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In silico comparative genomic 
analysis unravels a new candidate 
protein arsenal specifically 
associated with Fusarium 
oxysporum f. sp. albedinis 
pathogenesis
Hafida Ayada 1*, Boutayna Dhioui 1, Hamid Mazouz 1, Abdelhay El harrak 1, Fatima Jaiti 2, 
Bouchra Ouhmidou 3, Mohammed Diouri 1 & Mohieddine Moumni 1*

Fusarium oxysporum f. sp albedinis (Foa) is a devastating fungus of date palms. To unravel the genetic 
characteristics associated with its pathogenesis, the two available genomes of Foa 133 and Foa 9 
were compared with 49 genomes of 29 other pathogenic formae speciales belonging to Fusarium 
oxysporum species complex (FOSC). Foa 133 and Foa 9 have genomes of 56.23 Mb and 65.56 Mb with 
17460 and 19514 putative coding genes. Of these genes, 30% lack functional annotation with no 
similarity to characterized proteins. The remaining genes were involved in pathways essential to the 
fungi’s life and their adaptation. Foa secretome analysis revealed that both Foa strains possess an 
expanded number of secreted effectors (3003 in Foa 133 and 2418 in Foa 9). Those include effectors 
encoded by Foa unique genes that are involved in Foa penetration (Egh16-like family), host defense 
mechanisms suppression (lysM family) and pathogen protection (cysteine-rich protein family). The 
accessory protein SIX6, which induces plant cell death, was also predicted in Foa. Further analysis 
of secreted CAZymes revealed an arsenal of enzymes involved in plant cell wall degradation. This 
arsenal includes an exclusively Foa-specific CAZyme (GH5-7). Transcription factors and membrane 
transporters (MFS) involved in fungicide efflux have been predicted in Foa, in addition to a variety of 
secondary metabolites. These comprise mycotoxins as well as chrysogin, the latter provides Foa with 
resistance against adverse environmental conditions. Our results revealed new Foa proteins that could 
be targeted in future research in order to manage Bayoud disease.

Fusarium oxysporum species complex (FOSC) is a ubiquitous group of pathogenic and putatively non-pathogenic 
soil-borne fungi. It is the most widespread in nature, it colonizes all soil types (cultivated and uncultivated soils) 
in all continents except  Antarctica1,1,1. Among the FOSC, plant pathogenic fungi are known for causing signifi-
cant ecological and socio-economic damage. In the agricultural field, Fusarium wilt caused by pathogenic fungi 
belonging to FOSC represents a veritable threat to production and profitability. The formae speciales of this species 
complex attack a multitude of crops, such as legumes (Fusarium oxysporum f. sp. pisi on peas)1, horticultural 
plants (Fusarium oxysporum f. sp. lycopersici)4, ornamental plants (Fusarium oxysporum f. sp. dianthi on carna-
tions)5 and palm trees (Fusarium oxysporum f. sp. albedinis)6. On date palm, Fusarium oxysporum f. sp. albedinis 
(Foa) causes Fusarium wilt known as "Bayoud". This disease is fairly widespread in the main palm growing areas 
in North African  countries7. In Morocco, Fusarium wilt due to Foa has caused the progressive disappearance of 
high quality and world renown date cultivars, mainly  Mejhool8,8.
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The typical external symptom of the Bayoud disease is hemiplegia character. In the affected palm leaf, the 
withering begins on one side of the leaf which becomes white; then the withering continues to the other side 
until the whole leaf dies. In the other hand the important internal symptom is the reddish-brown color of vas-
cular  bundles10.

Bayoud was first reported in 1870 in Zagora-Morocco. While the first precise description of Foa was done by 
Malençon in  193411. It is a telluric fungus classified among the imperfect fungi of Nectriaceae family. The most 
important means of Foa infection are spores and mycelium. In fact, the infection occurs mainly through the roots 
and spreads inside the vascular system, leading to wilting and eventually to date palm  death12. Foa transmission 
is particularly rapid and spectacular. It can be spread by infected shoots, soil, infected date tissues (especially 
pieces of infected rachis) and by irrigation water passing through infested fields. Foa can also be passed from 
one plant to another by contact between diseased and healthy  roots10.

Given the dangerousness of this pathogen, measured in particular by the enormous damage that results there-
from, it is highly valuable to examine its genetic potential. In this regard, the comparative study of genomes at 
the structural and functional levels is decisive in such research. The development and/or use of algorithms and 
bioinformatic tools, dedicated to comparative genomics, has provided a better understanding of the genomes 
especially those of pathogenic organisms. In F. graminearum, comparative genomics has allowed the identifica-
tion of genes that contribute to phenotypic variation and niche  specialization13. Another study conducted on 
FOSC’s formae speciales infecting legumes revealed candidate  effectors14. Regarding Foa, despite the fact that it 
has been the subject of several investigations for a long  time15,15,15, information on its genomics has remained 
rather quite limited until now. Currently, progress on Foa could be achieved now that its genome is available in 
 databases18,18. This will make it possible to meticulously discover phenomena that would otherwise go unnoticed 
and will thus open up new research avenues to develop novel control techniques that will allow to effectively 
manage this scourge.

Here, we performed in-depth comparative analysis of the first Foa genomes currently available and 29 other 
formae speciales of FOSC in order to inventory the genetic characteristics involved in Bayoud disease. To the 
best of our knowledge, this study is the first comparative analysis based on genomic approach conducted on Foa.

Results
Phylogeny and genome characteristics of the studied fungal strains
As part of a comparative genomic analysis, the first two Foa genomes publicly available were compared to 49 
genomes from 29 other FOSC’s formae speciales. The two Foa genomes correspond to two strains originally iso-
lated from infected date  palms18,18. they were previously sequenced and assembled by the National Institutes of 
Agronomic Research of  Rabat18 and  Errachidia19, Morocco. The Foa genomes as well as the genomes of 29 other 
formae speciales of FOSC were annotated as described in “Material and methods” section.

Figure 1 showed the phylogeny of the 30 chosen formae speciales (A) besides genomic GC content, genome 
size, genome completeness and proteins putatively encoded by each genome (B). The phylogenetic relationship 
of the FOSC’s formae speciales was conducted based on the concatenated 263 genes that are present as a single 
copy gene in all genomes in our dataset. The result (Fig. 1A) revealed that the formae specialis of this study were 
not grouped into known clusters and formed distinct branches of their own. Moreover, the phylogenetic tree 
showed that Foa strains shared the same clade with matthiolae, tulipae and one strain of apii, while Foa strains 
were relatively distant from the other formae speciales.

In comparing statistics of the analyzed genomes, we remarked that some characteristics are quite similar and 
others are variable. Indeed, Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis showed that 
more than 99% of the BUSCO genes were present in the most of the analyzed genomes as complete. However, 
in some strains the genomes covered less than 99% of BUSCO genes (F.o.f. sp. Cubense C1HIR9889 (BUSCO 
97.9%), F.o.f. sp. Koae isolate 44 (BUSCO 98.8%) and F.o. f. sp vasinfectum LA1E (BUSCO 98.9%)). The similar-
ity was also observed in genomic GC rate. GC content was consistent, with a small range from 47.34 to 48.84% 
in all strains except F.o.f. sp. cucumerinum Foc030 which has more than 50% GC (56.8%). in Foa genomes, GC 
content varied between 47.44% and 47.73%.

However, the fluctuations of genome sizes within the FOSC’s formae speciales were relatively high. The smallest 
genome was found in F.o.f. sp. Cubense C1HIR9889 (46.73 Mb) while the largest genome was detected in the F.o.f. 
sp. albedinis 9 (65.56 Mb). These fluctuations were also seen between some strains belonging to the same formae 
speciales. In the case of the Foa (formae speciales of interest), the genome size varied from 56.23 Mb to 65.56 Mb.

We further examined the gene content in the analyzed strains. The result revealed that there is considerable 
inter- and intra- formae speciales variations. The number of predicted genes ranged from 13831 (F.o.f.sp. koaei 
solate 44) to 20010 (F.o.f.sp. niveum R1) and from 17460 to 19514 genes within the Foa genomes.

Based on the BUSCO gene rate, the analyzed genomes were of a high enough quality for downstream analysis. 
Moreover, according the phylogenetic relationship and the noted variation in genome size and gene content, the 
30 analyzed formae speciales seem to be relatively diverse.

Homologous and specific genes analysis:
Given the inter- and intra- formae speciales genetic diversity signs within the FOSC’s formae speciales, we exam-
ined the extent of genome diversification. For this purpose, we performed a pan-genome analysis. We were 
interested in 4 conceptual groups of genes:

• The pan-genome: inventory of genes presents within the analyzed strains
• The core-genome: set of homologous genes that are present in all genomes of the analyzed dataset
• The accessory-genome: set of genes present within one or part of the analyzed genomes.
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• The unique or specific-genome: set of genes found in only one strain and absent in others.

We first inventoried homologous (orthologous and paralogous) and specific genes using a BLASTp-based 
pipeline (see methods). Proteins whose sequences and functions were similar have been grouped in the same 
family.

The FOSC’s formae speciales pan-genome comprised a total of 598589 genes (Fig. 2A) consisting of 217249 
genes in the core-genome and 351018 genes in the accessory-genome. With regard to the unique-genome, 30331 
genes were without homologs in the other genomes, indicating the existence of specific genes among the FOSC’s 
formae speciales. The lowest numbers of unique genes belonged to the F.o.f.sp. Coriandrii3–2, with 155 genes. 
Strain F.o.f.sp. niveumR1 contained the highest numbers of specific genes as well (Fig. 2B and Supplementary 
Data 2: Table 1). Within Foa formae speciales, represented here by strain 133 and 9, the pan-genome consisted 
of 17460 and 19514 genes respectively (Fig. 2B and Supplementary Data 2: Table 1). In both Foa strains, the 
core-genome was comprised of an average of 5168 genes. However, the large portion of Foa pan-genome was 
predicted as accessory-genes.
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Figure 1.  Bubble plots and Dendrogram illustrating the phylogenetic relationships between 49 genomes of the 
FOSC’s 29 formae speciales and two Foa genomes (formae speciales of interest). (A), phylogenetic tree based on 
263 orthologous genes in a single copy. (B), four bubble plots showing descriptive statistics for each genome. 
Bubble sizes have been scaled to the categories and are not comparable between categories. Abbreviations: F 
(Fusarium); o (oxysporum); f (formae); sp (speciales). The names following the abbreviations represent the names 
of the formae speciales; the abbreviations coming after the names of the formae speciales correspond to the 
strains belonging to these formae speciales (F.o.f.sp. albedinis 133: Fusarium osysporum forma specialis albedinis 
Foa 133).
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Figure 2.  The pan-genome of the FOSC’s formae speciales including Foa. (A, C), histograms representing the 
total number of genes and families distributed over the pan-genome, core-genome, accessory-genome and 
unique-genome for the analyzed strains. (B), Stacked histograms of the gene numbers of the pan-genome, core-
genome, accessory-genome and unique-genome for each strain. (D), Stacked histograms of the number of core-
families, accessory-families and unique-families for each strain. Abbreviations: F (Fusarium); o (oxysporum); f 
(formae); sp (speciales). The names following the abbreviations represent the names of the formae speciales; the 
abbreviations coming after the names of the formae speciales correspond to the strains belonging to these formae 
speciales (F.o.f.sp. albedinis 133: Fusarium osysporum forma specialis albedinis Foa 133).
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They represent 68% (11884 genes) of Foa 133’s genome and cover 66% (12873 genes) of Foa 9’s genome. As 
for the unique genome, Foa 133 contained a low number of unique genes (396 genes) compared to Foa 9 whose 
genome included 1,483 specific genes.

To assign biological functions to the three genomic fractions (core, accessory, and unique), Interproscan 5 was 
used. The resulting annotations revealed that the pan-genome of the analyzed strains was grouped into 205759 
gene families (Fig. 2C). Of those families, 54% were found in all genomes (111142 families). They contained pro-
teins encoded by the core genes. Despite the high gene numbers in the accessory genome, the total of predicted 
gene families was lower than that of the core families. With regard to the unique genome, 11160 specific gene 
families were found. An examination of gene repertoire of Foa strains showed that about 30% of pan-genome 
lacked annotations. In both strains 82% of the core genes were identified. They were classified into an average 
of 2161 families (Fig. 2D and Supplementary Data 2: Table 2) and were primarily associated with transporters 
(200–207 genes) and fungal-specific transcription factors (127 genes). For the accessory-genome 35–37% of the 
genes lacked InterProscan assignations in both Foa strains. In addition to transporters and transcription factors, 
the annotated proportion of Foa accessory genes were assigned to P450 cytochromes (305 and 312 genes in strains 
133 and 9 respectively) (Fig. 2D and Supplementary Data 2: Table 3). Though 52% of Foa 133-specific genes and 
28% of Foa 9-specific genes were not assigned to the Interproscan annotations, the remaining specific genes in 
both Foa strains fall into different families (Fig. 2D and Supplementary Data 2: Table 4). They primarily encoded 
endonucleases (41 and 273 genes respectively) and the hAT activator family (21 and 334 genes respectively).

Through these results, an abundance of accessory genes was revealed in Foa genomes. These genes provide 
information about horizontal transfers dynamics because they are often associated with potentially transferable 
elements. Moreover, the presence of specific genes in Foa genomes suggested that these strains harbored a high 
level of genomic diversity and uniqueness of each strain, showing their ability to acquire specific characteristics.

TEs in the analyzed genomes
Another conducted analysis was the search for transposable elements (TEs) in the studied strains. These are DNA 
fragments that can move and multiply in genomes. As such, TEs can have functional and structural impacts on 
 genomes34. They are also considered to be the main driver of genome  inflation35.

The search using EDTA software identified 5 putative TE classes: long terminal repeated retrotransposons 
(LTR); terminal inverted repeats (TIR); non-TIR; non-LTR and other repeated regions (Fig. 3). Within the Foa 
formae speciales, the distribution of TE categories varied between strains. The total TE coverage in Foa 9 (16.5%) 
was higher compared to Foa 133 (4.92%). In Foa 133, the LTRs covered 0.56% of the genome; they belonged 
mainly to the Gypsy family (0.51%). As for the TIRs, they accounted for 1.35% of the genome and the majority 
were Mutator (0.6). On the other hand, LTRs and TIRs were most abundant in Foa 9 and occupied respectively 
2.9% and 6.03% of the genome. Note that the maximum TIRs in this strain, were mainly hAT. In addition, we 
found that the genomes of the Foa formae speciales contained a significant fraction of other repeated regions 
(2.6–4.71%), helitron (0.15–1.44%) and LINE-element (0.26–1.07%). This examination revealed that the Foa 
genomes were enriched in numerous TEs families.

KEGG pathways assigned to proteins of the analyzed strains:
To further explore the genetic potential of the Foa formae speciales, KEGG database was used to highlight the 
pathways in which Foa genes are involved compared to other formae speciales. As shown in Fig. 4, 27 pathways 
were represented for all strains. Within these pathways, the genetic information processing category (represented 
by the translation, folding/sorting/degradation, and replication/repair pathways) was the most enriched in gene.

Within Foa, 7102 genes in Foa 133 and 7848 genes in Foa 9 were distributed over the 27 predicted pathways. 
The examination of this distribution revealed that the maximum number of genes were involved in the transla-
tion process (1046 genes in Foa 133 and 1152 genes in Foa 9); followed by the folding, sorting and degradation 
pathway, which contain 750 genes in Foa 133 and 842 genes in Foa 9. It should also be noted that a large number 
of genes (656 genes on average) in this formae speciales were attributed to the replication/repair pathway. These 
three pathways maintain the vital functions of the fungal cell and were therefore enriched mainly in core genes 
and accessory genes that can further enhance these functions. Moreover, Foa genomes included genes involved in 
cell motility, allowing Foa to actively circulate in the soil as mentioned in other  fungi36. We were then interested 
in the pathways enriched in unique genes of this formae speciales (Table 1). We found that a reduced number of 
unique genes were involved in 17 of the 27 predicted pathways. In Foa 9, 67 genes were assigned to the KEGG 
annotations. Of those genes, 59.7% (40 genes) were included in the metabolism category. Within this category, the 
maximum number of genes (13 genes) was assigned to lipid metabolism, followed by carbohydrate metabolism 
(9 genes), amino acid metabolism (9 genes) and xenobiotic metabolism/degradation (4 genes). However, in Foa 
133, a total of 14 unique genes were assigned to the KEGG pathways, where the membrane transport pathway 
was the most enriched in unique genes (3 genes), while the xenobiotic degradation pathway did not include any 
gene in this strain. Collectively, these pathway analysis results illustrated that most of the Foa genes are involved 
in the pathways essential to the fungi’s life and their adaptation to environmental conditions.

Candidate secreted effectors in Foa:
In pathogenic fungi, secreted proteins, particularly effectors, are essential for successful host  infection37. These 
proteins can disable plant defenses and subvert cell processes to satisfy the needs of  pathogens38.

In this context, the secreted effectome of all the analyzed strains was highlighted. Through the combined 
use of SignalP v5.0, SecretomeP v1.0 and EffectorP v3.0 to predict putative secreted effectors, mining the Foa 
genomic data resulted in a catalogue of 3003 effectors in Foa 133 and 2418 effectors in Foa 9 (Supplementary 
Data 3: Table 1). This constitutes the putative effector repertoire of Foa strains. Of those effectors, more than 800 
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proteins were encoded by the core genome in both Foa strains; whereas the accessory genes encoded more than 
60% of this effector repertoire in both Foa strains (2096 effectors in Foa 133 and 1542 effectors in Foa 9). As for 
the unique genome, a low number of effectors were encoded by this genomic fraction, these effectors represented 
0,03% of the secreted effectome (94 effectors in Foa 133 and 74 effectors in Foa 9).

In the three genomic fractions (core, accessory and unique) the predicted effectors were classified into two 
categories: cytoplasmic effectors that act inside the plant cells and apoplastic effectors that manipulate the host 
apoplasm. For all strains, more than 80% of the secreted effectors were cytoplasmic. In Foa, this category occu-
pied 85% and 83% of predicted effectors in Foa 133 and 9 respectively. Within the apoplastic and cytoplasmic 
categories, effectors lacking Interproscan annotations ranged between 41 and 58%. The apoplastic and cyto-
plasmic effectors with known function were organized into 803 families in Foa 133 and 779 families in Foa 9 
(Supplementary Data 3: Table 2). they mainly belonged to DDE superfamily endonuclease (41 effectors in Foa 
133 and 106 effectors in Foa 9).

In Fig. 5, 28 protein families were predicted as families comprised of effectors encoding by Foa specific genes. 
This constitute the Foa unique secreted effectome. In comparing Foa strains, 14 effector families (families written 
in blue) in Foa 9 were not presents in Foa 133 such as Egh16-like virulence factor. On the other hand, Foa 133 
was distinguished from Foa 9 by secreting effectors belonging to 8 families (families written in orange) absent 
in Foa 9 such as LysM family.

Among the 28 putative effector families found in Foa strains, 3 families were found only in Foa 9 in compari-
son to the other analyzed forma speciales (Supplementary Data 3: Fig. 1). Foa 9 was characterized by the secretion 
of effectors belonging to 3-oxo-5-alpha-steroid4-dehydrogenase, Integrase core domain and Globin families.

Taken together, secreted protein repertoire of Foa strains harbored numerous putative proteins acting as 
effectors, 3 of these were exclusively specific to Foa 9.

Carbohydrate Active enZymes (CAZymes) repertoire of the analyzed strains:
All plant pathogenic fungi are known for producing carbohydrate-active enzymes (CAZymes). These enzymes 
are involved in the assembly, modification or deconstruction of  carbohydrates39. They are considered to play a 
key role in the degradation of plant cell wall, which is the front line of plant  defense40. Given the importance of 
such enzymes, run-dbcan software was used to predict the CAZyme content in the Foa genomes in comparison 
with the other formae speciales. As shown in Fig. 6A, the analyzed genomes encoded an arsenal of CAZymes 
organized in six classes: auxiliary activities (AA), carbohydrate-binding molecules (CBM), carbohydrate esterases 
(CE), glycoside hydrolases (GH), glycosyltransferases (GT) and polysaccharide lyases (PL). In Foa, 1.4% (242 
genes in Foa 133) and 1.3% (252 genes in Foa 9) of the genome encoded these enzymes. The highest number 
of predicted CAZymes (53%) was related to GH followed by GT, AA, CE, PL and CBM. Interestingly, more 

Table 1.  KEGG pathways enriched in unique genes of the 133 and 9 Foa strains. Values in bold are significant 
values, they indicate the total number of unique genes involved in each KEGG pathway reported.

Categories

F. oxysporum f. sp. albedinis 133 F. oxysporum f. sp. albedinis 9

Gene numbers Percentage (%) Gene numbers Percentage (%)

Metabolism 41 5

Carbohydrate metabolism 9 21.9 2 40

Lipid metabolism 13 31.7 0 0

Amino acid metabolism 9 21.9 1 20

Glycan biosynthesis and metabolism 1 2.4 0 0

Metabolism of cofactors and vitamins 1 2.4 0 0

Metabolism of terpenoids and polyketides 0 0 1 20

Biosynthesis of other secondary metabolites 2 4.9 1 20

Xenobiotics biodegradation and metabolism 4 9.8 0 0

Enzyme families 2 4.9 0 0

Genetic information Processing 12 2

Transcription 1 8.3 0 0

Translation 3 25 0 0

Folding, sorting and degradation 5 41.7 1 50

Replication and repair 3 25 1 50

Environmental information Processing 8 5

Membrane transport 7 87.5 3 60

Signal transduction 1 12.5 2 40

Cellular processes 2 1

Transport and catabolism 2 100 1 100

Unclassified 5 1

Unclassified 5 100 1 100
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than 50% of the majority of predicted CAZymes were secreted (Fig. 6B). In both Foa strains, 100% of CEs and 
PLs were secreted. In contrast, CAZymes belonging to GT class were mainly intracellular (35% of the total GT 
predicted were secreted).

To further analyze carbohydrate utilization ability of Foa, we examined the different families of secreted 
CAZymes (Supplementary Data 4: Table 1). It was found that the most abundant identified GH were related to the 
GH3 and GH28 families, including the largest numbers of the secreted GH. The second most frequent CAZyme 
families contained in Foa genomes was GT1, GT2 and GT4, which comprised the majority of GT CAZymes. 
In AA class, all CAZymes were organized in 4 families (AA1, AA3, AA5, AA6 and AA9), while the majority of 
CBMs were assigned to CBM1 and CBM32. As for PLs, our result revealed that they belonged mainly to PL1 
family. Interestingly, our results showed that Foa was distinguished from all other analyzed formae speciales by 
the secretion of the glycoside hydrolase GH5-7, as shown in Fig. 6C.

The examination of CAZyme repertoire showed the enrichment of CAZyme families in Foa genomes with 
the exclusive secretion of glycozyle hydrolase (GH5_7). This enzyme is important to decompose hemicellulosic 
materials.

0.81 2.23 0.03 0.211.85
0.86 1.83 0.19 0.231.89
0.58 1.92 0.25 0.181.68
0.34 0.71 0.03 0.10.22
0.6 1.6 0.16 0.131.46
0.21 0.44 0.06 0.030.13
0.26 0.52 0.05 0.060.06
0.27 0.6 0.03 0.040.14
0.23 0.62 0.16 0.050.1
0.36 0.73 0.14 0.030.09
0.58 0.58 0.04 0.260.21
0.24 0.78 0.01 0.040.08
0.38 0.6 0.15 0.110.13
0.37 0.87 0.43 0.120.14
0.29 0.5 0.16 0.350.01
0.21 0.37 0.04 0.060.04
0.25 0.46 0.03 0.020.01
0.45 0.72 0.02 0.110.36
0.45 2.2 0.31 0.081.87
0.2 0.78 0.05 0.080.19
0.23 0.31 0.01 0.140.15
0.23 0.31 0.08 0.090.13
0.22 0.46 0.03 0.140.05
0.25 0.39 0.02 0.470.12
0.29 0.47 0.05 0.210.36
0.27 0.31 0.05 0.20.11
0.4 1.48 0.13 0.060.32
0.24 0.27 0.02 0.020
0.29 0.28 0.02 0.020.03
0.21 0.62 0.23 0.070.26
0.46 0.5 0.07 0.051.14
0.34 0.81 0.03 0.060.17
0.29 0.4 0.08 0.010.06
0.25 0.53 0.03 0.010.04
0.3 1.07 0.06 0.041.05
0.51 0.6 0.07 0.040.13
0.37 2.03 0.21 0.432.99
0.53 1 0.07 0.11.23
0.32 0.33 0.21 0.140.15
0.37 1.18 0.14 1.212.58
0.27 0.49 0.04 0.020.11
0.25 0.34 0.04 00.15
0.31 0.49 0.04 0.010.09
0.37 0.33 0.06 0.040.15
0.28 1.07 0.02 0.061.49
0.21 0.39 0.01 0.040.03
0.19 0.52 0.01 0.010.12
0.25 0.31 0.07 0.070.04
0.34 0.65 0.03 0.050.44
0.39 0.29 0.01 0.310.15
0.33 0.36 0.02 0.020.1

TIR(%)

CACTA hAT Mutator PIF
Harbinger

Tc1
Mariner

F.o.f.sp.cubenseC1HIR9889
F.o.f.sp.narcissiNa5

F.o.f.sp.narcissiN139
F.o.f.sp.nicotianaeFt−Rob.

F.o.f.sp.radicis−lycopersici26381.
F.o.f.sp.medicaginisFom−5190a

F.o.f.sp.cepaeFoCFus2
F.o.f.sp.cepaeFoC125.

F.o.f.sp.gladioliG2
F.o.f.sp.radicis−cucumerinumForc031
F.o.f.sp.radicis−cucumerinumForc024

F.o.f.sp.apii207
F.o.f.sp.tulipaeTu67

F.o.f.sp.matthiolaePHW726
F.o.f.sp.albedinis9

F.o.f.sp.albedinis133
F.o.f.sp.melonis26406

F.o.f.sp.lycopersiciFol074
F.o.f.sp.lycopersiciFol014

F.o.f.sp.gladioliG76
F.o.f.sp.ciceris38−1

F.o.f.sp.cubense160527
F.o.f.sp.liniF324.fasta
F.o.f.sp.liniF282.fasta
F.o.f.sp.pisiHDV247

F.o.f.sp.melongenaeJ−71
F.o.f.sp.raphani54005

F.o.f.sp.cucumerinumFoc030.
F.o.f.sp.cucumerinumFoc018

F.o.f.sp.niveumFon002
F.o.f.sp.melonisFom005

F.o.f.sp.conglutinansrace254008
F.o.f.sp.conglutinansFGL03
F.o.f.sp.Conglutinans58385

F.o.f.sp.koae44
F.o.f.sp.lagenariaeLag3−1

F.o.f.sp.fragariaeBRIP5168a
F.o.f.sp.liliiFol39.fasta

F.o.f.sp.VasinfectumNRRL31665
F.o.f.sp.nicotianaeFt−1512

F.o.f.sp.spinaciaeMF15
F.o.f.sp.niveumR1

F.o.f.sp.fragariae160609
F.o.f.sp.lagenariae01−03008

F.o.f.sp.momordicaeNRRL26413
F.o.f.sp.momordicae90NF2−1

F.o.f.sp.spinaciaeFus254
F.o.f.sp.VasinfectumLA1E

F.o.f.sp.CoriandriiG306
F.o.f.sp.Coriandrii3−2

F.o.f.sp.apiiNRRL38295 1.85 1.9 0.89
1.42 1.4 0.86
1.5 1.45 1.07
0.87 0.42 1.04
0.57 1.47 0.03
0.41 0.62

0.53 0.73
0.27 0.7

0.09 0.36 0.05
0.01 0.34 0.13
0.02 0.69
0.04 1.45
0.2 1.2 0.3
0 0 0.65

0.08 0.51 0.91
0.41
0.6 0.05

0.37
0.85 0.22 0.29

0.39
0 0.53

0.94
0.03 0.88
0.02 1.2
0.04 0.27
0 0 0.81

0.15 0.55
0 0

0
0.83 1.31 0.59
0 0.08

0.04 0.62
0.32

0 0 0.36
0.53 0.9 0.95
0.04 0.52
1.31 1.42 0.17
0.82 0.71 0.42

0 0.58
0.8 1.6 0.75

0.86 0.41
0.79 0.44
0.61

0.2 1.15 0.19
1.13 1.78
0 0
0 1.03
0 0 0.54

0.03 0.38 0.73
0 0 0.16

0.07 1.18 0.26

LTR(%)

Copia Gypsy unknown

TE_families

1.43
1.59
1.49
0.9
0.75
0.35
0.45
0.78
0.83
0.76
0.51
0.43
0.61
0.39
1.04
0.37
0.59
0.93
2.77
0.25
0.36
0.41
0.83
0.39
0.28
0.38
0.41
0.38
0.4
0.99
0.56
0.42
0.41
0.42
1.25
0.15
1.44
0.57
0.25
1.41
0.5
0.48
0.33
0.45
0.94
0.27
0.69
0.55
0.4
0.4
0.37

nonTIR(%)

helitron

0.9
0.93
0.44
0.59
0.56
0.23
0.11
0.21
0.3
0.15
0.27
0.23
0.55
0.23
0.07
0.1
0.36
0.87
0.14
0.2
0.07
0.07
0.18
0.16
0.25
0.26
0.54
0.04
0.07
0.14
0.14
1.23
0.26
1.07
0.52
0.06
1.2
0.16
0.11
0.1
0.6
0.39
0.06
0.11
0.22
0.46
0.24
0.19

nonLTR(%)

LINE
element

6.04
5.35
4.91
2.53
4.45
2.22
1.47
2.12
0.89
2.75
2.86
1.73
4.19
2.16
1.01
1.92
0.7

2.64
4.61
2.39
3.29
2.41
3.3

2.63
3.11
2.88
3.16
0.31
0.22
1.76
1.89
2.93
1.44
2.33
5.12
2.6

4.71
3.33
2.98
4.72

1
1.2

2.12
2.48
2.42
0.39
1.25
1.91
4.27
1.96
1.9

repeat_region(%)

repeat
region

TE_classes    (A)

0 5 10 15

Total TE(%)(B)

Figure 3.  Distribution and coverage (%) of predicted TE in the analyzed formae speciales. (A): bubble plot 
showing the predicted TE distributed on five classes: Long Terminal Repeated retrotransposons (LTR); Terminal 
Inverted Repeats (TIR); non-TIR; non-LTR and other repeated regions. The bubble size is proportional to 
the coverage of each TE family (% indicated inside bubbles). (B): bar plot showing the total TE coverage 
per genome. Abbreviations: F (Fusarium); o (oxysporum); f (formae); sp (speciales). The names following the 
abbreviations represent the names of the formae speciales; the abbreviations coming after the names of the 
formae speciales correspond to the strains belonging to these formae speciales (F.o.f.sp. albedinis 133: Fusarium 
osysporum forma specialis albedinis Foa 133).
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Repertoire of xylem secreted proteins (SIX) detected in the analyzed strains:
Within the FOSC, some pathogens secrete small effectors in the xylem sap of the host  plant41,41. Currently, 15 
classes of these proteins have been identified and are called Secreted In Xylem (SIX). These proteins contribute 
to the virulence of these microorganisms.

The importance of these effectors led us to investigate whether Foa genomes encode these proteins. It was 
revealed that only 3 accessory genes encoded 3 classes of SIX proteins: SIX1, SIX5, and SIX6. However, the core 
and unique genomic fractions were not involved in this secretion pattern, as some formae speciales lacked these 
effectors and there was no formea speciales -specific class (Fig. 7).

Secondary metabolism in analyzed strains:
In fungi, secondary metabolites play ecological, symbiotic and pathogenic  roles43. These small molecules are 
encoded by biosynthetic genes (BGCs) that are grouped into clusters in the  genome44. To examine the presence 
of putative secondary metabolites within Foa, the algorithms implemented in antiSmashe software were applied 
to the fungal genomes of the strains targeted by our analysis.

Therefore, a total of 136 BGCs were predicted in the Foa formae speciales, we found 69 and 67 BGCs in Foa 
133 and 9 respectively. These genes were involved in the biosynthesis of 9 chemical classes of secondary metabo-
lites (Fig. 8), the majority (71%) of these metabolites belonged mainly to 3 classes: Type I Polyketide synthase 
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Figure 4.  Predicted KEGG categories in Foa and other FOSC’s formea speciales. KEGG annotations are 
provided using the profile database that is integrated into the Kofamscan software. The numbers represent 
the genes number involved in each pathway for each strain. Abbreviations: F (Fusarium); o (oxysporum); f 
(formae); sp (speciales). The names following the abbreviations represent the names of the formae speciales; the 
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speciales (F.o.f.sp. albedinis 133: Fusarium osysporum forma specialis albedinis Foa 133).
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(T1PKS, an average of 14 BGCs), terpenes (an average of 12 BGCs) and Non-ribosomal peptide synthetase 
(NRPS, an average of 22 BGCs).

The predicted BCGs were then associated with characterized and verified clusters from the MIBiG database. 
Based on this, 12 families were identified within the Foa formae speciales (Fig. 9). Of these, 3 families (oxyjane-
ancine, gibepyrone A and equisetin) were produced by all formae speciales. On the other hand, the secondary 
metabolites belonging to the chrysogin family were specific to the Foa strains and were mainly encoded by unique 
genes. We also noted in Foa, the biosynthesis of mycotoxins which include ACT-Toxin-II and beauvercin as well 
as the biosynthesis of metabolites having anti-fungal activity (fujikurin A–D).

According to our in silico analysis, some metabolites were produced by all of the formae speciales; however 
metabolites belonging to chrysogin family were specifically synthetized by Foa strains.

Discussion
Fusarium oxysporum f. sp albedinis (Foa) is the causal agent of the most destructive disease of date palm in the 
oasis’s regions of Morocco and other North African  countries45. Until now, no effective treatment has been estab-
lished against this disease called  Bayoud45. For the first time in its history, we approach the study of this disease 
based on genomic analysis. Indeed, genomes sequencing of Foa strains provides important data to deeply study 
this disease and to design new control strategies.

To provide a comprehensive overview and uncover the genetic traits of this pathogenic fungus, a comparative 
genomic analysis of the two Foa genomes and the genomes of 29 other FOSC’s formea speciales was conducted 
in this work. In comparing 263 core genes, we showed that Foa was phylogenetically located in the same clade 
including matthiolae, tulipae and apii. These formae speciales are known to attack temperate climate plants (Bras-
sicaceae, Liliaceae and Apiaceae). Recently, a phylogeny based on the Foa mitochondrial genome was carried out 
and has highlighted the Foa clustering in the same clade as lycopercisi formae speciales46. However, this is relative 
as it was based only on the comparison of the mitochondrial DNA and not on the analysis of the genomic DNA 
which provides exhaustive information on the pathogen. In-depth structural and functional annotations were 
performed to extract accurate information about Foa. It was found that the genomes of this formae speciales 
harbor numerous encoding genes (17460–19514 genes) with around 30% that remain uncharacterized (unknown 
function). The gene families that control vital cellular functions were mainly derived from the core genome where 
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a large number of genes encoded MFS (Major Facilitator Superfamily). These are known as omnipresent proteins 
in all vital functions and constitute the largest family of secondary  transporters47,47. They are involved in essential 
cellular functions, such as nutrient uptake and metabolite  extrusion48,48. In addition, a recent  study50 showed that 
in F.virguliforme, MFS conferred reduced sensitivity to fluopyram (fungicide). Other such abundant core families 
in Foa include proteins having the fungal-specific transcription factor domain. Predictions suggest that factors 
with this domain are involved in carbohydrate metabolism, amino acid metabolism, gluconeogenesis, respiration 
and fatty acid catabolism (TRANSFAC, PFAM). However, the role of these proteins remains unknown, as these 
predictions have not all been experimentally confirmed. In some fungi, these factors play an important role in 
the coordination of multiple physiological processes, such as regulation of sensitivity to fludioxonil (fungicide), 
and of  pathogenesis51.

As to the remaining genome of the Foa formae speciales, it was mainly composed of accessory genes (70% 
of the total predicted genes) this fraction is enriched in proteins having the fungus-specific transcription factor 
domain and in proteins belonging to the Cytochrome P450 family. The latter are used by fungi as rapid adap-
tation strategies in several ecological  niches52,52,52, they are involved in the degradation processes of the plant 
cell  wall55. Furthermore, the richness of accessory genes can provide information on the horizontal transfer 
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Figure 6.  Predicted CAZymes in the analyzed strains. (A): heat map showing the total number of CAZymes 
distributed on six categories: auxiliary activities (AA), carbohydrate-binding molecules (CBM), carbohydrate 
esterases (CE), glycoside hydrolases (GH), glycosyltransferases (GT) and polysaccharide lyases (PL). (B): heat 
map showing the number of secreted CAZymes for each strain. (C): lollipop plot representing CAZyme families 
specific to each formae speciales. Abbreviations: F (Fusarium); o (oxysporum); f (forma); sp (specialis). The names 
following the abbreviations represent the names of the formae speciales; the abbreviations coming after the 
names of the formae speciales correspond to the strains belonging to these formae speciales (F.o.f.sp. albedinis 
133: Fusarium osysporum forma specialis albedinis Foa 133).
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dynamics as they are often associated with potentially transferable elements such as transposons. Indeed, TEs 
are important features of fungal genomes and play a key role in genome structure and  plasticity56. In addition 
to the fot1 family mentioned in previous  studies57, the analyses carried out in the present work revealed that 
Foa genomes harbor numerous transposable elements categories that cover a significant genomic portion. The 
high content of TEs can explain the variation in total genome size of the two Foa strains. This size decreases 
considerably when TEs are excluded. It varies between 53.43 Mb (in Foa 133) and 54.76 Mb (in Foa 9) instead 
of 56.23 Mb and 65.56 Mb respectively.

Our results are consistent with those of Li-Jun Ma and their  team58 who showed that the genomes of other 
Fusarium such as F. graminearum, F. verticillioides and F. oxysporum f. sp. lycopersici are also enriched in trans-
posable elements and pathogenicity-related genes, indicating horizontal acquisition.

Another finding is that the core and accessory genomic fractions harbor a gene set that enables fungal cell 
motility, indicating that Foa could actively move towards the plant roots which is the starting point of the infec-
tion. The proteins encoded by these genes could therefore be valuable targets for new control methods.

Similar to all the analyzed formae speciales, Foa can be distinguished from the others by a genomic fraction 
that is specific to it (the unique genes). These genes regulate numerous processes. In Foa 9, 4 unique genes 
are involved in the degradation of xenobiotics (chemicals such as fungicides, pollutants, etc.). In comparison 
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Figure 7.  Presence/absence map of SIX protein distribution in the protein repertoire of Foa and other analyzed 
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with Foa 133, the presence of these unique genes, in addition to the core and accessory genes involved in this 
pathway, could confer and increase the resistance of this strain to fungicides and environmental stress due to 
contaminants accumulation. This is consistent with other fungi, where the xenobiotics degradation enabled 
them to resist  dichlorvos59.

Furthermore, our results revealed that a subset of the Foa unique gene repertoire encodes secreted effectors. 
The role of effectors in the virulence of pathogenic fungi has been investigated extensively. Here we have shown 
that the protein repertoire of the analyzed Foa strains harbors key effectors of infection. These include proteins 
having a LysM domain, given that several LysM effectors have already been identified as virulence factors in plant 
pathogenic  fungi60. These proteins inhibit the chitin-induced immune response, which protects the fungal cell 
walls from host  chitinases61. Another type of effectors secreted by Foa are belonging to the cystin-rich proteins 
family. These are apoplastic effectors in which the cysteine residues form disulfide bonds, thus increasing the 
stability of these effectors in the protease-rich apoplastic  space62. In this context, a recent  study63 revealed that 
these effectors play a key role in the interaction between Verticillium dahliae and its host plant by suppressing 
immunity after infection. Foa also secretes the virulence factor Egh16-like (predicted in Foa 9) which enables it to 
penetrate the plant cell. This type of factors is known to be involved in appressorium creation in plant pathogenic 
 fungi64. In Magnaporthe oryzae (rice borer fungus), deletion of Egh16 orthologous genes altered fungal ability to 
penetrate host cuticles 65. The effector repertoire mining in Foa revealed effectors exclusively specific to Foa 9. 
this strain secretes protein predicted as 3 − oxo − 5 − alpha − steroid4 − dehydrogenase. In rice blast fungus, gene 
encoding this effector were specifically expressed during infection  stages66. the effector referred to as Globin was 
putatively identified in Foa 9. this protein was reported to be involved in low oxygen adaptation of other  fungi67. 
thus, Foa 9 could grow in microaerobic environments with low O2 levels.

A further class of effector proteins encoded by the Foa genomes are SIX1, SIX5 and SIX6. They are regulated 
by accessory genes, whose presence could be the result of horizontal gene transfer. These proteins further enhance 
Foa pathogenesis. Indeed, the presence of SIX1 has been reported to be a prerequisite for achieving complete 
virulence of the conglutinans (Focon) and lycopersici (Fol) pathogens on cabbage and tomato,  respectively68. 
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Figure 8.  Predicted secondary metabolite classes in the analyzed formae speciales: sckqted plot showing 
the predicted secondary metabolite genes for each strain; these genes were involved in the synthesis of nine 
secondary metabolite classes: arypolyene, betalactone, indole, terpene, CDPS (CycloDiPeptides Synthase), 
NRPS (Non-Ribosomal Peptide Synthase), NRPS-like, T1PKS (Type I Polyketide Synthase) and T3PKS (Type III 
Polyketide Synthase). Abbreviations: F (Fusarium); o (oxysporum); f (forma); sp (specialis). The names following 
the abbreviations represent the names of the formae speciales; the abbreviations coming after the names of the 
formae speciales correspond to the strains belonging to these formae speciales (F.o.f.sp. albedinis 133: Fusarium 
osysporum forma specialis albedinis Foa 133).
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Further studies on Fol showed that infection using mutants lacking SIX5 gene showed a considerable reduction 
in disease symptoms; and reintroduction of the gene restored pathogenesis in 75% of  mutants69. As for SIX6, this 
protein was shown to play a role in pathogenic fungi virulence by inhibiting a hypersensitivity response (HR)70. 
In Nicotiana benthamiana leaf cells, the SIX6 protein induced cell death by Avr2-I-2  interaction71. This arsenal 
of predicted effectors in Foa could serve as target proteins to setting up an effective treatment against Bayoud.

The genetic potential of Foa is not only restricted to the secretion of the above-mentioned effectors. This 
pathogen produces other proteins that are involved in the infection process. Our results showed that Foa strains 
carry a high number of genes encoding CAZymes associated with the degradation of the plant cell wall (the first 
physical barrier in front of Foa). Our results have further shown that this CAZyme arsenal is in part secreted. 
The secretome prediction revealed that the predicted CAZymes are partly secreted in Foa, thus suggesting the 
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Figure 9.  Predicted secondary metabolite families in the analyzed formae speciales. presence/absence map of 
secondary metabolite families detected in the genomes of the Foa and the other formae speciales. Blue boxes 
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cellular location of the remaining CAZymes. This is reported in other fungi such as Flammulina elastica where 
the third of predicted GH genes were  intracellular72.

As in all the examined FOSC’s formae speciales, the Foa secreted CAZyme fraction comprises enzymes hav-
ing known activities, which are organized in numerous families clearly associated with the degradation of key 
plant cell wall components. Another important finding is that the Foa is distinguished from all other analyzed 
formae speciales by the secretion of an endo-b-1,4-mannanase (GH5-7). This enzyme can efficiently cleave 
higher molecular weight mannans (plant wall hemicellulose) consisting of more than six mannose  monomers73. 
In addition, the combination of mannanases and mannosidases can further increase the mannan catalysis by 
83%74. A previous studies revealed that date palm is almost entirely composed (92%) of linear mannan (high 
molecular weight molecule)75, giving it a hardness, especially in seeds, to protect it from mechanical  damage76,76. 
Therefore, the exclusive occurrence of the gene encoding mannanase (GH5-7) in Foa genomes could explain its 
specificity towards date palm.

In phytopathogenic fungi, other compounds can further improve infection processes. These fungi are known 
to produce a wide variety of secondary metabolites that often confer ecological advantages and enhance their 
infectiveness. In this regard, our results showed the presence of numerous gene clusters involved in the biosyn-
thesis of these compounds in Foa. The predicted metabolites are often mycotoxins such as ACT-Toxin-II and 
Beauvericin. ACTs are host-specific toxins originally found in Alternaria pathotypes infecting  mandarins78. The 
ACT toxin induces plasma membrane dysfunction resulting in electrolyte leakage and rapid cell  death79. As for 
beauvericin (BEA), it is a mycotoxin produced by Fusarium species, has cytotoxic activity and is able to increase 
oxidative stress to induce cell  apoptosis80. The Foa secondary metabolite pool also comprises antibiotics and 
compounds that protect it from toxic products (gibepyrone A)81, as well as other metabolites that exhibit anti-
fungal activity (fujikurin A–D).

Our results revealed that Foa, in contrast to all other analyzed genomes, can synthesize chrysogin. This pig-
ment is known to protect microorganisms against abiotic aggressors such as UV  light82. Therefore, Foa seems 
to be more able to withstand severe environmental conditions compared to the other analyzed formae speciales.

Conclusion
The two Foa genomes analyzed in this work are the first genomes sequenced and reported in the literature. The 
availability of these sequences has provided us with an extensive overview of the Foa genomics and its patho-
genesis and adaptiveness. The in-depth analysis of these two genomes revealed the genetic characteristics of 
Foa. We showed that Foa secretes a wide range of effector proteins. These proteins comprise the virulence factor 
Egh16-like and other effectors (LysM, and SIX proteins) that enhance Foa’s ability to infect and destroy its host. 
Our analyses also revealed that the Foa genome encodes an arsenal of secreted enzymes involved in plant cell wall 
degradation. This arsenal includes an enzyme (GH5-7) which is exclusively specific to Foa. This enzyme could 
define the specificity of Foa to its host. In addition to these enzymes, predicted effectors and putative secondary 
metabolites reflect the pathogenic nature of Foa. The discovery of all these proteins has shed light on mechanisms 
potentially involved in orchestrating the host–pathogen interaction. It is expected that the findings from these 
analyses will set the stage for future research on Foa and provide a baseline for new control methods design to 
effectively manage Bayoud disease.

Material and methods
Genomic data acquisition
Currently, the FOSC includes more than 30 pathogenic and putatively non-pathogenic formae speciales. In 
our analysis, a total of 80 genomes corresponding to 30 pathogenic formae speciales including Foa (formae 
speciales of interest) were downloaded from NCBI and Joint Genome Institute’s MycoCosm databases. Detailed 
information (host, ID, strain and source information…..) of the strains employed in this study are denoted in 
Supplementary Data 1.

Data quality assessment
The quality of the genome assemblies of the 80 fungal strains was evaluated using BUSCO (Benchmarking 
Universal Single-CopyOrthologs) v4.0.520. In short, BUSCO estimates the completeness and redundancy of 
processed genomic data based on universal single-copy  orthologs20. It uses Hidden Markov Models (HMM), 
HMMER v3.3.2 and tBLASTn to predict whether each (3) fragmented or (4) missing. For BUSCO analysis, we 
used here the Hypocreales specific single-copy orthologous genes from Fungi Odb version 10.

A total of 493 genes defined as orthologs were obtained from the BUSCO evaluation of 80 fungal genomes. To 
verify the presence of each BUSCO gene in the analyzed strains, the 80 genomes were annotated by AUGUSTUS 
version 3.4.021 using F. graminearum as reference species, then each of the 493 BUSCO genes was aligned to 
the set of genes predicted by AUGUSTUS for each strain using BLASTn, the considered genes were those hav-
ing identity >  = 97%. A gene was defined as single-copy ortholog if it is complete and present only once on the 
genome of each strain. Complete genes occurring twice or more were considered duplicate genes. Fragmented 
genes were BUSCO genes that cover less than 97% of gene predicted by AUGUSTUS. Genes absent in all strains 
were considered missing genes. Duplicated, fragmented, or missing genes in at least one strain were eliminated 
from the gene set. The strains in which the 493 genes are duplicated or absent or fragmented were also elimi-
nated. The final data set retained corresponded to 51 fungal strains belonging to 30 formae speciales with 263 
orthologous genes in a single copy for each strain.
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Phylogenomic analysis
For each strain, the 263 orthologous genes were concatenated in the same order using the CLC Genomic work-
bench.  v2022; then aligned by MAFFT. Well-aligned regions were extracted using gBlocks. The final alignment 
was used as input for the MEGAX  software23 to generate a phylogenetic tree using the Maximum Likelihood 
(ML) method with a Bootstrap of 1000. Bootstraps indicate how many times, out of 1000, the same branch was 
observed when repeating the phylogenetic construct on a re-sampled data set.

Homologous protein identification
In addition to the predicted gene’s sequences, the ab initio annotation by AUGUSTUS also provided the pro-
tein sequences corresponding to these genes. Indeed, ab initio annotation is based on the use of the Support 
Vector Machine (SVMs) algorithm and hidden Markov models (HMM) to predict genes and their structure in 
eukaryotic DNA sequences.

All of the predicted proteins from each genome of the 51 analyzed strains were aligned to the protein 
sequences of the other strains. The protein sequences of each strain were aligned to all the protein sequences of 
the remaining strains belonging to set N with N = 51. This alignment was performed using the BLASTp with an 
E-value <  10−11 and coverage >  = 97%. The tables resulting from the BLASTp analysis for each strain were filtered 
using the R package  dplyr24 in order to keep only the lines where the identity between the aligned sequences 
is >  = 97%. Protein sequences found in a strain and occurring in other strains were defined as core sequences, 
thus representing the core genome. A sequence was considered unique if it was found only in one strain and not 
in the others. The set of unique sequences represent the unique genes. For the accessory genome, it was defined 
by the sequences common to only a part of the strains. On the basis of this BLASTp, three gene groups were 
defined for each strain: the core genes, the accessory genes and the unique genes. These three groups together 
constitute the pan genome.

Functional annotation
The three protein sequence groups (core, accessory and unique) for each strain were classified into families 
using the Interproscan 5  software25, which gives an overview of the families that a protein belongs to as well as 
the domains and sites it contains. The files obtained from the Interproscan 5 analysis were filtered to eliminate 
false positives. In the case of proteins aligned to two or more families, the alignment result having the minimum 
E-value was chosen.

KEGG pathways prediction
KEGG (Kyoto Encyclopedia of Genes and Genomes) is a collection of databases for understanding high-level 
functions and utilities of an organism linking genomic information with higher order functional information, 
by assigning the pathways where each protein of this organism is  involved26. In our case, this prediction was 
performed by the Kofamscan software using the three protein sequence groups of each strain as input. The result-
ing list of KO codes (KEGG Orthology) was used to scan the KO database integrated in the KOALA-formatter 
 software27. This allowed to extract KEGG pathways corresponding to the proteins of the used strains. KEGG 
pathways showing alignments of an E-value more than  10−10 were eliminated.

Secretome and effectors prediction
The "secretome" is defined as all the proteins that are secreted by a cell, a tissue or an organism. The secretome is 
an important class of proteins that control many biological and physiological processes. The primary sequence of 
proteins intended for secretion is characterized by a peptide sequence called ’N-terminal signal peptide’ which is 
cleaved by signal peptidase after the protein translocation across the membrane. However, several extracellular 
proteins were reported as a secreted protein that can be exported without a classical N-terminal signal  peptide28. 
Secretion of proteins without an N-terminal signal peptide is known as non-classical secretory pathway. Classical 
and non-classical secreted proteins can act as effectors.

To examine the secretome of the 51 strains used in our work, the SignalP v5.029 and SecretomeP v1.028 soft-
ware were used to analyze their protein sequences in order to deduce the classical and non-classical secreted 
proteins for each strain. Then, the secretome sequences were submitted to the EffectorP v3.030 software, which 
predicts the effector proteins in this sequence set. The effectors resulting from this prediction were organized 
into two categories: cytoplasmic effectors (which penetrate inside plant cells) and apoplastic effectors (which 
remain and act outside the plant cell).

Detection of CAZymes (Carbohydrate-Active enZymes)
The protein sequences of the 51 selected strains were also the subject of CAZymes annotation using the run_
dbcan v3.0  software31 coupled with the CAZyDB09242021 database. This software combines three state-of-the-art 
tools (DIAMOND, HMMER and eCAMI) to automatically identify CAZymes. Considered CAZymes were those 
identified by the three tools and having an e-value lower than  10−10.

SIX proteins (secreted in xylem) prediction
The secretome of each strain was aligned to all the SIX sequences available on NCBI using the BLASTp with an 
E-value <  10−11 and a coverage > = 97%. Alignments with an identity ≥ 97% were selected to infer the different 
classes of SIX proteins present in each strain.
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Secondary metabolite gene clusters prediction
Gene clusters involved in secondary metabolite biosynthesis (BGC) were predicted using antiSMASH version 
6.132, which combines the MIGBIG, ClusterBlast and Subcluster Blast gene collection with the ClusterFinder and 
CASSIS (Cluster-border prediction based on transcription factor binding sites) algorithms. This combination 
provides an accurate identification of secondary metabolite gene clusters of known major chemical classes. It also 
offers a detailed sequence analysis. In our analysis, the genomic sequences of the 51 strains and their annotations 
were submitted to antiSMASH to inventory BGCs existing in the analyzed strains.

Transposable elements prediction
Transposable elements (TE) of the 51 analyzed strains were predicted and annotated by the EDTA v1.3  software33, 
using the genomic sequences of these strains as input. It is a pipeline that allows the identification and classifica-
tion of transposable elements based on a combination of programs: LTRharvest (v1.5.10), LTR_FINDER_paral-
lel (v1.0), LTR_retriever (v2.6), Generic Repeat Finder (v1.0), TIR-Learner (v1.23), MITE-Hunter (v1.0) and 
HelitronScanner (v1.0). This combination results in the creation of a high-quality non-redundant TE library.

Statistics and plot generation
The genome statistics (genome size and GC rate) were computed using  Quast83 software; the other statistics (num-
ber of proteins and BUSCO genes) were obtained using the  BUSCO20 and  AUGUSTUS21 softwares described 
above. All the results obtained from the analyses carried out in this work were processed and filtered using the 
R package  dplyr24 and custom codes. these codes are not yet available online. All figures representing the results 
of this work have been generated using the R graphic package  ggplot284.

Data availability
The Foa genomes used in this study are available from Joint Genome Institute fungal genome portal MycoCosm 
(http:// jgi. doe. gov/ fungi) and National Center for Biotechnology Information (https:// www. ncbi. nlm. nih. gov/). 
The accession numbers are JAAVJG000000000.1 (Foa 133) and JAKELM000000000.1 (Foa 9).
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