realizations of the 
abstract adaptive Galerkin BEM framework from Sect. 5.3. 
We consider hierarchical splines in Sect. 7.1, assuming 
that the boundary �  is a multi-patch domain. Convergence 
results in this setting are proved in [103, Sects. 5.4 and 
5.5] and [108] for H-admissible meshes, and leveraging 
on [46, 47], we extend them to T -admissible meshes. The 
theoretical findings are underlined by numerical experiments 
in Sect. 7.1.2. Then, in Sect. 7.2, we present an adaptive 
IGABEM based on T-splines. In contrast to IGAFEM, it is 
easy to define a suitable refinement strategy on the multi-
patch domain �  as we do not enforce continuity across inter-
faces. The corresponding results are new, but mostly follow 
from [107].

Finally, in Sect. 7.3, we also consider an adaptive IGABEM 
in 2D which additionally controls the smoothness of the used 
one-dimensional spline ansatz space as in [93]. Although the 
theoretical results of Sect. 5.3 are not directly applicable in the 
setting of adaptive smoothness, optimal convergence can be 
proved with similar techniques.

7.1  Adaptive IGABEM with Hierarchical Splines

Hierarchical meshes on the boundary 𝛤 ⊂ ℝd , d ≥ 2 , can be 
defined similarly as in the IGAFEM setting in Sect. 6.1.5: for 
each m = 1,… ,M , let �m be a vector of positive polynomial 
degrees and �0

m
 be a multivariate open knot vector on 

�̂ = (0, 1)d̂ , ̂d = d − 1 , with induced initial mesh ̂Q0,m ∶= Q̂
0

m
 . 

We assume that ̂��m
(�0

m
) and ̂���m

(��m
) with ��m

 and ��m
 from 

the parametrization �m ∶ �̂ → �m (see Sect. 3.1.2) are com-
patible to each other as in Sect. 3.2.2. Note that the coarsest 
spaces are �̂�m

(�0
m
) = �̂H

�m
(Q̂0,m,�

0
m
) , i.e., they correspond to 

tensor-product B-splines on each patch. Moreover, we assume 
fo r  t h e  i n i t i a l  m e s h  Q0 =

⋃M

m=1
Q0,m  w i t h 

‖(1 − �J)�v‖
L2(�Q) ≲ ��Q�1∕d ‖�v‖

H1(Sext (�Q))

‖∇�J�v‖
L2(�Q) ≲ ‖�v‖

H1(Sext (�Q))
,
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Q0,m ∶=
{
�m(Q̂) ∶ Q̂ ∈ Q̂0,m

}
 that there are no hanging 

nodes between patch interfaces �m,m� = �m ∩ �m� with m ≠ m′ , 
see also (P1) of Sect. 3.1.2.

We fix the admissibility parameter � as well as the kind of 
mesh that we want to consider, i.e., H-admissible or T -admis-
sible meshes, and abbreviate for each m = 1,… ,M the set of 
all corresponding admissible meshes as ℚ̂m , see Sect. 4.1.3. 
Moreover, we abbreviate ℚm ∶=

{
Qm ∶ Q̂m ∈ ℚ̂m

}
 with 

Qm ∶=
{
�m(Q̂) ∶ Q̂ ∈ Q̂m

}
 . We define the set of all admis-

sible meshes ℚ as the set of all

such that there are no hanging nodes on any interface 
�m,m� = �m ∩ �m�  with m ≠ m′.

For Q ∈ ℚ , the associated ansatz space is defined as

where

To obtain bases of the space � , we first define

Since the ansatz functions do not have to be continuous 
across interfaces, a basis of � is given by

where we extend the involved (T)HB-splines, which actu-
ally only live on �m , by zero to the whole boundary �  . We 
stress that the chosen basis is theoretically irrelevant for the 
realization of Algorithm 5 (in particular for the solving step), 
see also Sect. 6.1.6 for a detailed discussion in the case of 
IGAFEM.

Remark 32 We note that it is actually not necessary to forbid 
hanging nodes at interfaces, but it would be sufficient to 
control the size difference between intersecting elements. 
However, in contrast to weakly-singular integral equations, 
hypersingular integral equations, which result from Neu-
mann problems (see, e.g. [159, Chapter 7]), require con-
tinuous trial functions. As in Sect. 6.1.5, one sees that the 
conformity property (P2’) of Sect. 3.2.2 is satisfied for (T)
HB-splines on admissible meshes provided that �m and �0

m
 

Q =

M⋃
m=1

Qm with Qm ∈ ℚm

� ∶=
{
V ∈ L2(� ) ∶ V|�m ∈ �

H
�m
(Q̂m,�

0

m
), for m = 1,… ,M

}
,

�
H
�m
(Q̂m,�

0
m
) ∶=

{
V̂◦�−1

m
∶ V̂ ∈ �̂

H
�m
(Q̂m,�

0
m
)
}
.

H�m
(Q̂m,�

0
m
) ∶=

{
�̂◦�−1

m
∶ �̂ ∈ Ĥ�m

(Q̂m,�
0
m
)
}
,

T�m(Q̂m,�
0
m
) ∶=

{
�̂◦�−1

m
∶ �̂ ∈ T̂�m(Q̂m,�

0
m
)
}
.

(80)

� = span
( M⋃

m=1

H�m
(Q̂m,�

0
m
)
)
= span

( M⋃
m=1

T�m(Q̂m,�
0
m
)
)
,

satisfy (P2’), which is slightly stronger than assuming that 
there are no hanging nodes at interfaces. Thus, correspond-
ing basis functions can easily be constructed, and admissible 
meshes are suited for both the weakly- and the hypersingular 
case. Alternatively, one can also proceed as in Remark 30, 
applying conformity at each level and then defining directly 
hierarchical multi-patch functions.

To obtain admissible meshes starting from the initial one, 
we can essentially employ the same refinement algorithm as 
in Sect. 6.1.5: For arbitrary Q ∈ ℚ and Q ∈ Qm with corre-
sponding element Q̂ ∶= �−1

m
(Q) in the parametric domain, let 

Nm(�Q) ⊆ �Qm either denote the corresponding H-neighbor-
hood in the case of H-admissible meshes or the T -neighbor-
hood in the case of T -admissible meshes, see Sect. 4.1.3. We 
define the neighbors of Q as

i.e., as in the IGAFEM case of Sect. 6.1.5, we add to the 
neighborhood adjacent elements from other patches. Then, 
it is easy to see that Algorithm 7 returns an admissible 
mesh. Indeed, one can show that the set of all possible 
refinements ������(Q0) even coincides with ℚ , see [103, 
Proposition 5.4.3] in the case of H-admissible meshes of 
class � = 2 . 

The given setting fits into the abstract framework of 
Sect. 5.3. So far, this is only proved in [103, Sects. 5.4 and 
5.5] and [108] for H-admissible meshes of class � = 2 . How-
ever, building on [46, 47], where IGAFEM on T -admissible 
meshes has been considered, the generalization to arbitrary 
admissible meshes is indeed straightforward. We only sketch 
the proof in Sect. 7.1.1. Note that most of the properties have 
already been verified in Sect. 6.1 for IGAFEM-meshes.

Theorem 6 Hierarchical splines on admissible meshes sat-
isfy the mesh properties (M1)–(M2), the refinement proper-
ties (R1)–(R3), and the space properties (S1)–(S2), (S3’), 
and (B1)–(B3). The involved constants depend only on the 

N(Q) ∶=
{
Q� ∈ Qm ∶ Q̂� ∈ Nm(Q̂)

}

∪
⋃
m�≠m

{
Q� ∈ Qm� ∶ dim(Q ∩ Q

�
) = d − 1

}
,
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dimension d , the parametrization constants C�m
 of Sect. 3.1, 

�m , �0
m

 , and � . In particular, Theorem 3 is applicable. In 
conjunction with Theorem 1, this yields reliability (73) and 
linear convergence at optimal rate (57)–(58) of the resid-
ual error estimator (32), when the adaptive Algorithm 5 is 
employed.

7.1.1  Mesh, Refinement, and Space Properties

The mesh properties (M1)–(M2) follow as in Sect. 6.1.1. The 
refinement properties (R1)–(R3) follow as in Sects. 6.1.2 
and 6.1.5. The properties (S1)–(S2) follow as in Sect. 6.1.3, 
see also [103, Sect. 5.5.12] for details.

For H-admissible meshes of class � = 2 , the proof of 
(B1) is given in [103, Sect. 5.5.9], which itself strongly 
builds on a similar result for simplicial meshes [72]. How-
ever, we stress that the proof only hinges on the mesh prop-
erties (M1)–(M2) and the fact that hierarchical splines are 
polynomials on all elements in the parametric domain (see 
Proposition 3 (iv)), and the result hence extends to arbitrary 
admissible hierarchical meshes.

The reference [103, Proposition 5.5.5] states that the 
local approximation of unity property (B2) is satisfied 
if there exists a finite subset B ⊂ � whose elements are 
non-negative, local in the sense that for all � ∈ B there 
exists Q ∈ Q and a uniform constant q ∈ ℕ such that 
supp(𝛽) ⊆ 𝜋q(Q) , and form a partition of unity. Accord-
ing to Proposition 4 (i) and (79), these assumptions are 
fulfilled for THB-splines

Scott–Zhang type operator Since the ansatz functions 
do not have to be continuous at interfaces and due to the 
regularity of the parametrization �m of Sect. 3.1, it is suffi-
cient to provide for each patch �m and �Sm ⊆ �Qm an operator

which satisfies (S3’) and (B3). We define this operator simi-
larly as Ĵ H

�,Q̂
 of Sect. 4.1.4, but now have to take into account 

that the output should only live on 
⋃

Ŝm by discarding all 
THB-splines that have support entirely outside of this set. 
Then the local projection property (S3’) as well as the local 
L2-stability (B3) for the operator Ĵ

m,Ŝm
 can be shown as in 

Sect. 6.1.3. Details for hierarchical splines on H-admissible 
meshes of class � = 2 are found in [103, Sect. 5.5.14].

B ∶=

M⋃
m=1

T�m(Q̂m,�
0
m
).

Ĵ
m,Ŝm

∶ L2(�̂ ) →
�
�̂m ∈ �

H
�m
(Q̂m,�

0
m
) ∶ �̂m�⋃(Q̂m⧵Ŝm)

= 0
�

7.1.2  Numerical Experiments

We now apply the adaptive IGABEM with HB-splines 
analyzed in the previous sections. We consider the 3D 
Laplace operator P ∶= −� as partial differential opera-
tor, and we present two numerical experiments that were 
already considered in [103, Sect. 5.6]: a quasi-singular 
solution on a thick ring and an exterior problem on a cube. 
For numerical experiments with (one-dimensional) hier-
archical splines in 2D, we refer to [88]. The fundamental 
solution of −� in 3D is given by

a n d  t h e  r e s u l t i n g  s i n g l e - l ay e r  o p e r a t o r 
V ∶ H−1∕2(� ) → H1∕2(� ) is elliptic, see Sect.  3.3.2. 
Throughout, we use H-admissible hierarchical meshes of 
class � = 2 and the basis of (non-truncated) HB-splines 
given in (80) for the considered ansatz spaces. An explana-
tion on how the involved singular integrals are computed 
via suitable Duffy transformations and subsequent standard 
tensor Gaussian quadrature is given in [103, Sect. 5.6], see 
also [185, Chapter 5] and [135, Sect. 7.1]. We mention that 
no compression techniques have been used for the dense 
Galerkin matrices. Moreover, to ease computation, the term 
hQ = |Q|1∕2 in the estimator (32) is replaced by the equiva-
lent term diam(� )|Q̂|1∕2 with the corresponding element Q̂ 
in the parametric domain.

Quasi-singularity on thick ring For given Dirichlet data 
g ∈ H1∕2(�) , we consider the interior Laplace–Dirichlet 
problem

on the (quarter of a) thick ring

see Fig.  39 for an illustration. The boundary of � is 
described by six patches of rational splines of degrees 1 
and 2, without any internal knots, see [103, Sect. 5.6.2] for 
a precise parametrization of the boundary.

Then, (81) can be equivalently rewritten as an integral 
equation in the form of (28). In particular, the normal 
derivative � ∶= �

�
u of the weak solution u of (81) satisfies 

V� = (K + 1∕2)g . We prescribe the exact solution of (81) 
as the shifted fundamental solution

G(�) ∶=
1

4�
1

|�| for all � ∈ ℝ
3 ⧵ {0},

(81)
−�u = 0 in �,

u = g on � ,

� ∶=
{
10−1(r cos(�), r sin(�), z) ∶

r ∈ (1∕2, 1),� ∈ (0,�∕2), z ∈ (0, 1)
}
;

u(�) ∶= G(� − �0) =
1

4�
1

|� − �0| ,
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with �0 ∶= 10−1(0.95 ⋅ 2−3∕2, 0.95 ⋅ 2−3∕2, 1∕2) ∈ ℝ3 ⧵� . 
Although u is smooth in � , it is nearly singular at the mid-
point �̃0 ∶= 10−1(2−3∕2, 2−3∕2, 1∕2) of the front surface. The 
normal derivative � = �

�
u of u is given by

We consider polynomial degrees p ∈ {0, 1, 2} . For the 
initial ansatz space with spline degree �m ∶= (p, p) for all 
m ∈ {1,… 6} , we choose one single element on each patch 
as initial mesh, and when refining we consider the maximum 
continuity Cp−1 within each patch. We choose the parameters 
of Algorithm 5 as � = 0.5 and Cmin = 1 . In the lowest-order 
case p = 0 , we modify the refinement strategy of Algo-
rithm 7 by setting for all Q ∈ Qm,

i.e., within the patch we mark any coarser element which 
intersects Q, and we add adjacent elements from other 
patches to avoid hanging nodes. For comparison, we also 
consider uniform refinement, where we mark all elements in 
each step, i.e., Mk = Qk for all k ∈ ℕ0 . This leads to uniform 

�(�) = −
1

4�

� − �0

|� − �0|3
⋅ �(�).

(82)

N(Q) ∶=
{
Q� ∈ Qm ∶ Q ∩ Q

� ≠ � ∧ lev(Q�) < lev(Q)
}

∪
⋃
m�≠m

{
Q� ∈ Qm� ∶ dim(Q ∩ Q

�
) = d − 1

}
,

bisection of all elements. In Fig. 39, some adaptively gener-
ated hierarchical meshes are depicted.

To (approximately) compute the energy error, we use 
extrapolation: Let �k ∈ �k be the Galerkin approximation 

Fig. 39  Quasi-singularity on thick ring: Hierarchical meshes gener-
ated by Algorithm 5 (with � = 0.5 ) for hierarchical splines of degree 
p = 1

Fig. 40  Quasi-singularity on thick ring: Energy error ‖� −�k‖V  and 
estimator �k of Algorithm  5 for hierarchical splines of degree p are 
plotted versus the number of elements #Qk . Uniform and adaptive 
( � = 0.5 ) refinement is considered
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of the k-th step with the corresponding coefficient vec-
tor ck , and let Vk be the Galerkin matrix. With Galerkin 
orthogonality (31), which yields that ⟨V(� −�k) ;�k⟩ = 0 , 
and the energy norm ‖�‖2

V
= ⟨V� ;�⟩ obtained (as, e.g., 

in [55]) by Aitken’s �2-extrapolation, we can compute the 
energy error as

In Figs. 40 and 41, we plot the approximated energy error 
‖� −�k‖V  and the error estimator �k against the number of 
elements #Qk . Although we only proved reliability (73) of 
the employed estimator, the curves (in a double-logarithmic 
plot) for the error and the estimator are parallel in each case, 
which numerically indicates reliability and efficiency, see 
also Remark 24 which states efficiency in a slightly weaker 
sense. Since the solution � is smooth, the uniform and the 
adaptive approach both lead to the optimal asymptotic con-
vergence rate O((#Qk)

−3∕4−p∕2) , see [185, Corollary 4.1.34]. 
However, � is nearly singular at �̃0 , which is why adaptivity 
yields a much better multiplicative constant.

Exterior problem on cube We consider the exterior 
Laplace–Dirichlet problem 

for given Dirichlet data g ∈ H1∕2(�) , together with the far 
field radiation condition

(83)‖𝜙 −𝛷k‖2V = ‖𝜙‖2
V
− ‖𝛷k‖2V = ‖𝜙‖2

V
− c

⊤
k
Vkck.

(84a)
−�u = 0 in ℝ

3 ⧵�,

u = g on � ,

(84b)u(�) = O
(

1

|�|
)

as |�| → ∞

 in the cube � ∶= (0, 1∕10)3 . Then, (84) is equivalent to an 
integral equation (27), see, e.g., [159, Theorem 7.15 and 
Theorem 8.9] or [185, Sect. 3.4.2.2]. The (exterior) normal 
derivative � ∶= �

�
u of the weak solution u of (27) satis-

fies (27) with f ∶= (K − 1∕2)g , i.e.,

where K  denotes again the double-layer operator (29).
We choose g ∶= −1 . Since the constant function 1 satis-

fies the Laplace problem, (28) implies that K1 = −1∕2 , and 
thus f = (K − 1∕2)g simplifies to f = 1 . We expect singu-
larities at the non-convex edges of ℝ3 ⧵� , i.e., at all edges 
of the cube �.

The boundary of the cube is trivially represented by 
six bilinear patches. Again, we consider p ∈ {0, 1, 2} and 
discrete spaces of splines of degree �m ∶= (p, p) for all 
m ∈ {1,… 6} with one single element per patch as initial 
mesh, and when refining we consider the maximum continu-
ity Cp−1 across the elements within the patch. We choose the 
parameters of Algorithm 5 as � = 0.5 and Cmin = 1 , where 
we use again (82) in the lowest-order case p = 0 . For com-
parison, we also consider uniform refinement, where we 
mark all elements at each step, i.e., Mk = Qk for all k ∈ ℕ0 . 
This leads to uniform bisection of all elements.

In Fig. 42, some adaptively generated hierarchical meshes 
are depicted. In Figs. 43 and 44, we plot the approximated 
energy error ‖� −�k‖V  (see (83)) and the error estimator �k 

V� = (K − 1∕2)g,

Fig. 41  Quasi-singularity on thick ring: The energy errors ‖� −�k‖V  
of Algorithm  5 for hierarchical splines of degree p ∈ {0, 1, 2} are 
plotted versus the number of elements #Qk . Uniform (for p = 2 ) and 
adaptive ( � = 0.5 for p ∈ {0, 1, 2} ) refinement is considered

Fig. 42  Exterior problem on cube: Hierarchical meshes generated by 
Algorithm 5 (with � = 0.5 ) for hierarchical splines of degree p = 1
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against the number of elements #Qk . In all cases, the lines of 
the error and the error estimator are parallel, which numeri-
cally indicates reliability and efficiency. The uniform approach 
always leads to the suboptimal convergence rate O((#Qk)

−1∕3) 
due to the edge singularities. Independently on the chosen 

polynomial degree p, the adaptive approach leads approxi-
mately to the rate O((#Qk)

−1∕2) . For smooth solutions � , 
one would expect the rate O((#Qk)

−3∕4−p∕2) , see [185, Corol-
lary 4.1.34]. However, according to Theorem 6, the achieved 
rate is optimal if one uses the proposed refinement strategy and 
the resulting hierarchical splines. The reduced optimal con-
vergence rate is likely due to the edge singularites. A similar 
reduced convergence behavior has also been observed in [98] 
for the lowest-order case p = 0 and in Sect. 6.1.6 in case of 
IGAFEM. [97] additionally considers anisotropic refinement, 
which recovers the optimal rate O((#Qk)

−3∕4).

7.2  Adaptive IGABEM with T‑Splines

We start defining T-splines on the multi-patch boundary �  . 
Note that these T-splines do not need to be continuous across 
interfaces as we consider the weakly-singular integral equa-
tion. In contrast to the common approach in the engineering 
literature, where T-spline functions may be smooth across 
patches, see, e.g., [140, 190, 196], we define them separately 
on each patch, see also Remark 33. For each m = 1,… ,M , let 
�m be a vector of positive polynomial degrees and �0

m
 be a 

multivariate open knot vector on �̂ = (0, 1)d̂ , d̂ = d − 1 ≥ 2 , 
with induced initial index T-mesh Q̌0,m . We assume that 
�̂�m

(�0
m
) and �̂��m

(��m
) with ��m

 and ��m
 from the parametri-

zation �m ∶ �̂ → �m (see Sect. 3.1.2) are compatible to each 
other as in Sect. 3.2.2. Note that ���m

(�0
m
) = ��T

�m
(Q̌0,m,�

0
m
) . 

Moreover, we assume for the initial mesh Q0 =
⋃M

m=1
Q0,m 

with Q0,m ∶=
{
�m(Q̂) ∶ Q̂ ∈ Q̂0,m

}
 that there are no hanging 

Fig. 43  Exterior problem on cube: Energy error ‖� −�k‖V  and 
estimator �k of Algorithm  5 for hierarchical splines of degree p are 
plotted versus the number of elements #Qk . Uniform and adaptive 
( � = 0.5 ) refinement is considered

Fig. 44  Exterior problem on cube: The energy errors ‖� −�k‖V  of 
Algorithm 5 for hierarchical splines of degree p ∈ {0, 1, 2} are plot-
ted versus the number of elements #Qk . Uniform (for p = 0 ) and 
adaptive ( � = 0.5 for p ∈ {0, 1, 2} ) refinement is considered
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nodes between patch interfaces �m,m� = �m ∩ �m� with m ≠ m′ , 
see also (P1) of Sect. 3.1.2. For each m = 1,… ,M , we abbre-
viate the set of all corresponding admissible meshes as ℚ̂m , see 
S e c t .   4 . 2 . 5 .  M o r e o v e r ,  w e  a b b r e v i a t e 
ℚm ∶=

{
Qm ∶ Q̂m ∈ ℚ̂m

}
 with Qm ∶=

{
�m(Q̂) ∶ Q̂ ∈ Q̂m

}
 . 

The index T-mesh corresponding to Qm is denoted by Q̌m , see 
Remark 16. We define the set of all admissible meshes ℚ as 
the set of all

such that |lev(Q) − lev(Q�)| ≤ 1 whenever Q ∈ Qm,Q
� ∈ Qm� 

with m ≠ m′ and Q ∩ Q� ≠ �.
For Q ∈ ℚ , the associated ansatz space is defined as

where

To obtain a basis of the space � , we first define

for all anchors � ∈ A�m
(Q̌m,�

0
m
) , where B̂m,�,�m

 is defined as 
in (49). Since the ansatz functions do not have to be continu-
ous across interfaces, a basis of � is given via

where we extend the involved T-spline blending functions, 
which actually only live on �m , by zero to the whole bound-
ary � .

Remark 33 In contrast to weakly-singular integral equa-
tions, hypersingular integral equations, which result from 
Neumann problems (see e.g. [159, Chapter 7]), require 
continuous trial functions. While the construction of con-
tinuous T-splines across patches has been already used in 
other works, see for instance [140, 190], the extension of the 
refinement algorithm with admissible meshes in Sect. 4.2.5 
to the multi-patch case is not evident, because the alternate 
directions of bisection may differ from patch to patch.

To obtain admissible meshes starting from the initial 
one, we adapt the single-patch refinement strategy from 
Sect. 4.2.5: For arbitrary Q ∈ ℚ and Q ∈ Qm let us denote by 
Q̂ ∶= �−1

m
(Q) and Q̌ the corresponding elements in the para-

metric domain and in the index domain, respectively, and let 
Nm(Q̌) ⊆ Q̌m denote the corresponding neighborhood, see 

Q =

M⋃
m=1

Qm with Qm ∈ ℚm

� ∶=
{
V ∈ L2(𝛤 ) ∶ V|𝛤m ∈ �

T
�m
(Q̌m,�

0

m
), for m = 1,… ,M

}
,

�
T
�m
(Q̌m,�

0
m
) ∶=

{
�V◦�−1

m
∶ �V ∈ ��T

�m
(Q̌m,�

0
m
)
}
.

Bm,�,�m
∶= B̂m,�,�m

◦�−1
m

� = span
( M⋃

m=1

{
Bm,�,�m

∶ � ∈ A�m
(Q̌m,�

0
m
)
})

,

Sect. 4.2.5. Recall that each element in Nm(Q̌) lies in the 
index/parametric domain. We define the neighbors of Q as

i.e., apart from the standard neighbors within the patch, we 
add (as already suggested in Remark 32 for HB-splines) 
neighbor elements from other patches of a coarser level.

With this notation, we can employ Algorithm  7 of 
Sect. 7.1 for refinement. Then, one can show that the set 
of all possible refinements ������(Q0) coincides with ℚ . 
Such a result is proved in [103, Proposition 5.4.3] for the 
analogous case of HB-splines on H-admissible meshes of 
class � = 2 . The proof easily extends to T-splines on admis-
sible T-meshes.

The given setting fits into the abstract framework of 
Sect. 5.3. We stress that this result is new, but follows quite 
easily from [107], where IGAFEM with T-splines has been 
considered. We only sketch the proof in Sect. 7.2.1. Note 
that most of the properties have already been verified in 
Sect. 6.2 for IGAFEM-meshes.

Theorem 7 T-splines on admissible meshes satisfy the mesh 
properties (M1)–(M2), the refinement properties (R1)–(R3), 
and the space properties (S1)–(S2), (S3’), and (B1)–(B3). 
The involved constants depend only on the dimension d , the 
parametrization constants C�m

 of Sect. 3.1, the degree �m , 
and the initial knot vector �0

m
 . In particular, Theorem 3 is 

applicable. In conjunction with Theorem 1, this yields reli-
ability (73) and linear convergence at optimal rate (57)–(58) 
of the residual error estimator (32), when the adaptive Algo-
rithm 5 is employed.

7.2.1  Mesh, Refinement, and Space Properties

The mesh properties (M1)–(M2) follow as for IGAFEM in 
Sect. 6.2.1. The child estimate (R1) is trivially satisfied. The 
closure estimate (R2) can be proved similarly as in the single-
patch case [165, Sect. 6]. The overlay in (R3) can be built 
patch-wise as in Sect. 6.2.2. The properties (S1)–(S2) follow 
as in Sect. 6.2.3.

For the analogous case of hierarchical B-splines on H
-admissible meshes of class � = 2 , the proof of (B1) is given 
in [103, Sect. 5.5.9], which itself strongly builds on a similar 
result on triangular meshes [72]. However, we stress that the 
proof only hinges on the mesh properties (M1)–(M2) and the 
fact that hierarchical splines are polynomials on all elements 
in the parametric domain. Indeed, it only requires the con-
sidered functions to be polynomials on a rectangular subset 
of the same size as the element. Since there are at most two 

N(Q) ∶=
{
Q� ∈ Qm ∶ Q̌� ∈ Nm(Q̌)

}

∪
⋃
m�≠m

{
Q� ∈ Qm� ∶ Q ∩ Q� ≠ � ∧ lev(Q) > lev(Q�)

}
,
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Bézier elements on each element (see Lemma 2), the result 
thus easily extends to T-splines on admissible T-meshes.

The reference [103, Proposition 5.5.5] states that the local 
approximation of unity property (B2) is satisfied if there 
exists a finite subset B ⊂ � whose elements are non-nega-
tive, local in the sense that for all � ∈ B there exists Q ∈ Q 
and a uniform constant q ∈ ℕ such that supp(𝛽) ⊆ 𝜋q(Q) , and 
form a partition of unity. According to Proposition 20 and 
Proposition 13 together with Proposition 17, these assump-
tions are fulfilled for T-spline basis functions

on admissible meshes.
Scott–Zhang type operator Since the ansatz functions 

do not have to be continuous at interfaces and due to the 
regularity of the parametrization �m of Sect. 3.1, it is suf-
ficient to provide for each patch �m and �Sm ⊆ �Qm an operator

satisfying (S3’) and (B3). We define this operator similarly 
as �J T

�,Q̌
 in Sect. 4.2.4, but now have to take into account that 

the output should only live on 
⋃

Ŝm by discarding all 
T-spline blending functions that have support entirely out-
side of this set. Then the local projection property (S3’) as 
well as the local L2-stability (B3) for the operator Ĵ

m,Ŝm
 can 

be shown as in Sect. 6.2.3. A detailed analogous proof is 
given for hierarchical splines on H-admissible meshes of 
class � = 2 in [103, Sect. 5.5.14]. Indeed, the proof could 
essentially be copied, replacing THB-splines and their cor-
responding dual functionals by T-spline basis functions and 
their dual functionals.

7.3  Adaptive IGABEM in 2D with Smoothness 
Control

Finally, we briefly summarize results from [93–95, 109], 
where a slightly modified adaptive IGABEM in 2D has been 
studied, which additionally controls the smoothness of the 
one-dimensional spline ansatz functions. This control is 
achieved by using h-refinement together with multiplicity 
increase of the knots, which reduces the regularity of the 
basis functions. This combination allows to automatically 
resolve strong singularities but also simple discontinuities, 
which can both lead to a reduced convergence rate for uni-
form refinement. We note that in the 2D case, the boundary 
is one-dimensional, and adaptive refinement can be done 
using standard B-splines (or NURBS). The extension to the 
3D setting using HB-splines or T-splines is far from being 
straightforward, and it has not been studied yet.

B ∶=

M⋃
m=1

{
Bm,�,�m

∶ � ∈ A�m
(Q̌m,�

0
m
)
}
,

�J
m,�Sm

∶ L2( �𝛤 ) →
�
�𝛹m ∈ ��T

�m
(Q̌m,�

0
m
) ∶ �𝛹m�⋃(�Qm⧵

�Sm)
= 0

�

In this work, we restrict ourselves to the weakly-singular 
integral equation arising from Dirichlet problems, and we only 
allow reduction of the smoothness by multiplicity increase, 
but we remark that [109] also allows multiplicity decrease and 
analyzes both the weakly-singular integral equation, which we 
consider here, and the hypersingular integral equation arising 
from Neumann problems. For both cases, an optimal addi-
tive Schwarz preconditioner has been introduced in [100] for 
the Laplace problem, i.e., it is proved that the preconditioned 
Galerkin systems have a uniformly bounded condition num-
ber being independent of the local mesh-refinement and the 
smoothness of the B-spline ansatz functions. An important 
consequence is that the PCG solver is uniformly contractive, 
and analogously to the FEM case with hierarchical splines 
explained in Remark 29, this allows to prove that an adap-
tive algorithm combining adaptive refinement with an inexact 
PCG solver leads to optimal convergence with respect to the 
number of elements and also with respect to the overall com-
putational cost, see [101] for details.

7.3.1  Setting of the Discrete Problem

Let 𝛺 ⊂ ℝ2 be a Lipschitz domain with connected bound-
ary 𝛤 ⊂ ℝ2 . We consider boundary integral equations as in 
Sect. 3.3.2. We assume that there exists a global NURBS 
parametrization � ∶ [0, 1] → �  (see Sect. 2.4) such that 
�|[0,1) is bijective with �(0) = �(1) . Moreover, we denote 
the knot vector associated to � by T� , and its induced mesh 
on [0, 1] by Q̂� , and further assume that �|

Q̂
 is bi-Lipschitz 

for all Q̂ ∈ Q̂� . Let p ∈ ℕ0 be a fixed polynomial degree. 
We consider p-open knot vectors T on [0, 1] (see Sect. 2.1.1) 
with V� ⊆ V , where V� and V respectively denote the set of 
vertices corresponding to T� and T  , which are defined as the 
images of all breakpoints (see 2.1.1) under � . We define the 
space of all splines on [0, 1] and �  as

Note that the functions in � are allowed to be discontinu-
ous at the initial vertex �(0) = �(1) . We consider B-splines, 
transformed via � , as the basis of the space �.

7.3.2  Refinement of Knot Vectors

Let T0 be a fixed initial p-open knot vector with V� ⊆ V0 . 
With the corresponding mesh Q̂0 in [0, 1], define the initial 
shape-regularity constant

�� ∶= ��p(T),

� ∶=
{
𝛹◦�−1 ∶ 𝛹 ∈ �

}
⊂ L2(𝛤 ) ⊂ H−1∕2(𝛤 ).

�̂0 ∶= max
{ |Q̂|
|Q̂�|

∶ Q̂, Q̂� ∈ Q̂0 with Q ∩ Q� ≠ �
}
,
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where Q = �(Q̂) and Q� = �(Q̂�) . We recall that, for meshes 
Q on �  corresponding to T  and for an element Q ∈ Q , the 
element-patch �(Q) of (63) is given by the element itself 
and its adjacent neighbors. First, we formulate the auxil-
iary refinement Algorithm 8 taken from [7], which focusses 
on plain h-refinement, but ensures shape-regularity for the 
refined meshes. 

The refinement strategy Algorithm 9 will be used to steer 
a modified version of the adaptive Algorithm 5. In contrast 
to all refinement strategies in previous sections, it receives 
marked vertices instead of marked elements as input and 
also uses knot multiplicity increase for refinement.

For any vertex � ∈ V , we denote by �r the vertex right to 
� with respect to the orientation of � . We denote by 
z ∶= �|−1

[0,1)
(�), zr ∶= �|−1

(0,1]
(�r) the corresponding break-

points,  and with some abuse of notation, by 
(�, �r) ∶= �

(
(z, zr)

)
 the unique element delimited by the two 

vertices. The refinement strategy in Algorithm 9 does the 
following: If both vertices of an element are marked, the 
element is marked for refinement via Algorithm 8. For all 
other vertices (i.e., those that are not stored in R ) the multi-
plicity is increased if it is less than p + 1 , otherwise the 
ne ighbor ing  e lements  a re  marked .  C lea r ly, 
T+ = ������(T,M) is finer than T  , in the sense that T  is a 
subsequence of T+ and thus � ⊆ �+ . For any p-open knot 
vector T  , we define ������(T) as the set of all p-open knot 
vectors T+ that can be obtained by iterative application of 
������ . We define the set of all admissible p-open knot 
vectors

It is easy to see that �  coincides with the set of all p-open 
knot vectors T  which are obtained via iterative bisections 
in the parametric domain and arbitrary knot multiplicity 
increases such that

Indeed, by marking in each step both vertices of an element, 
Algorithm 9 can realize Algorithm 8, which can generate 
according to [7, Theorem 2.3] arbitrary bisected meshes 

� ∶= ������(T0).

|Q̂|∕|Q̂�| ≤ 2�̂0 for all Q,Q� ∈ Q with Q ∩ Q� ≠ �.

satisfying the latter local quasi-uniformity. By marking itera-
tively only one vertex, it is possible to arbitrarily increase 
the resulting knot multiplicities. 

7.3.3  Adaptive Algorithm

Let T ∈ �  with vertices V . We consider a vertex-based 
version of the weighted-residual a  posteriori error 
estimator (32) 

where, for all � ∈ V , the local refinement indicators read, 
with �({�}) =

⋃�
Q ∈ Q ∶ � ∈ Q

�
,

 The refinement strategy in Algorithm 9 and the given vertex-
based error estimator give rise to a modified version of Algo-
rithm 5, namely Algorithm 10, which uses the same solving 
step, but computes indicators associated to vertices instead 
of elements, marks vertices via the Dörfler criterion (54), 
and refines via Algorithm 9 based on these marked vertices. 

(85a)
𝜂 ∶= 𝜂(V)

with 𝜂(S)2 ∶=
∑
�∈S

𝜂(�)2 for all S ⊆ V,

(85b)�(�)2 ∶= |�(�)||f − V�|2
H1(�(�))

.
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7.3.4  Optimal Convergence for One‑Dimensional Splines

As in Sect. 5.3.2, we say that the solution � ∈ H−1∕2(� ) 
lies in the approximation class s with respect to the estima-
tor (85) if

with � (N) ∶=
{
T ∈ � ∶ #T ≤ N

}
 and #T  is the sum of all 

knot multiplicities in T  . In the notation of Sect. 2.1, it holds 
that #T = n + p + 1 . By definition, �Capx(s) < ∞ implies that 
the error estimator � decays at least with rate O

(
(#T)−s

)
 on 

the optimal knot vectors T  . The following theorem, which 
mainly stems from [94, Theorem 3.2], states that each possi-
ble rate s > 0 is in fact realized by Algorithm 10. Theorem 8 
(i) states reliability, which was verified for the current setting 
in [93, Theorem 4.4].

Theorem 8 Let (Tk)k∈ℕ0
 be the sequence of knots generated 

in Algorithm 10. Then, there hold: 

 (i) The residual error estimator satisfies reliability, i.e., 
there exists a constant Crel > 0 such that 

 (ii) For arbitrary 0 < 𝜃 ≤ 1 and Cmin ∈ [1,∞] , the resid-
ual error estimator converges linearly, i.e., there 
exist constants 0 < 𝜌lin < 1 and Clin ≥ 1 such that 

 (iii) There exists a constant 0 < 𝜃opt ≤ 1 such that for all 
0 < 𝜃 < 𝜃opt and Cmin ∈ [1,∞) , the estimator con-
verges at optimal rate, i.e., for all s > 0 there exist 
constants copt ,Copt > 0 such that 

All involved constants Crel,Clin, �lin, �opt , and Copt depend 
only on the coefficients of the differential operator P , the 
parametrization � , the polynomial order p, and the initial 
knot vector T0 , while Clin, �lin depend additionally on � and 
the sequence (�k)k∈ℕ0

 , and Copt depends furthermore on Cmin 
and s > 0.
Remark 34 If one uses the original Algorithm 5 with the 
refinement strategy Algorithm 8 (which does not use knot 
multiplicity increase) and the element-based residual error 
estimator �k of (32), the abstract framework of Sect. 5.3 is 
directly applicable, see [93] for details. In particular, Theo-
rem 3 applies and guarantees linear convergence of the esti-
mator at optimal algebraic rate. Recently, [109, Sect. A.5] 

�Capx(s) ∶= sup
N≥#T0

min
T∈� (N)

(Ns𝜂) < ∞,

‖� −�‖H−1∕2(� ) ≤ Crel� for all T ∈ � .

�2
k+j

≤ Clin�
j

lin
�2
k

for all j, k ∈ ℕ0.

coptC̃apx(s) ≤ sup
k∈ℕ0

(#Tk)
s �k ≤ CoptC̃apx(s).

has even proved the important result that Capx(s) ≃ C̃apx(s) 
for all s > 0 , where Capx(s) is the approximation class of 
the adaptive method without smoothness control defined 
analogously to (55). This particularly yields that the asymp-
totic approximation behavior of smooth splines and piece-
wise polynomials coincides at least in the simple case of 
2D IGABEM. The numerical example of Sect. 6.1.6 for 2D 
IGAFEM suggests that this is in general not the case for 3D 
IGABEM due to the possible presence of edge singularities.

Remark 35 The adaptive algorithm introduced in [109] 
allows for both multiplicity increase and decrease. The lat-
ter converges as well at optimal algebraic rate and practically 
yields an even more accurate insight of the smoothness of 
the exact solution. As the algorithm is quite technical and 
again restricted to the 2D case, we refer to [109] for details.

7.3.5  Numerical Experiment

In this section, we empirically investigate the performance 
of the Algorithm 10 for a Laplace–Dirichlet problem

for given Dirichlet data g ∈ H1(�) , where the additional 
regularity H1(� ) instead of H1∕2(� ) is only needed for the 
weighted-residual error estimator. The following example 
has also been considered in [93, 95, 103, 109]. In the lat-
ter works, several further examples are found, where [109] 
also studies the hypersingular integral equation arising from 
Neumann problems. We choose

with � ∶= 4∕7 , see Fig.  45. A parametrization � of its 
boundary �  in terms of rational splines of degree p = 2 is 
given, e.g., in [95, Sect. 5.3]. We prescribe the exact solution 
of (86) in polar coordinates (r,�) by

The fundamental solution of −� is given by

Since diam(𝛺) < 1 , the corresponding single-layer opera-
tor V  is elliptic, see Sect. 3.3.2. As in Sect. 3.3.2, (86) can 
be equivalently rewritten as integral equation  (28), i.e., 
V� = (K + 1∕2)g , where the unique solution is the normal 
derivative � ∶= �

�
u of the weak solution u of (86). For our 

problem, � has a singularity at �(1∕2) and jumps at �(1∕3) 
and �(2∕3).

(86)
−�u = 0 in �,

u = g on � ,

� ∶=
{
(r cos(�), r sin(�)) ∶

r ∈ (0, 1∕4) ∧ � ∈ (−�∕2�,�∕2�)
}

u(x, y) ∶= r� cos (��) with (x, y) = (r cos(�), r sin(�)).

G(�) ∶= −
1

2�
log |�| for all � ∈ ℝ

2 ⧵ {0}.
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To (approximately) calculate the Galerkin matrix, the 
right-hand side vector, and the weighted-residual error esti-
mator (85), we transform the singular integrands into a sum 
of a smooth part and a logarithmically singular part. Then, 
we use adapted Gaussian quadrature to compute the result-
ing integrals with appropriate accuracy, see [102, Sect. 5] for 
details. Moreover, to ease computation, we replace at each 

step of the adaptive algorithm the term |�k(�)| in the error 

indicators �k(�) = ‖��k(�)�1∕2∇� (f − V�k)‖L2(�k(�)) by the 

equivalent term diam(� ) ĥk , where, ĥk ∈ L∞(� ) denotes the 

mesh-width function with ĥk|Q = |�−1(Q)| for all Q ∈ Qk . 

The error in the energy norm is computed again via Aitken’s 
�2-extrapolation and (83).

We choose the parameters of the modified Algorithm 10 
as � = 0.75 and Cmin = 1 . For comparison, we also consider 
uniform refinement, where we mark all vertices at each step, 
i.e., Mk = Vk for all k ∈ ℕ0 . Note that this leads to uniform 
bisection (without knot multiplicity increase) of all ele-
ments. Given the knot vector defining the parametrization �,

we consider splines of degree p ∈ {0, 1, 2, 3} such that at 
the breakpoints the initial space �̂0 is (if possible) as smooth 
as the space used to construct the parametrization. That is, 
the space is C0 for p ≥ 1 , with the knots repeated exactly p 
times, and C−1 for p = 0 . Note that � is continuous but not 
necessarily differentiable at the breakpoints.

T� =
(
0, 0, 0,

1

6
,
1

6
,
2

6
,
2

6
,
3

6
,
3

6
,
4

6
,
4

6
,
5

6
,
5

6
, 1, 1, 1

)
,

Fig. 45  Geometry and initial vertices for the experiment of Sect. 7.3.5

Fig. 46  Singularity on pacman: Energy error ‖� −�k‖V  and esti-
mator �k of Algorithm 10 for splines of degree p are plotted versus 
the number of degrees of freedom. Uniform and adaptive ( � = 0.75 ) 
refinement is considered
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In Figs. 46 and 47, we plot the approximated energy error 
‖� −�k‖V  and the error estimator �k against the number 
of degrees of freedom. Since the solution lacks regularity, 
uniform refinement leads to the suboptimal rate O(N−4∕7) 
for the energy error, whereas adaptive refinement leads to 
the optimal rate O(N−3∕2−p) , see [185, Corollary 4.1.34]. 
For adaptive refinement, Fig. 48 provides a histogram of the 
knots in the parametric domain [0, 1] of the last refinement 
step. We observe that at 1/2, where the singularity occurs, 
mainly h-refinement is used. Instead, at the two jump points 

1/3 and 2/3, the adaptive algorithm just increases the multi-
plicity of the corresponding knots to its maximum allowing 
for discontinuous ansatz functions.

8  Conclusion and Open Questions

This work aims to give a state-of-the-art introduction to 
the numerical analysis of adaptive FEM and BEM in the 
framework of IGA. The first sections (Sects. 2 and 3) intro-
duce the concepts and notation of IGAFEM and IGABEM 
without adaptivity. Then, Sect. 4 gives the description and 
mathematical properties of two of the most popular adaptive 
spline constructions considered in the recent years, namely 
(T)HB-splines and T-splines.

Sect. 5 provides a brief introduction into the so-called 
axioms of adaptivity [53] and the concept of rate-optimal 
adaptive algorithms. It further provides a framework for 
finite element and boundary element discretizations, respec-
tively, that guarantees the validity of the axioms of adap-
tivity. Leveraging on the properties for splines on adaptive 
meshes summarized in Sect. 4, we prove that (T)HB-splines 
on certain admissible hierarchical meshes and T-splines on 
suitable admissible meshes with alternating directions of 
refinement fit into this framework. This is verified in Sect. 6 
for IGAFEM and in Sect.  7 for IGABEM. It should be 
noted that the local tensor-product structure of hierarchical 
splines not only enables the possibility of easily construct-
ing (analysis-suitable) bases but it also simplifies the theo-
retical analysis of adaptive isogeometric methods. On the 
other hand, T-splines and T-meshes are more flexible and 
suited for applications, but restricted mesh configurations 
are needed for the development of their theoretical analysis 
and the involved results are more complicated in nature. As 
a consequence, adaptive isogeometric methods based on (T)
HB-splines appear to be the IGA framework most advanced 
in terms of numerical analysis, while T-splines still appears 
to be most used in the engineering literature).

Even though adaptive IGA is a rapidly developing 
research field, many important questions remain open:

First, we have verified that the abstract properties in 
Sect. 5 are satisfied for isogeometric discretizations with 
(T)HB-splines and T-splines. For instance, it remains open 
whether these mesh and space properties are also satisfied 
for other adaptive spline constructions, as the ones briefly 
mentioned in Sect. 4.3, including for example LR-splines, 
or the different definitions of linearly independent T-splines 
from Sect. 4.2.7, which reduce the strong constraints posed 
by the dual-compatibility condition. We note that the math-
ematical study of adaptive methods based on these construc-
tions is at different stages, being probably most advanced for 
LR-splines. As long as suitable refinement algorithms and 

Fig. 47  Singularity on pacman: The energy errors ‖� −�k‖V  of 
Algorithm 10 for splines of degree p ∈ {0, 1, 2, 3} are plotted versus 
the number of degrees of freedom. Uniform (for p = 0 ) and adaptive 
( � = 0.75 for p ∈ {0, 1, 2, 3} ) refinement is considered

Fig. 48  Singularity on pacman: Histogram of number of knots over 
the parametric domain for the knot vector T29 generated in Algo-
rithm  10 (with � = 0.75 ) for splines of degree p = 3 . Knots with 
maximal multiplicity p + 1 = 4 are marked with a red cross and knots 
with multiplicity 3 are marked with a green smaller cross
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interpolation estimates for a given adaptive spline construc-
tion are available, the abstract framework presented in this 
work can be properly exploited to study the resulting adap-
tive isogeometric method.

Second, it has not been mathematically studied yet how 
the approximation classes of the PDE solution and thus the 
resulting convergence rates of the adaptive algorithm depend 
on the employed adaptive splines. In particular, their rela-
tion to the classes and rates of standard (only continuous) 
finite element spaces is theoretically open. Our numerical 
experiments of Sect. 6.1.6 suggest that they might especially 
depend on the smoothness of the splines. A verifiable char-
acterization in terms of the given data and the corresponding 
PDE solution would be desirable.

Third, the current analysis is implicitly tailored to iso-
tropic meshes through the closure estimate (R2) and the 
overlay estimate  (R3) in Sect.  5.1.4. Available proofs 
of (R2) (even for standard FEM and BEM) use the relation 
diam(Q)d̂ ≃ |Q| of element diameter and element area and 
hence mathematically exclude long and thin anisotropic ele-
ments, see, e.g., [201] for the seminal work which is trans-
ferred to IGA in [49, 105, 164, 165]. However, it is known 
that only point singularities can optimally be resolved by 
isotropic elements, while anisotropic elements are manda-
tory to resolve edge singularities, both in 2D and 3D com-
putations. Optimal adaptivity with anisotropic elements is 
not only theoretically completely open, but also the stable 
implementation (in particular for BEM) is highly non-trivial.

Finally, the analysis presented for multi-patch domains 
has to be extended to more general configurations. In par-
ticular, for HB-splines we are assuming that there are no 
hanging nodes on the interface between patches, and the 
continuity is set to C0 . While the first assumption can prob-
ably be removed without major issues, as we explained in 
Remark 30, the construction of hierarchical splines with C1 
continuity in general multi-patch geometries remains an 
open question. For T-splines instead, we have only presented 
results for BEM by assuming discontinuous functions across 
patches, which is very restrictive with respect to the standard 
setting used in the CAD and engineering literature, based 
on bicubic T-spline surfaces of C2 continuity everywhere 
except in the vicinity of extraordinary points, i.e., points at 
the intersection of a number of patches different from four.
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