
Article https://doi.org/10.1038/s41467-022-34420-4

Lipidomic signatures align with inflamma-
tory patterns and outcomes in critical illness

Junru Wu 1,2,3,4, Anthony Cyr 1,2, Danielle S. Gruen 1,2, Tyler C. Lovelace5,6,
Panayiotis V. Benos 5, Jishnu Das 7, Upendra K. Kar1,2, Tianmeng Chen1,8,
Francis X. Guyette9, Mark H. Yazer10, Brian J. Daley 11, Richard S. Miller12,
Brian G. Harbrecht13, Jeffrey A. Claridge14, Herb A. Phelan15,
Brian S. Zuckerbraun1,2, Matthew D. Neal 1,2, Pär I. Johansson16,
Jakob Stensballe16,17,18, Rami A. Namas1,2, Yoram Vodovotz 1,2,
Jason L. Sperry1,2 , Timothy R. Billiar 1,2 & PAMPer study group*

Alterations in lipid metabolism have the potential to be markers as well as
drivers of pathobiology of acute critical illness. Here, we took advantage of the
temporal precision offered by trauma as a common cause of critical illness to
identify the dynamic patterns in the circulating lipidome in critically ill
humans. The major findings include an early loss of all classes of circulating
lipids followed by a delayed and selective lipogenesis in patients destined to
remain critically ill. The previously reported survival benefit of early thawed
plasma administration was associated with preserved lipid levels that related
to favorable changes in coagulation and inflammation biomarkers in causal
modelling. Phosphatidylethanolamines (PE) were elevated in patients with
persistent critical illness and PE levels were prognostic forworse outcomes not
only in trauma but also severe COVID-19 patients. Here we show selective rise
in systemic PE as a common prognostic feature of critical illness.

Acute critical illness is a major healthcare burden and commonly leads
to short and long-term morbidity and mortality1,2. Common causes of
acute critical illness, including severe injury and infections, are among
the leading causes of death worldwide3. Most recently, the COVID-19
pandemic has emerged as amajor etiology for acute critical illness and

death. Patients hospitalized for SARS CoV-2 infection that develop
critical illness have mortality rates up to 39%4. For those that develop
organ dysfunction, treatment options are limited and those targeting
the host response are often nonspecific. Common features across
these different etiologies of critical illness include dysregulated
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metabolism, an inflammatory “genomic storm”, immune suppression,
and endothelial/ coagulation dysfunction4–10. The validation of accu-
rate prognostic biomarkers and a better understanding of the patho-
biology of acute critical illness would facilitate the identification of
effective targeted therapies.

A limitation in the study of human critical illness is knowing the
time of onset of the patient’s disease process9. This is especially true
for infections for which time of onset is often unclear. In addition,
serious infections are commonly seen on the background of other
chronic diseases that can confound interpretation of results. Trau-
matic injury is one of the most common causes of acute critical illness
and often occurs in otherwise healthy individuals. This, coupled to the
fact that the time of onset of the acute disease process can be known
with precision, makes trauma an attractive model for the study of the
dynamic events leading up to acute critical illness.

Lipids comprise 30% of the body’s non-water mass and are not
only a main component of cell membranes but also important energy
substrates and signaling molecules11. Previous studies in critically ill
humans provide evidence that lipolysis and lipogenesis are altered
dramatically in acute critical illness. For example, circulating levels of
glycerolipids, sphingolipids, phospholipids, and lyso-phospholipids
vary from baseline in patients with acute critical illness12–18. Many lipids
can serve as regulators of inflammatory and immune responses19. In
addition, certain lipids (e.g. triacylglycerides, fatty acids) can serve as
essential energy substrates for immune cell subsets (e.g. Memory
T cells\Tregs\M2 Macrophages)20,21. However, a comprehensive
assessment of the changes in common circulating lipids that correlate
with outcomes in acute critical illness is lacking.

To define the changes in the circulating lipidome associated with
acute critical illness, we utilized a database and biobank established
during the Prehospital Air Medical Plasma (PAMPer) Trial22. This pro-
spective, multi-institutional randomized trial enrolled severely injured
patients transported to level I Trauma Centers by helicopter. The trial
demonstrated that administration of thawed allogeneic plasma (TP)
during transport improved 30-day survival when compared to stan-
dard-of-care, which does not include TP in the pre-hospital setting.
Becauseof this striking treatment effect, wehypothesized that early TP
administration would favorably impact circulating lipidomic patterns.
Causal modeling was used to integrate the major changes in lipidomic
profiles with immune mediator profiles and tissue injury/ coagulation
markers observed after trauma and during critical illness. The lipi-
domic findings were further translated into a Lipid Reprogramming
Score that was found to correlate highly with later patient outcomes.
These findings were confirmed in a second trauma database and two
publicly available databases comprised of critically ill COVID-19
patients, suggesting that some of the unique lipidomic patterns iden-
tified in this studymaybegeneralizable to critical illness resulting from
diverse etiologies.

Results
Lipid profiling of plasma from patients with severe trauma
To determine the dynamics changes in circulating lipids after severe
injury in humans, we carried out a quantitative analysis of plasma lipid
levels in samples obtained during the PAMPer trial22. This prospective,
multi-institutional, pragmatic trial enrolled seriously injured humans
suffering polytrauma at risk for hemorrhagic shock. Only patients that
were transported by helicopter to a Level 1 trauma center were inclu-
ded and randomization took place in the pre-hospital setting. Patients
in the treatment arm received two units of TP initiated during heli-
copter transport, while the control group was assigned randomly to
standard-of-care, which did not include TP in the pre-hospital setting.
The use of pre-hospital TP was associated with a 9.8% reduction in 30-
day mortality (p = 0.03)22. A total of 193 of the original 523 patients
were selected for lipidome analysis (Supplementary Fig. 1). This cohort
included both non-survivors (n = 83) and survivors (n = 110) selected to

represent the overall cohort. Samples were obtained at admission to
the trauma center (0 h) and at 24 and 72 h after admission. Only the
time 0 h sample was obtained in the early (died within the 72 h) non-
survivors (n = 51). A group of 17 non-fasting healthy subjects was used
as controls for baseline values. The detailed demographic information
of healthy subjects and patients is shown in Table 1. Since underlying
medical conditions and medication history can influence circulating
lipidprofiles,we alsoprovide this information (SupplementaryData 4).
Chronic health conditions and medications were rare in the trauma
patient population and evenly distributed across the outcome groups
(Supplementary Data 1).

The overall data analysis workflow is shown in Fig. 1a. Liquid
chromatography mass spectrometry (LC-MS) was used to carry out
targeted lipidomic analysis on the plasma samples. In total, 996 lipids
were quantified using internal standards. In the quality control analy-
sis, themedian relative standarddeviation (RSD) for the lipidpanelwas
4%. Lipids are named according to sub-class and acyl chains detected.
For example, PE (16:0_18:2) has a phosphatidylethanolamine (PE)
backbone and two acyl chains comprised of palmitic acid (C16:0) and
linoleic acid (C18:2). The representation of lipids from 14 sub-classes is
shown in Fig. 1b. Triglyceride (TAG) (glycerol backbone + three acyl
chains) was the most abundant lipid class identified in the plasma
(n = 518). Phosphatidylethanolamine (PE), phosphatidylcholine (PC),
and diacylglycerols (DAG) all containing 2 acyl chains were the next
most abundant classes (n = 128, 121, 58 respectively).

We first explored the dynamic changes in the global pattern of the
circulating lipidome in trauma patients. Uniform Manifold Approx-
imation and Projection (UMAP) is a non-linear method for dimension
reduction that can identify the global structure of multi-dimensional
data. In Fig. 1c, each dot represents a single subject and the distance
between dots in the UMAP plot reflects the global similarity/ differ-
ences in overall lipid profiles between samples23. We observed that
trauma patients at 0 h were quite dispersed and partially overlapping
with healthy subjects, suggesting an early and rapidly evolving
response pattern immediately post-injury. There was excellent
separation across the three time points on UMAP, underscoring the
role of time in the major changes in lipid patterns after trauma.

To depict the differences between the healthy controls and
patients across time, we projected relative levels of all lipids assayed
on a heatmap (Fig. 1d). Compared to healthy controls, most lipid
species were persistently lower after trauma. This dramatic shift
between healthy controls and injured humans was also observedwhen
total lipid concentrations were compared (Fig. 1e).

Association between lipidome pattern and outcome of trauma
patients
We next investigated the association between the circulating lipidome
and patient outcomes. The three outcomes used for this analysis
included (1) early non-survivors (death within 3 days of admission), (2)
non-resolving patients (survivors with duration of intensive care unit
[ICU] stay ≥7 days or patients that died after day 3 following admis-
sion), and (3) resolving patients (survivors with duration of ICU stay
<7 days). UMAP plots of the global lipidomic patterns indicated
enrichment of early non-survivors in the region encircled in red at 0 h
and an enrichment of the non-resolving patients in the region encir-
cled by the blue line at 72 h (Fig. 2a, b). Furthermore, we observed a
dramatic drop in the levels of nearly all major lipid species at 0 h for
early non-survivors compared to the other patient groups or healthy
controls (Fig. 2c). Patients in both the resolving and non-resolving
groups at 0 h also exhibited a drop in most lipid species compared to
healthy controls, but not to the degree seen in the non-survivors.
Patients in the resolving group exhibited a persistent suppression in
most lipids at 24 and 72 h (Fig. 2d, e). Remarkably, patients in the non-
resolving group at 72 h demonstrated an increase in a subset of lipids.
Further characterization of lipid class and fatty acid types indicated
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that all 14 classes, includingboth saturated andunsaturated fatty acids,
were suppressed in injured patients at 0 h. However, there was
selective elevation of TAG, DAG, PE, and ceramides (CER) at 72 h in
the non-resolving cohort. A quantitative time-series analysis showed
that total lipid levels were higher at 72 h in the non-resolving patients
and that unsaturated fatty acids predominated in TAG and DAG,
while PE and CER contained a mixture of saturated and unsaturated
fatty acids (Fig. 2f). Interestingly, there was excellent correlation
across the elevated lipids from the TAG, DAG, and PE classes (Sup-
plementary Fig. 3a, b). The interconnections between biochemical
pathways involved in the synthesis of these lipid classes are shown in
Supplementary Fig. 3c. Our findings point to a rapidly evolving

pattern in the circulating lipidome after severe injury that includes a
loss of all classes of lipids in the circulation that is evident early after
injury. This process is exaggerated in patients that die early, sug-
gesting that an abrupt loss of circulating lipids contributes to
adverse outcomes. Furthermore, there is a selective increase in four
lipid classes by 72 h in patients that remain critically ill or die later in
their clinical course.

We next examined the impact of injury severity reflected by injury
severity scores (ISS) on lipid levels and profiles. Patients were sepa-
rated intominimal (ISS < 10), moderate (ISS 10–25), or severe (ISS ≥ 25)
injury (Supplementary Fig. 2a). Exploration of the lipid profiles by
either UMAP or heatmap demonstrated no major impact of ISS on the

Table 1 | Demographic characteristics of the patients by outcome

Variables Healthy subjects (N = 17) Resolving (N = 41) Non-resolving (N = 101) Early-nonsurvivors (N = 51) p-value

Demographics

Age (Median [IQR]) 38 (±31) 48 (±34) 46 (±37) 46 (±42) 0.836a

Sex (% Male) 12 (70.6%) 31 (75.6%) 78 (77.2%) 36 (70.6%) 0.809a

Race (% White) 35 (85.4%) 89 (88.1%) 48 (94.1%) 0.365

Injury characteristics

ISS (Median [IQR]) 21 (±10) 30 (±16) 24 (±23) <0.001

Head AIS (Median [IQR]) 0 (±3.0) 3.0 (±2.0) 3.0 (±4.0) <0.001

TBI (%) 14 (34.1%) 66 (65.3%) 29 (56.9%) 0.003

GCS (Median [IQR]) 14 (±7.0) 3.0 (±9.0) 3.0 (±8.0) <0.001

SBP < 70mmHg (%) 19 (46.3%) 41 (40.6%) 25 (49.0%) 0.580

HR (Median [IQR]) 120 (±16) 120 (±21) 120 (±39) 0.218

Injury type (% Blunt) 30 (73.2%) 93 (92.1%) 47 (92.2%) 0.017

Prehospital

Treatment arm

Standard care (%) 25 (61.0%) 48 (47.5%) 36 (70.6%) 0.021

TP (%) 16 (39.0%) 53 (52.5%) 15 (29.4%)

Transport time (Median [IQR]) 39 (±18) 44 (±17) 42 (±18) 0.771

CPR (%) 0 (0%) 3 (2.97%) 5 (9.80%) 0.044

Intubation (%) 13 (31.7%) 65 (64.4%) 40 (78.4%) <0.001

Blood (%) 11 (26.8%) 32 (31.7%) 22 (43.1%) 0.214

Crystalloid (Median [IQR]) 800 (±1400) 830 (±1300) 1000 (±1600) 0.891

PRBC (Median [IQR]) 0 (±1.0) 0 (±1.0) 0 (±2.0) 0.233

Hospital

Transfusion 24h (Median [IQR]) 2.0 (±8.0) 7.0 (±14) 12 (±20) <0.001

PRBC 24h (Median [IQR]) 2.0 (±5.0) 5.0 (±7.0) 8.0 (±10) <0.001

Plasma 24h (Median [IQR]) 0 (±0) 2.0 (±4.0) 4.0 (±8.0) <0.001

Platelets 24h (Median [IQR]) 0 (±0) 0 (±1.0) 1.0 (±2.0) 0.002

Crystalloid 24 h (Median [IQR]) 4800 (±3800) 5300 (±4000) 4600 (±3000) 0.095

Vasopressors 24h (%) 19 (46.3%) 68 (67.3%) 44 (86.3%) <0.001

INR (Median [IQR]) 1.2 (±0.20) 1.3 (±0.36) 1.6 (±0.72) <0.001

Other outcomes

Coagulopathy (%) 16 (39.0%) 54 (53.5%) 44 (86.3%) <0.001

ALI (%) 2 (4.88%) 47 (46.5%) 3 (5.88%) <0.001

NI (%) 3 (7.32%) 43 (42.6%) \ <0.001

MOF (%) 31 (75.6%) 98 (97.0%) \ <0.001

Vent days (Median [IQR]) 2.0 (±3.0) 10 (±8.0) 1.0 (±0) <0.001

ICU LOS (Median [IQR]) 4.0 (±3.0) 13 (±9.0) 1.0 (±1.5) <0.001

Hospital LOS (Median [IQR]) 9.0 (±10) 19 (±19) 1.0 (±1.0) <0.001

Pearson’s χ2 test was used for calculating p value of categorical variables. Kruskal-Wallis test was used for calculating p value of continuous variables.
ISS injury severity score, AIS abbreviated injury score, TBI traumatic brain injury, GCS Glasgow coma score, SBP systolic blood pressure, HR heart rate, TP thawed allogeneic plasma, CPR
cardiopulmonary resuscitation, PRBC packed red blood cells, INR international normalized ratio, ALI acute lung injury, NI nosocomial infection,MOFmultiple organ failure, ICU intensive care unit,
LOS length of stay.
aTest was conducted across both healthy subjects and the three outcome groups of trauma patients.
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Fig. 1 | Temporal patterns in the circulating lipidome after severe trauma.
a Scheme of overall analysis strategy. b Representation of 996 lipid species
detected in the lipidomic platform grouped by lipid classes. c Uniform Manifold
Approximation and Projection (UMAP) plot shows the distribution of healthy
subjects (n = 17) and patients with trauma (n = 193), grouped by sampling time-
points (0h, 24 h, 72 h after admission).dHeatmap shows relative levels of 996 lipid
species for healthy subjects and trauma patients, grouped by sampling timepoints
using z-score normalized concentrations. Lipid species are clustered by Hier-
archical clustering. e Quantitative comparison of circulating total lipid concentra-
tion among healthy controls (HC, n = 17) and trauma patients (n = 193), grouped by

sampling timepoints. Asterisks indicate statistical significance based on the
Kruskal–wallis test with post-hoc analysis using the Dunn test. The p value was
adjusted by the Benjamini–Hochberg method: *<0.05; **<0.01; ***<0.001. Box and
whisker plots represent mean value, standard deviation, maximum and minimum
values, and outliers. TAG triacylglycerol, DAG diacylglycerols, MAG mono-
acylglycerols, PE phosphatidylethanolamine, PC phosphatidylcholine, PI phos-
phatidylinositol, LPE Lysophosphatidylethanolamine, LPC
Lysophosphatidylcholine, CER Ceramides, HCER hexosylceramides, LCER lacto-
sylceramide, DCER dihydroceramides, CE cholesterol ester. Source data are pro-
vided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-34420-4

Nature Communications |         (2022) 13:6789 4



post-injury lipid patterns (Supplementary Fig. 2b). We also observed
poor correlation between ISS and total lipids concentrations of either
saturated or unsaturated fatty acids (Supplementary Fig. 2c, d, 0 h
timepoint shown). Thus, while injury induces major changes in the
circulating lipidome, in this cohort of patients with shock on pre-
sentation, ISS alone does not associate with lipid patterns.

Pre-hospital TP enhances lipid levels early after severe injury
The key observation of the PAMPer trial was the demonstration that
initiating TP administration in the pre-hospital setting reduced early
mortalitywhen compared to standard care22. Toassess for an impact of
TP, we compared lipid profiles in patients in the treatment arm to
those in the standard-of-care arm. UMAP plots demonstrated a

a b

UMAP_1

U
M

AP
_2

Resolving 24h Non-Resolving 24h Resolving 72h Non-Resolving 72h

Healthy Control Resolving 0h Non-Resolving 0h Early-Nonsurvivors 0h

UMAP_1

U
M

AP
_2

Healthy Control
Resolving 0h
Resolving 24h
Non-Resolving 24h

Non-Resolving 0h
Early-Nonsurvivors 0h
Resolving 72h
Non-Resolving 72h

f

200

400

600

800

1000

200

400

600

800

250

500

750

SF
A 

(n
M

/m
L)

U
SF

A 
(n

M
/m

L)

Total TAG PE CER

100

200

300

400

500

600

40

60

80

50

75

100

125

5.0

7.5

10.0

12.5

2

4

6

8

72h24h0hHC72h24h0hHC72h24h0hHC72h24h0hHC

Healthy Control

###**

* *

###**

####*

####*
10

20

30

40

50

60

25

50

75

100

125

#**

** ##

72h24h0hHC

DAG
ns ns*

#*

ns

Resolving Non-Resolving Early-Nonsurvivor

H
ea

lth
y 

C
on

tro
l

R
es

ol
vi

ng
 0

h

N
on

-R
es

ol
vi

ng
 0

h

Ea
rly

-N
on

su
rv

iv
or

s 
0h

R
es

ol
vi

ng
 2

4h

N
on

-R
es

ol
vi

ng
 2

4h

R
es

ol
vi

ng
 7

2h

N
on

-R
es

ol
vi

ng
 7

2h

996 Lipid species
c

LPC
CE
LPE
LCER
PI
SM
HCER
PC
TAG
PE
DAG
DCER
MAG
CER

14 Lipid classes
d

H
ea

lth
y 

C
on

tro
l

R
es

ol
vi

ng
 0

h

N
on

-R
es

ol
vi

ng
 0

h

Ea
rly

-N
on

su
rv

iv
or

s 
0h

R
es

ol
vi

ng
 2

4h

N
on

-R
es

ol
vi

ng
 2

4h

R
es

ol
vi

ng
 7

2h

N
on

-R
es

ol
vi

ng
 7

2h Z-score

-1
-0.5
0
0.5
1

24:0
22:0
15:0
17:0
18:4
14:0
14:1
16:0
20:3
20:4
12:0
16:1
22:2
26:0
24:1
26:1
18:0
20:0
18:1
18:3
20:5
20:1
18:2
22:6
22:5
22:1
20:2
22:4

28 Fatty acids in lipids
e

H
ea

lth
y 

C
on

tro
l

R
es

ol
vi

ng
 0

h

N
on

-R
es

ol
vi

ng
 0

h

Ea
rly

-N
on

su
rv

iv
or

s 
0h

R
es

ol
vi

ng
 2

4h

N
on

-R
es

ol
vi

ng
 2

4h

R
es

ol
vi

ng
 7

2h

N
on

-R
es

ol
vi

ng
 7

2hZ-score

-1
-0.5
0
0.5
1

Z-score

-1
-0.5
0
0.5
1

p=0.029p=0.013

p=0.407p=0.050

p=0.0002p=0.003

p=0.330p=0.015 p=0.489p=0.049

p=0.0001p=0.003 p<0.0001p=0.016

p<0.0001p=0.011 p=0.017p=0.002

p=0.006p=0.004

Article https://doi.org/10.1038/s41467-022-34420-4

Nature Communications |         (2022) 13:6789 5



skewing in the lipid profiles towards the healthy controls in the TP
treatment group at 0 h (Fig. 3a, b). However, this preservation of lipid
levels associated with pre-hospital TP was seen to dissipate at 24 and
72 h, with no difference in lipid levels or patterns between the TP and
standard-of-care groups at these time points. Both the qualitative and
quantitative analysis revealed that patients receiving TP had less of a
drop in the levels of most classes of circulating lipids at time 0h, with
higher levels of TAG, DAG, and MAG compared to standard-of-care
patients (Fig. 3c, Supplementary Fig. 4A). We then assessed the rela-
tionship between the predictedmortality, calculated from the Trauma
and Injury Severity Score (TRISS), and lipid levels in the two cohorts
(Fig. 3d). Average lipid levels were higher in the TP group across all
TRISS values. All unexpected deaths (low TRISS Score: predicted
mortality rate less than 50%) were in the standard-of-care patients and
11/14 had lipid levels below the mean for the overall cohort. Deaths
seen in the TP group were limited to those with a high expectation for
death for all except one patient (high TRISS Score: predictedmortality
rate of greater than 75%). A Forest plot of log-odds ratios from amulti-
variable logistic regression (generalized estimating equation) is shown
in Fig. 3e. This analysis revealed that lower lipid levels at 0 h sig-
nificantly favored mortality within the first 72 h while TP administra-
tion favored survival (OR:2.50, Cl: 1.24–5.01). Only TRISS had a higher
association with early mortality than TP or lipid levels even when
traumatic brain injury (TBI) and sex were added to the model.

We next carried out correlation analysis to identify the factors that
associate with circulating lipid levels in the early response to severe
injury. Included in the analysis were 21 inflammatory and immune
mediators, 6 markers of endotheliopathy/ tissue injury, and 2measures
of coagulation abnormalities, all measured at time 0h. Also included in
the analysis were typical measures of injury severity and interventions
associated with adverse outcomes. Interestingly, the mediators segre-
gated into three subsets, each with strong internal correlation (Fig. 3f).
These included a subset represented by pro-inflammatory cytokines
and chemokines that mostly positively correlated with early death,
injury severity, endotheliopathy, and abnormal coagulation (Subset 1:
IL-6, IL-8, IL-10, MCP-1/CCL2, IP-10/CXCL10, and MIG/CXCL9) and two
subsets that correlated inversely with the pro-inflammatory mediators
and adverse outcomes including, mediators associated with type 2 and
3 immune responses (Subset 2: IL-2, IL-4, IL-5, IL-7, IL-17A, and GM-CSF)
and mediators associated with either tissue protection/ repair or lym-
phocyte regulation (Subset 3: IL-9, IL-22, IL-25, IL-27, IL-33 and IL-21, IL-
23). The relationships between these three mediator subsets remained
mostly consistent at 24 and 72h (Supplementary Fig. 7a, b). However,
low lipid levels at time 0h positively correlated only with standard-of-
care, early death, coagulation abnormalities and the endotheliopathy
marker, sVEGFR, and not with any of the mediator subsets (Fig. 3f).

We next used probabilistic graphical models for mixed data
types24,25 to infer potential direct (cause-effect) relationships within
the multi-modal observational data included in Fig. 3f. These features
were loaded into the algorithm and nodes and edges projected onto a
graph with early mortality as the endpoint of interest (Fig. 3g). The α-
value of 0.2 for the conditional independence tests of the algorithm
was selected using nested leave-one-out cross-validation to select the

model with the best predictive performance of patient outcome (see
Methods). Circulating lipid concentrations, coagulopathy (including
INR), volume of crystalloid used in first 24 h and the pro-inflammatory
mediators (via MIG) were identified as direct causal factors con-
tributing to early death (demonstrated by red arrows). The sequential
edges connected TP administration to circulating lipid concentra-
tions, coagulopathy, INR, and volume of crystalloid used in first 24 h.
These connections indicated a potential mixed causal relationship
linking TP with all these factors and fewer early deaths. Other features
known to be important to early mortality, including patient and injury
characteristics, endothelial and tissue injury, and subset 2 and 3
mediators were indirectly linked to outcomes. Thus, correlation ana-
lysis and causal modeling related an interaction between INR and lipid
concentration to early death and identified a direct impact of TP on
both of these causative factors. These findings further support the
notion that a rapid loss of circulating lipids contributes to the early
pathogenic state cause by severe injury with shock.

Confirmation of outcome-based changes in the plasma lipidome
in trauma and patients with critical illness due to COVID-19
To determine if our findings could be recapitulated in an independent
trauma patient cohort, we conducted an in-depth comparison
between the PAMPer dataset and a separate trauma dataset26 (Trauma
dataset-2:TD-2, n = 86). Because there were differences in themethods
used to quantify lipid species across the datasets, we only carried out
indirect comparisons of the relative changes (Z-scores) of lipids spe-
cies within each dataset across the datasets. A total 75 lipids from 9
sub-classes were found to be in common between the PAMPer and TD-
2 datasets (Supplementary Fig. 5a, b). There was remarkable con-
sistency in the relative changes of the early drop and late increase in
most lipids over timeandbasedonoutcomegroup. The elevated lipids
in the non-resolving patients at 72 h were almost entirely in the PE,
MAG and DAG classes in both the PAMPer (23/26) and TD-2 (18/19)
datasets. TAG, LPE, LPC, and DCER were not measured in TD-2 and
therefore, are not included in this comparison.

To further generalize our findings of outcome-associated changes
in circulating lipids to another cause of acute critical illness, we ana-
lyzed two public datasets derived from COVID-19 patients16,17. Unlike
trauma, the onset of critical illness in Covid-19 patients can be highly
variable relative to the onset of infection and the time the infection
started is often unclear. To assist with the comparison between the
trauma and COVID-19 datasets, we set the 0 timepoint in the COVID-19
datasets as the day of symptom onset for non-severe patients and day
of progression for severe patients. A total of 29 lipidswere identified in
common among the 4 datasets (Fig. 4a–d, Supplementary Data 2). Of
these, only a subset of PE species were found to be significantly ele-
vated from baseline during critical illness (Supplementary Data 5). We
identified eight PE species and one PC specie significantly higher in the
non-resolving group (72 h) in PAMPer dataset, while three, six, and five
of these PE were elevated in the TD-2, Covid-19 (Guo et al.)16, and
Covid-19 (Shui et al.)17 datasets, respectively. Eight of these PE species
could be identified when combining PAMPer with any single other
database, five PE species were in common when combining PAMPer

Fig. 2 | Association between temporal patterns of the circulating lipidome and
outcome.UniformManifold Approximation and Projection (UMAP) plot shows the
distribution of healthy control subjects (n = 17) and trauma patients (n = 193),
grouped together (a) and separated (b) by outcome and sampling timepoints.
Heatmaps show relative levels of 996 lipid species (c); 14 lipid classes (d) and 28
fatty acids labeled by carbon number: double bonds (e) for healthy subjects and
trauma patients, grouped by outcome and sampling timepoints. z-score represents
normalized concentrations. Rows are clustered by method of hierarchical cluster-
ing. f Quantitative comparison of circulating total lipid concentrations among
healthy controls (HC) and trauma patients. Lipids are grouped by classes and fatty
acids (saturated or unsaturated) identified as the acyl chains in the lipid classes.

Patients are grouped by outcome and sampling timepoints. Center dots and error
bars represent median value and median absolute deviation, respectively. SFA
saturated fatty acid, USFA unsaturated fatty acid. Asterisks indicate statistical sig-
nificance basedonKruskal–wallis test among 3 groups at 0 hwith post-hoc analysis
of Dunn test. The P value was adjusted by Benjamini–Hochberg method: *<0.05;
**<0.01. Number sign indicates statistical significancebasedon 2-wayAVOVA test of
time-series analysis of resolving and non-resolving groups. Pairwise Comparisons
were conducted by Estimated Marginal Means test. The P value was adjusted by
Benjamini–Hochberg method: #<0.05; ##<0.01; ###<0.001, ####<0.0001. Source data
are provided as a Source Data file.
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with any two of the other databases, and a single PE was found to be
significantly elevated during critical illness in common across all four
databases (Supplementary Data 5). Thus, increases in PE consistently
associate with critical illness in trauma and COVID-19.

Generation and evaluation of a lipid reprogramming score
We next sought to determine if a combination of PE species common
to the four trauma and COVID-19 patient datasets could be optimized

to generate a Lipid Reprogramming Score (LRS) (Fig. 5a, see also
methods for a detailed description). Briefly, the eight PE species
detected across four datasetswere selected as the starting pool. All the
eight PE species were highly correlatedwith the 37 other lipids (mostly
TAG species, Supplementary Data 3) identified as significantly higher
in non-resolving PAMPer patients (72 h) by logistic regression taking
into account cofounders, including ISS, age, and treatment (Supple-
mentary Fig. 6a, b). A sensitivity analysis identified amodel comprised
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of five PE showing the best performance (Supplementary Data 6).
Thus, we defined the LRS as the mean z-score of five PE species (PE
(16:0_18:2), PE (16:0_20:4), PE (16:0_22:6), PE (18:0_18:1), PE (18:0_22:6))
representative of PE from all four trauma and COVID-19 datasets. To
further technically validate the results, we utilized another platform
(LC-HRMS, Platform2) from matched trauma patients (n = 29) and
healthy controls (n = 8) to quantify the concentrations of 5 PE species
(Supplementary Data 8). All of them were highly correlated between
the two platforms (LC-MS/MS, Platform 1, PF1; LC-HRMS, Platform 2,
PF2) (Supplementary Fig. 9a) and selectively up-regulated in non-
resolving trauma patients at 72 h (Supplementary Fig. 9b).

We next calculated the LRS for each patient across the three
timepoints and plotted these in a UMAP plot (Supplementary Fig. 6c)
in order to further reveal their relationships with global lipidome
patterns. We found that the gradient in the LRS increased from left-to-
right along the x-axis in the UMAP plot, which was consistent with the
outcome-based pattern at 72 h. We then transformed the score into a
categorical variable with three thresholds based on tertiles (Low,
Medium, High) for all PAMPer patients surviving at 72 h (Supplemen-
tary Fig. 6c). When displayed on a UMAP plot, the separation of
patients into low, medium, and high LRS tertiles distributed the
patients similarly to that seen using the continuous LRS. Thus, both the
continuous and categorical LRS values represent the magnitude of
global changes in the circulating lipidome and may be useful for cor-
relating the lipidomic changes with other patient features. We also
explored the relationship between the LRS and either the BMI or early
lipid levels in 89 PAMPer patients (Supplementary Fig. 6d, e). There
was weak relationship between BMI and total lipid levels (r =0.18,
p =0.094). The LRSwas independent of BMI (r = −0.03, p =0.73). Thus,
the LRS could be a representative marker of the changes in circulating
lipids in critically trauma patients.

Risk assessment using LRS for patients with trauma or COVID-19
Wenext investigatedwhether the LRSwasassociatedwith outcomes in
trauma or COVID-19 patients. A time-series analysis demonstrated that
non-resolving trauma patients exhibited dramatic increases in the LRS
at 24 to 72 h post-trauma compared to resolving patients (Fig. 5b).
Recovery analysis revealed that LRS-high and LRS-medium groups
experienced a longer period to recovery than patients in the LRS-low
group (Supplementary Fig. 6f). In addition, trauma patients with
medium or high LRS were associated with higher injury severity, lower
admission blood pressure, mass transfusion, higher INR, and higher
incidence of NI and MOF (Supplementary Data 4). High LRS was also
associated with lower probability of recovery (HR:0.73, Cl:0.56–0.95)
even when adjusted for age, ISS, TBI, and treatment effect in a Cox
regressionmixed effectmodel (Fig. 5c). To confirm our finding using a
second traumapopulation, we adopted the same strategy to construct
the LRS using the TD-2 dataset, which was dominated by resolving
trauma patients. The recovery curve, and Cox regression model all
showed similar correlations of LRS with outcomes in TD-2 as seen in
PAMPer trial patients (Supplementary Fig. 6h, i). Therefore, the LRS

showed an independent relationship with persistent critical illness
after trauma.

We next explored the prognostic value of the LRS and the five
individual PE species that comprise the LRS for predicting whether
trauma patients would progress to a non-resolving pattern (Supple-
mentary Data 7). Here, we set the standard-of-care arm in PAMPer
dataset as the training set (n = 73). The TP arm from PAMPer dataset
was set as an internal test set (n = 69) and theTD-2datasetwas set as an
external test set (n = 86).Compared to the referencemodel27 (ISS + IL6,
AUC =0.798), adding the LRS moderately improved the performance
of discrimination (AUC=0.816, added AUC=0.018) in the training set
(Fig. 5d, Supplementary Fig. 7a). Interestingly, of the five PE that
comprise the LRS, PE (18:0_18:1) (RSD:9.82%) also greatly improved the
performance of discrimination (AUC =0.873, added AUC=0.075) in
the training set (Fig. 5d, Supplementary Fig. 7a). We further utilized an
established two-step machine learning approach28–30 to identify a
minimal set of predictive lipid biomarkers and clinical features for
predicting the outcome in the PAMPer dataset (standard-of-care arm).
This approach was based on feature selection (L1 Regularization –

LASSO to avoid overfitting) followed by classification (Support Vector
Machine) using the down-selected features. The results suggested that
PE (18:0_18:1) was the top selected feature among lipids and only IL6
and ISS ranked higher overall (Supplementary Fig. 7b). The perfor-
mance of calibration (Supplementary Fig. 7c) was also improved by
adding either the LRS or the single PE (18:0_18:1) to ISS + IL6 (Brier
Score: ISS + IL6, 0.177; ISS + IL6 + LRS, 0.166; ISS + IL6 + PE (18:0_18:1),
0.139). The results were consistent in the internal (Supplementary
Fig. 7D, AUC: ISS + IL6, 0.876; ISS + IL6 + LRS, 0.916; ISS + IL6 + PE
(18:0_18:1), 0.900) and external test sets (Supplementary Fig. 7E, AUC:
ISS + IL6, 0.797; ISS + IL6 + LRS, 0.814; ISS + IL6 + PE (18:0_18:1), 0.841).

We then tested whether we could generalize the LRS for the two
COVID-19 patient datasets using a similar approach. The Shui, et al.17

COVID-19 dataset lacked detailed clinical data, therefore, we only
compared differences in LRS among the four outcome groups defined
by the authors of the study. We found that mild, moderate and severe
COVID-19 patients had a higher LRS compared to healthy subjects
(Supplementary Fig. 6g). Consistent with these findings, the LRS was
also significantly higher in the severe group when compared to the
non-severeCOVID-19 patients in the dataset ofGuo, et al.16 (Fig. 5e).We
also observed an upward trend in the LRS during the time window
preceding progression (<48 h and D6-D14 after progression, Fig. 5e).
Finally, multi-variable logistic regression suggested that LRS is an
independent risk factor for COVID-19 patients (OR: 9.88, Cl: 2.09–78.5,
Fig. 5f). C-reactive protein (CRP) and lymphocyte count (Lym) are
known to correlate with worse outcomes in COVID-19 patients31. We
compared the LRS and its five individual PE species with these two
variables to classify severe versus non-severe patients in both a train-
ing set (C1, n = 45) and test set (C2, n = 10) (Supplementary Data 7).We
found that the LRS alone moderately improved the performance of
discrimination (AUC=0.814, added AUC=0.028), however a single PE
specie from the LRS (PE (16:0_22:6), RSD:5.51%) alone greatly improved

Fig. 3 | Potential causal effect for thawed plasma (TP), Lipid concentration and
early mortality. Uniform Manifold Approximation and Projection (UMAP) plot
shows the distribution of healthy subjects (HC, n = 17) and traumapatients (n = 193)
(a), separated by treatment arms with sampling timepoints (b). c Heatmap shows
relative levels of 996 lipid species for healthy subjects and trauma patients,
grouped by treatment arms and sampling timepoints. Exp, z-score normalized
concentration. Rows are clustered by hierarchical clustering. d Relationship of
predicted mortality and total lipid concentration at 0 h upon admission. Trauma
patients are grouped by treatment arms; tendency lines are modeled by loess
methods for 2 groups separately, dash line in the x-axismeans 0.5 and y-axismeans
the median concentration. d indicates patients who died less than 72 h after
admission. e Forest plot showing odds ratios from logistic regression (generalized
estimating equatio) of clinical factors; Lipid concentration; TP effect for early-

nonsurvivors (n = 51) versus others (n = 142). Error bars: 95% confidence interval.
f Correlation heatmap showing correlation among cytokines, biomarkers, clinical
variables, total lipid concentration and outcome. r: Spearman correlation coeffi-
cient.gCausal network among factors ine constructed byFCI (see alsomethods) in
patients with complete lipid and biomarker data (n = 170). The presence of “edges”
or connections between nodes in the graph correspond to conditional depen-
dencies relationships. Detailed interpretation of the edges can be found in Meth-
ods. Abbreviations: TRISS Trauma and injury severity score, TP thawed plasma, TBI
traumatic brain injury, ISS injury severity score, GCS Glasgow coma score, PH
Prehospital, INR international normalized ratio. Asterisks in e indicate statistical
significance inmulti-variable logistic regressionmodel: *<0.05; **<0.01. Asterisks in
f indicate statistical significance for correlation coefficient. P-values are approxi-
mated by using the t distributions: *<0.05; **<0.01; ***<0.001.
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Fig. 4 | Comparison of temporal patterns of common lipids for patients with
trauma or COVID-19. a, d Heatmaps show the relative levels of 29 common lipid
species from four major classes across patients. Data comes from trauma patients
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the performance (AUC=0.862, added AUC=0.076) (Fig. 5g, Supple-
mentary Fig. 7a). The two-step machine learning approach also
revealed that the PE (16:0_22:6) were the top selected features (Sup-
plementary Fig. 7C). Theperformanceof calibrationwas also improved
by using PE (16_22:6) (Brier Score: Lym+CRP:0.177; LRS: 0.166; PE
(16:0_22:6): 0.139; Supplementary Fig. 7G). The performance of PE

(16:0_22:6) also had the highest AUC compared to other twomodels in
the test set (Supplementary Fig. 7f, AUC: CRP + Lym, 0.917; LRS, 0.833,
PE (16:0_22:6), 0.958). Interestingly, we also noticed that PE (16:0_22:6)
showed similar performance for prognostication as the random forest
model based on 17 proteins and 9 metabolites reported in the original
manuscript. It is notable thatonly onepatient (XG43)wasmislabeled in

Non-severe versus severe Covid-19 patients 
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the test cohort (C1) using PE (16:0_22:6) for prognostication (Supple-
mentary Fig. 7g). Thus, similar to our observations in trauma, a single
PE specie derived from the LRS performed well of prognostication for
severe disease in COVID-19.

Association between LRS and systemicmarkers of inflammation
and endothelial dysfunction in trauma patients
We next sought to determine if the LRS correlated with circulating
markers of inflammation or endothelial and tissue damage. A corre-
lationmatrix was constructed using data from the 121 PAMPer patients
alive at 72 h that had complete data for lipids, 21 cytokines and che-
mokines, endotheliopathy markers, and tissue injury markers across
time after injury (Time 0h: Fig. 6a, Times 24 and 72 h: Supplementary
Fig. 8a, b). Across the three time points, LRS correlated positively with
pro-inflammatory cytokines/chemokines (defined above as subset 1),
as well as endotheliopathy and tissue injury biomarkers. Conversely,
LRS correlated negatively with subset 2 (lymphocyte-related) and
subset 3 (protective/ reparative) cytokines and an adipokine (Adipo-
nectin). These findings suggest that the changes in the circulating
lipidome at 72 h, represented by an elevated LRS, associates with
biological process that drive worse outcomes (e.g., inflammation,
endotheliopathy, and tissue injury), and therefore, may contribute to
or be part of the pro-inflammatory/ tissue injury processes that are
known to contribute to adverse outcomes in trauma.

Discussion
The main goal of this study was to correlate the temporal patterns in
the circulating lipidomewithoutcomes in the early evolution of critical
illness in humans. Using trauma as a model, we found that three dis-
tinct clinical trajectories each alignwith comprehensive changes in the
patterns of circulating lipids. These relationships are depicted in a
summary diagram in Fig. 6b. The findings include: (1) A dramatic drop
in all classes of lipids in the hyperacute phase after of severe injury that
was most extreme in patients destined to die. Early TP mitigated this
rapid drop in lipid levels and was associated with improved outcomes;
(2) the drop in circulating lipids persisted through 72 h in patients
destined to resolve their critical illness earlier; (3) a delayed rise in
circulating in DAG, TAG, and PE species in patients that went on to
experience persistent critical illness. Remarkably, the over-
representation of PE species in trauma patients with critical illness
was easily identified in critically ill patients in a validation trauma
dataset and two COVID-19 datasets. A Lipid Reprogramming Score
derived fromPEwasan independent risk factor forworseoutcome and
correlated with excessive proinflammatory responses. Although there
have been multiple metabolomics studies characterizing the circulat-
ing metabolome in critical illness12,16,17,32,33, to date there are no reports
focusing on the comprehensive temporal lipidome changes in this
disease context. We show that lipids may be sensitive markers of the
host response to systemic stress and serve asprognosticbiomarkersof
critical illness.

Among the most pronounced changes observed in our study was
the early loss of all classes of lipids in the circulation after injury. A
study of 32 trauma patients showed that blood triglyceride levels were
significantly lower in 9 non-survivors within 28min of injury, sug-
gesting that injury-induced decreases in circulating lipids may begin
very early after a severe trauma34. Our healthy controls were non-
fasting and sampled throughout the day to align with the presentation
of the typical trauma patient. Therefore, the differences between
controls and injured at time 0h are unlikely to be due to dietary
effects.While the degree of the decline in lipids associatedwith clinical
outcomes, the incidencewasnotdependent on injury severity. A stress
hormone-induced hypermetabolic state with associated increased
catabolism is seen after trauma and other causes of critical illness6,35

and may explain the persistent decline in circulating lipids. The cata-
bolism response generates energy substrates from carbohydrates,
fats, andprotein in an “all or none”manner that, like ourfindings, is not
influenced by injury severity36. It is reasonable to speculate that the
abrupt loss of lipids may be due, in part, to the uptake and catabolism
of lipids tomeet the energydemands. Thefinding that patients thatdie
within first 72 h experience the greatest magnitude in lipid loss from
the circulation raises the interesting possibility that a circulating
energy substrate crisis contributes to the early mortality.

Administration of TP in route to the trauma center improves early
survival and we show here that this also results in higher levels of
circulating lipids. This was especially true for glycerolipids, including
TAG, DAG, and MAG, which are rich energy substrates. In addition to
providing a source of lipids, TP also contains proteins involved in
coagulation, and many other factors likely to contribute to its salutary
actions. TP is well known to reduce bleeding complications and we
have recently reported an association of TP administration with a
prevention of endothelial dysfunction and an excessive inflammatory
response22,37. The correlative changes in early lipid levels andoutcomes
in our study point to lipids as another potential beneficial component
of TP. In the future, circulating lipid profiles may be useful for prog-
nostication or for guiding early interventions with plasma or other
strategies to replace specific lipid deficiencies in trauma or in critical
illness from other etiologies.

In stark contrast to the early changes in circulating lipids, a subset
of lipids (predominantly TAG, DAG, and PE) began to rise in the cir-
culation between 24 and 72 h in patients that subsequently exhibited a
slow recovery or die. In addition to lipolysis and hypermetabolism,
patients with critical illness experience pathologic alterations in liver
such as hepatic steatosis38–42. Studies in severe burn trauma associate
the browning of white adipose tissue with enhanced lipogenesis in
liver43,44. Interestingly, the inter-class correlation network among the
lipids we identified at 72 h is similar to the lipogenesis pathway in the
liver. This suggests that the liver is one of the sources of the glycer-
olipids and PE that appear in the circulation and that these reflect
ongoing systemic inflammation and metabolic stress. That DAG, TAG,
and PE are linked though a common synthesis pathway further

Fig. 5 | Lipid Reprogramming Score (LRS) is an independent risk factor for
outcome after trauma or COVID-19. a Graphical scheme of generation and eva-
luation of LRS. b Comparison of LRS from patients with trauma (n = 142). Patients
are grouped by outcome and sampling timepoint. Center dots and error bars
represent median value and median absolute deviation, respectively. c Forest plot
showing hazard ratio of clinical factors and LRS score for recovery using a Cox
regressionmixed effectmodel in patients surviving at 72 h (n = 142). Error bars: 95%
confidence interval. d ROC curve for three prognostic models in training cohort
from Standard-of-care arm in the PAMPer dataset (trauma patients, n = 73).
e Comparison of LRS for patients with COVID-19. Healthy Subjects (n = 25), Non-
COVID (n = 25) and COVID-19 patients (n = 45) are grouped with diseases outcome
and sampling timepoint. Center dots and error bars represent median value and
median absolute deviation, respectively. f Forest plot showing odds ratio of clinical
factors from logistic regression and LRS score for Non-severe (n = 25) versus Severe

COVID-19 patients (n = 20). Error bars: 95% confidence interval. g Comparison of
prognostic value of LRS, PE (16:0_22:6), lymphocyte count, and CRP for Non-severe
(n = 25) versus Severe (n = 20)outcome for theCOVID-19 cohort (C1) fromGuo. et al
by ROC curve. ISS injury severity score, Lym lymphocyte count, CRP C-reaction
protein. Asterisks inb indicate statistical significance in based on 2-way AVOVA test
of time-series analysis of resolving and non-resolving groups. Pairwise Compar-
isonswas conductedbyEstimatedMarginalMeans test. TheP valuewas adjustedby
Benjamini–Hochberg method: ****<0.0001. Asterisks in e indicate statistical sig-
nificance based on Kruskal–wallis test among 6 groups of COVID-19 patients with
post-hoc analysis of Dunn test. The P value was adjusted by Benjamini–Hochberg
method: *<0.05. Asterisks in d and g indicate statistical significance in multi-
variable regression model: *<0.05; **<0.01. Source data are provided as a Source
Data file.
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supports this possibility45. The majority of circulating lipids are com-
plexed with lipoproteins.The various classes of lipoproteins com-
plexes vary in lipid composition; therefore, it is likely that the classes of
lipoprotein complexes also vary over time after severe injury46. Several
specific lipid species [e.g. PC(16:0_18:1), PC(18:0_18:1)] contribute to
inter-organ (liver, muscle and adipose tissue) communication47. We
observed that PC (16:0_18:1) and PC (18:0_18:1) were higher at 72 h in
the non-resolving trauma patients or severe Covid-19 patients, raising
the possibility for a lipid reprogramming process across organs during
persistent critical illness.

The LRS that we generated from five PE species had prognostic
value when measured at 72 h in trauma patients or at the onset of
symptoms COVID-19 patients. Higher PE levels as represented by the
LRS and even a single PE derived from the LRS could prognosticate for
severe critical illness with combined with ISS and IL-6 in trauma or
when used alone in COVID-19. The specificity of single PE species for
prognostication for trauma and COVID-19 might represent character-
istics specific to the patients, the causes of the critical illness, or the
differences in the methods used to measure the lipids in the studies.
Prospective studies will be needed to confirm the prognostic value of
measuring subsets of PE in trauma and other forms of critical illness。

however these findings raise the possibility that increases in PE
synthesis and other lipids might be a feature common to persistent
critical illness resulting from diverse etiologies. Noticeably, only TAG
and DAG comprised of unsaturated fatty acids increased in non-
resolving patients. These fatty acids include Eicosapentaenoic Acid
(EPA) and Docosahexaenoic Acid (DHA), which are precursors for lipid
mediators involved in inflammation resolution and tissue repair11,48,49.
Thus, in addition to providing a source of lipids for systemic energy
needs through the release of acyl glycerides, this response might
reflect the host’s attempt to resolve the ongoing inflammatory
response and tissue injury. Thus, the LRS or induvial PE species
(PE(18:0_18:1),PE(16:0_22:6)), like other biomarkers of the host
response (e.g., IL6 and CRP), may be useful as early parameters for
outcomeprediction linked to specific biologic processes. It will also be
of interest to determine if the LRS or PE species predicts outcomes in
other etiologies of critical illness such as sepsis and burns.

Global lipidmetabolism is regulated by many factors such as pro-
inflammatory mediators, adrenergic stress, and regulatory
hormones11,39,43,50,51. Propranolol or IL-6 receptor blockade can attenu-
ate the browning of white adipose tissue and hepatic steatosis in
experimental burn trauma43. Interestingly, we also found that the LRS
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Fig. 6 | Association between LRS and circulating biomarkers. a Heatmap
showing correlation of LRS and circulating biomarkers at 0 h in trauma patients
(n = 121), measured by Spearman correlation coefficients. Asterisks in a and
b indicate statistical significance for correlation coefficient. Unadjusted p-values
are approximated by using the two-sided t distributions: *<0.05; **<0.01; ***<0.001.

b Schematic of proposed paradigm showing the relationship between circulating
lipid levels and outcomes after severe injury. Early loss of circulating lipids corre-
lateswith adverse outcomeswhile failure to resolve critical illness is associatedwith
the selective increase in glycerolipids and PE.
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is positively associated with the pro-inflammatory response, the acute
phase response, endothelial injury, and coagulation but inversely
correlated with mediators shown to contribute to tissue protection
and repair. This relationshippersisted throughout the 72 hobservation
period. The adiponectin is produced by liver and adipose tissue,
respectively, and are functionally associated52. This hormone enhances
fatty acidoxidation as an energy sourceandwere negatively correlated
with the LRS, consistent with a dysregulated lipid reprogramming in
patients with persistent critical illness.

Our study has several limitations. Clinical lipid panels are not
routinely measured in severely injured trauma patients. Therefore, we
could not correlate changes in these commonly assessed lipids with
our lipid panels. Unfortunately, we also could not determine the levels
of lipidsmediators since these were notmeasured in our targeted lipid
assays. Further studies to validate the prognostic value of the LRS or
individual PE are warranted. Themechanistic relationship between the
changes in lipids in the circulation do not necessarily reflect lipid
metabolism within specific organs or tissues. Finally, the functional
contributions of the observed lipid changes to patient outcomes
remain to be established in patients.

In conclusion, our findings provide a paradigm for the lipid
response to a severe and acute systemic stress leading to critical illness
(summarized in Fig. 6c). Our causal modeling and correlation analyses
place lipolysis a central regulator of the evolution from acute disease
onset to critical illness in humans. The features of lipogenesis we
identified appear to be common to critical illness due to multiple
etiologies and potentially useful for predictive modeling and target
identification. Both the proposed paradigm and our comprehensive
datasets will be useful for further study of altered lipid metabolism in
acute critical illness.

Methods
Study population and samples
ThePAMPer trial was approvedby the IRBofUniversity of Pittsburgh as
previously described19. The research reported in this paper is covered
by the original IRB approval. Critically injured participants were fre-
quently either in a semi-conscious or unconscious state when they
were enrolled at the scene. These patients were too ill to consent to
immediate treatment. Thus, for treatments that must be given imme-
diately to be effective, exception from informed consent research is
considered appropriate by federal regulations53 (https://www.fda.gov/
regulatory-information/search-fda-guidance-documents/exception-
informed-consent-requirements-emergency-research). The Emer-
gency Exception from Informed Consent (EFIC) protocol from the
Human Research Protection Office of the US Army Medical Research
and Material Command was applied to this study. Further details of
emergency exception to informed consent can be found at the official
website for the PAMPer trial at https://crisma.upmc.com/apps/
PAMPer/home/. Registration information and the detailed study pro-
tocol are available on https://clinicaltrials.gov/ct2/show/NCT01818427.
All participants or their legally authorized representatives provided
written consent to continue participation following admission to the
hospital. Participants without this written consent were excluded for
analysis. No participant compensation was provided. The primary
outcome of PAMPer trial was 30 day survival and this has been pre-
viously reported22. The administration of thawed plasma resulted in
lower 30-day mortality than standard-care resuscitation group (23.2%
vs. 33.0%; difference, −9.8 percentage points; 95% confidence interval,
−18.6 to −1.0%; P = 0.03).

Healthy volunteers were enrolled in an observational study
approved by the University of Pittsburgh Institutional Review Board
(PRO08010232). The detailed study protocol is available on https://
www.clinicaltrials.gov/ct2/show/NCT00250523. Written informed
consent was obtained from all the subjects. No participant compen-
sation was involved in the study.

We conducted longitudinal sampling of plasma (0 h; 24 h; 72 h
after admission) from 193 patients with trauma prospectively enrolled
in the PAMPer trial22, along with 17 healthy subjects. The detailed
workflow is shown in Supplementary Fig. 1. The primary aimof PAMPer
trial was to test if administering prehospital thawed allogeneic plasma
(TP) during air medical transport can reduce in-hospital mortality for
severely injured trauma patients. Values for clinical and physiological
variables with biomarkers of injury and inflammation given in the
manuscript were reported from previous studies22,37. The outcome of
trauma patients was defined as: Resolving (Survival with ICU stay
<7 days); Non-resolving (Survival with ICU stay > = 7 days or non-
survival with death day >3 days) and Early-nonsurvivors (Non-survival
withdeath day < = 3days). Blood sampleswere collected using vacuum
isolation tubes with anticoagulant of Heparin sodium, which were
centrifuged at 4°C and plasma fractions were stored at −80 °C for
further analysis.

Plasma lipidomic profiling
Lipidomic profilingwas performed through the Complex Lipid PanelTM

technique at Metabolon (Metabolon Inc, Morrisville, NC 27560, USA).
Briefly; lipids were extracted from the plasma using automated BUME
extraction54. Samples were analyzed using differential mobility spec-
trometry (DMS) interface (SCIEX) and a high flow LC-30AD solvent
delivery unit (Shimazdu). Each sample was run once on the platform
using amethod that combines DMS ‘on’ and ‘off’ as well as positive and
negative ionizationmodes. The following lipid classes were quantified
with i) DMS ‘on’ and in negative ionization mode: PC, PE, LPC, LPE, ii)
DMS ‘on’ and in positive ionization mode: SM, iii) DMS ‘off’ and in
negative ionization mode: FFA, iv) DMS ‘off’ and in positive ionization
mode: TAG, DAG, CE, CER. The internal standards were selected based
on the combination of carbon length and the number of doublebonds.
Metabolon maintains assay-specific internal standards based on
superiority compared to single standards. The panel has an expanded
set of internal standards, containing over 50 deuterium-labeled lipid
molecular species across 14 lipid classes that mimic the biochemistry
found in human plasma. These standards were developed by SCIEX, in
collaboration with Avanti Polar Lipids and Metabolon Inc (https://
sciex.com/products/consumables/lipidyzer-platform-kits). Full list of
internal standards can be found in Supplementary Data 10. Further
details can be found in the patent literature (https://patents.google.
com/patent/US11181535B2/en,Table 1-8). Lipid species concentrations
were background-subtracted using the concentrations detected in
process blanks (water extracts) and run day normalized. Background
levels were estimated/calculated from the median levels of the three
process blanks (water) if therewere detectable levels in at least 2 of the
3blanks in eachbatch. The background level was subtracted fromeach
sample in the batchprior to any run day normalization. TheQC sample
was generated by combining a small aliquot from the entire set of
samples into a single pooled CMTX (ClientSample matrix). Four ali-
quots of theCMTXwere run on each plate of 36 samples.One eachwas
injected at the beginning and end of the run, with the other two
roughly evenly spaced between the remaining samples. The internal
standard was run multiple times throughout the experiment. Instru-
ment variability was evaluated by calculatingmedian relative SD (RSD)
from the quality control sample matrix. The median RSD values for 14
lipid classes can be found in Supplementary Data 8.

High-resolution LC-HRMS (Platform 2, PF2) Lipidomic Analysis
of 5 PE species
In order to exclude the effect of injury characteristics, we conducted
propensity score matching of age, ISS and TBI between resolving
(n = 14, one sample was not available) and non-resolving male patients
(n = 15) in PAMPer trial (Supplementary Data 9). We also included
samples from 8 non-fasting healthy subjects as a control group for
comparison. Plasma samples from trauma patients of 72 h and healthy
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subjects were analyzed in the metabolic core at university of Pitts-
burgh. Metabolic quenching, lysis, and lipid extraction was performed
via Folch extraction. Briefly, 400 µL of water, 500 µL methanol and
1mL chloroform was added to 100 µL plasma and spiked with 5 µL PE-
UltimateSPLASH deuterated internal standardmix (Avanti Polar Lipids
– 330826 Birmingham, AL). Samples were vortexed for 2min and
rested on ice for 10min before phase separation via centrifugation at
3000 × g for 25min at 4 °C. 800 µL of organic phase was dried to
completed under nitrogen gas and resuspended in 1:1 acetoni-
trile:isopropanol. 2 µL of sample was subjected to online LC-MS ana-
lysis. Calibration curves were prepared using purified PE species with
side chain lengths: 16:0–18:2, 16:0–22:6, 16:0–20:4, 18:0–18:1, and
18:0–22:6 by serial dilution from 15 µM down to 0.117 µM for absolute
quantification.

Analyses were performed by untargeted LC-HRMS. Briefly,
Samples were injected via a Thermo Vanquish UHPLC and sepa-
rated over a reversed phase Thermo Accucore C-18 column
(2.1 × 100mm, 5 μm particle size) maintained at 55 °C. For the
30min LC gradient, the mobile phase consisted of the following:
solvent A (50:50 H2O:ACN 10mM ammonium acetate/0.1% acetic
acid) and solvent B (90:10 IPA:ACN 10mM ammonium acetate/0.1%
acetic acid). Initial loading condition is 30% B. The gradient was the
following: Over 2 min, increase to 43%B, continue increasing to 55%
B over 0.1 min, continue increasing to 65%B over 10min, continue
increasing to 85%B over 6min, and finally increasing to 100% over
2min. Hold at 100% for 5min, followed by equilibration at 30%B for
5min. The Thermo IDX tribrid mass spectrometer was operated in
positive ESI mode. A data-dependent MS2 method scanning in Full
MS mode from 200 to 1500m/z at 120,000 resolution with an AGC
target of 5e4 for triggering ms2 fragmentation using stepped HCD
collision energies at 2040 and 60% in the orbitrap at 15,000 reso-
lution. Source ionization settings were set to 3.5 kV for spray vol-
tage in positive mode. Source gas parameters were 35 sheath gas, 5
auxiliary gas at 300 °C, and 1 sweep gas. Calibration was performed
prior to analysis using the PierceTM FlexMix Ion Calibration Solu-
tions (Thermo Fisher Scientific). Standard peak areas were then
extracted manually using Quan Browser (Thermo Fisher Xcalibur
ver. 2.7), normalized to deuterated internal standard peak area and
converted to concentrations using the calibration curves. The
calibration curves of 5 PE species are shown in Supplementary
Fig. S10.

Lipidomic data pre-process and dimension reduction
Lipids were named according to its sub-class and fatty acid composi-
tion; (e.g., PE (16:0_18:2) means this lipid belongs to phosphatidy-
lethanolamine (PE) class and it was synthesized from palmitic acid
(C16:0) and linoleic acid (C18:2)). The nomenclature we used simply
lists the 2 sidechains present without attempting to ascribe which
resides at which position. Lipids with over 20% missing quantitative
values were discarded due to the concernof lowquality. Othermissing
values for each lipid species were imputed with the minimum con-
centration. Lipid class concentrations were calculated from the sumof
all molecular species within a class, and fatty acid compositions were
determined by calculating the proportion of each class comprised by
individual fatty acids.

Normality of each lipid species distribution was tested by
Shapiro–Wilk test and Q-Q plot. No transformation was conducted
because most lipid species obey normal distribution or was near nor-
mal distribution. A two steps approach of dimension reduction from
both linear and non-linear methods were applied. Principle Compo-
nent Analysis (PCA) was performed on z-score scaled concentration of
each lipid species. Then, Uniform Manifold Approximation and Pro-
jection (UMAP) was conducted by using the first 20 PCs. All subjects
grouped by outcome or timepoint were visualized in UMAP plot. No
obvious outliers were identified in the UMAP plot.

Causal inference analysis
Causal inferencewasperformedby using the on-line CausalMGM55 and
the command-line tool for FCI56. Early death (death day≤ 3 after
admission) was set as the outcome and all other variables which may
be related to early death were kept as input (Clinical information: Age;
Trauma brain injury (TBI), Injury severity (ISS); GCS; TRISS, Hemos-
tasis: INR; Coagulopathy. Intervention: Prehospital thawed allogeneic
plasma (TP); Prehospital transfusion volumeof crystalloid; Prehospital
intubation; Transfusion volume in first 24 h after admission, Bio-
markers: 21 cytokines with 7 endothelial injury related markers, total
lipid concentration). Continuous variables of biomarkers were log2
transformed and z-score scaled to meet the assumption of normality.
Categorical variables were tested to meet the assumption of multi
nominal distribution. To select the optimal α-value threshold for the
conditional independence tests of the FCI we used a nested leave-one-
out cross validation. In each round, directed graphs were learned from
all but one samples at different α-values (α = {0.01, 0.05, 0.1, 0.15, 0.2,
0.25}). The variables in theMarkov blanket of the “Early death” variable
(i.e., parents, children and spouses) in eachα-valuewere used to train a
logistic regression model. This model was then used to predict the
“Early death” in the left-out sample. The procedurewas repeated for all
samples and Receiver Operator Characteristic (ROC) curves were
constructed for each α-value. The value of α =0.2 produced models
with the best Area Under the ROC Curve (AUC =0.80). The final causal
network presented in Fig. 3g was constructed on the full dataset
using the α =0.2 for the conditional independence tests. A directed
edgeA ->B indicates thatA is a cause of B (i.e., a change inA is expected
to affect a change inB). A bidirected edgeA <->B indicates that there is
unmeasured confounder affecting both A and B. A partially directed
edge A o-> B indicates that B is not a cause of A, but it is unclear
whether A is a cause of B or if there is a latent confounder that causes
both A and B. An undirected edge A o-o B indicates that we cannot
make inferences about the causal orientation of that edge.

Correlation network and lipid biosynthesis pathway
Correlation networks were constructed using 412 lipids based on a
Pearson correlation coefficientmatrix fromall samples. All lipids in the
class of MAG; CE; PI; LPE; LPC; SM; CER; LCER; HCER; DCER were kept.
Lipids of TAG; DAG; PE; PC were kept at top 100; 30; 40;40 variable
species respectively to reduce the complexity of network. Variance
Stabilizing Transformation (vst) method was used for identifying
variable lipids andmean-varplot for eachclasswas examined to ensure
the stability. The threshold of the correlation coefficient was tuned
from 0.5 to 0.8 and then set at 0.7 based on the following considera-
tions: 1. Balance between intra-class correlation and inter-class corre-
lation; 2. Preference for a higher threshold to reduce false positive
relationships. Cytoscape (version 3.8.0) was used to construct the
inter-class and intra-class network and layoutwas set as circular57. Lipid
biosynthesis pathways were summarized from previous published
literature.

Establishment and application of the lipid reprogramming
score (LRS)
We generated the Lipid Reprogramming Score (LRS) based on the
consideration of following points: 1) The lipids species used to gen-
erate the score could be easily detected across the metabolomic\lipi-
domic platforms; 2) The lipids species reflected the lipidomic patterns
associated with outcomes; 3) The LRS associates with outcomes in
both trauma and Covid-19 after adjusting for confounding variables.
For point 1), we used the 8 PE species as the starting pool since they
were detected in both the targeted lipidomic platforms (PAMPer\
Covid-19 dataset of Shui et al.) and untargetedmetabolomic platforms
(TD-2\ Covid-19 dataset of Guo et al.). Other species from PC\PI\SM
were not included since on our correlation network analysis (Supple-
mentary Fig. 3a) revealed that only TAG\DAG\PE were highly inter-
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correlated. Only z-scores were used since the untargeted platforms did
not report the quantitive concentration. For point 2), we explored the
relationship of these 8 PE species with the top differentially lipids in
PAMPer dataset. Other datasets were excluded since they were not
from untargeted assays or without clear timepoints. First, we system-
atically identified the lipid species that were different between non-
resolving and resolving trauma patients using logistic regression with
age, ISS, and treatment as co-variables (Supplementary Data 3). This
yielded 37 lipids (27 TAG and 9 PE) that were significantly (adjusted
p < 0.01, log foldchange >0.4) higher at 72 h in the non-resolving
PAMPer patients and three LPC thatwere lower (Volcano plot shown in
Supplementary Fig. 6a). We noticed there was one specie PE (18:0_18:1)
identified by both approaches. Next, we constructed a matrix that
correlated these eight 8 commonPE specieswith the 37 lipids thatwere
differentially expressed in the non-resolving PAMPer patients (Sup-
plementary Fig. 6b). All eight PE were correlated positively with the
other PE and 27 TAG, and negatively correlated with the three lower
LPC species. For point3), only lipid species that preserved theoutcome
relationships in both trauma and Covid-19 datasets were considered
candidates for inclusion to generate the LRS.We then applied different
criteria to further reveal the relationship of lipids species between the
four datasets. In addition to the eight PE species identified when
combining PAMPerwith any single other database, five PE specieswere
in common when combining PAMPer with any two of the other data-
bases, and a single PEwas found tobe incommonacross all 4 databases
(Supplementary Data 5). In order to optimize the combinations of PE
species to generate LRS, we conducted a sensitivity analysis by testing
the association between outcome and themean z-score from the eight,
five or one PE species (Supplementary Data 5) from the combination of
PAMPer with the other trauma and COVID-19 patient datasets. The
mean z-scores from eight, five and 1 PE species performed in a com-
parable manner (Supplementary Data 6) in the trauma dataset (HR in
PAMPer: 0.69\0.73\0.64, HR in TD-2: 0.73\0.77\0.67). However, the
performance of the five species model was better (Supplementary
Data 6) compared to other two models in the COVID-19 patient data-
sets (OR in dataset of Guo et al.: 4.67\9.98\1.81). Thus, we defined
the Lipid Reprogramming Score (LRS) as the mean z-score of five
PE species (PE(16:0_18:2),PE(16:0_20:4), PE(16:0_22:6), PE(18:0_18:1),
PE(18:0_22:6)). These PE species were representative of all four
Trauma/COVID-19 datasets. Trauma patients in the PAMPer trial who
survived at 72 h after admission were classified to 3 groups (High,
Medium, Low) according to the tertiles of LRS across all patients. LRS
was calculated for both trauma and COVID-19 patients as well as
healthy subjects when applied in time-series or comparison analysis.
LRS was only calculated for trauma or COVID-19 patients when applied
in multi-variable model of cox regression or logistic regression.

Recovery analysis
A Kaplan–Meier Curve was used in the recovery analysis for trauma
patients from PAMPer or the TD-2 dataset. ICU length of stay was used
to estimate the time to recovery for patients due to lack of detailed
variables for dynamically monitoring organ dysfunction since injury.
Patients who experience early death were excluded for recovery ana-
lysis. The ICU length of stay for patients that died over 3 days after
admissionwas consider asmaximumdays in this dataset, because they
cannot recover from injury. Patients who experience ICU length of stay
over 30 days were consider as censored at day 30.

Multi-variable regression analysis
Multi-variable model of logistic regression and generalized estimating
equation (to account for cluster effect) was used for testing the cate-
gorical outcomes, such as, survival or severity. For trauma patients,
two outcomes Non-resolving (Survival with ICU stay≥ 7 days or non-
survival with death day >3 days) and Early-nonsurvivors (Non-survival
with death day≤ 3 days)were used. For COVID-19 patients, the severity

was defined consistent with the scale of the WHO Clinical Score58.
Demographic information (e.g. age, sex), TBI, TRISS, treatment arm
and total lipid concentration at 0 h upon admission were included in
the generalized estimating equation model for early death in PAMPer
dataset. Demographic information (e.g. age, sex), Lymphocyte count,
CRP, LRS for each patient were included in the logistic regression for
modeling severe COVID-19 patients in dataset of Guo et al.16. A multi-
variable model of Cox regression was used for testing the time to
discharged by ICU for trauma patients. Demographic information (e.g.
age, sex), TBI, ISS, treatment arm and LRS score among patients at 72 h
after admission were included in the Cox regression with mixed effect
(to account for cluster effect) for modeling non-resolving patients in
the PAMPer dataset. Association test by using same variables except
for treatment arm was conducted in TD-2 dataset. For prognostic
model generation, we built logistic regression models for predicting
patients who developed non-resolving pattern in the trauma cohorts
(Training set: standard-of-care arm in PAMPer dataset, Test set: plasma
arm in PAMPer dataset or TD-2 dataset) or who progressed into severe
COVID-19 in the cohort of Guo et al (Train:C1, Test:C2). Allmodels were
internally evaluated by 10-fold cross-validation. The performance of
discrimination was assessed by ROC curves, and AUC values. Perfor-
mance of calibration was assessed by calibration curves. Brier scores
were used to evaluate the overall fit of the model.

A two-step machine learning approach
The importance of clinical features and lipids commonly detected in
trauma and Covid-19 datasets were evaluated by two-step feature
selection strategy as previously reported28–30. Briefly, twomodels (least
absolute shrinkage and selection operator: lasso; support vector
machine with the radial basis function: SVM-RBF) were fitted sequen-
tially with 100 times repeated and nested 5-fold cross-validation (Both
outer and inner sampling were 5 folds). The lasso model is fitted into
inner sampling of each 5-fold and the hyperparameter were tuned by
the performance of classification (accuracy). Then a fold-specific
classifier was trained by SVM-RBF in the selected features from the
lasso model in the same fold. The performance (accuracy) of the fold-
specific classifier was internally evaluated in the outer-sampling. The
frequency of selected features was summarized in all models with
accuracy >0.8. Top10 selected features were kept for visualization.

Correlation analysis
Two types of correlation analysis either for between two continuous
variables or categorial variables and continuous variables were
including in this study. Continuous variables like cytokines, bio-
markers and total lipid concentration were log2 transformed. Cate-
gorial variables like early death, treatment arm, TBI and coagulopathy
were transformed into dummy variables. Euclidean distance matrix
was calculated for correlation analysis. Spearman correlation coeffi-
cient was used for correlation between biomarkers and total lipid
concentration or LRS due to consideration of non-linear relationship.
Pearson correlation coefficient was used for correlation between lipid
species due to thewell-identified linear relationship. Statistical analysis
for correlation coefficient is conducted by function rcorr() imple-
mented inRpackageHmisc(version 4.4.1). P values are approximate by
using t distributions.

Statistical analysis and visualization
Statistical analysis in this study was performed by using R language
(version 3.6.0, https://www.R-project.org/)59. Pearson’s χ2 test and
Kruskal–Wallis test were used for categorical variables or continuous
variables in the contingency table of clinical data. Kruskal–Wallis test
with post-hoc analysis by Dunn test was used for multiple group
comparisons. Two-way ANOVA with pair-wise comparisons by Esti-
mated Marginal Means test was applied for time-series analysis. P
value was adjusted by Benjamini–Hochberg method with less than
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0.05 for establishing significance. Visualization of heatmap was
performed by using R package Complexheatmap (version 2.5.2)60.
Hierarchical clustering based on Euclidean distance was applied in
rows or columns for heatmap construction.

External metabolomics or lipidomics dataset
Three external datasets of untargeted metabolomics or lipidomics
were included in this study. The first dataset was from a survival
cohort that consisted of trauma patients with untargeted metabo-
lome measurement26. The same criterion for outcome classification
was applied in this group of patients to that used for the PAMPer
dataset (Resolving: ICU Days <7; Non-resolving: ICU Days ≥ 7). The
second dataset(Train set:C1, Test set: C2) was from a cohort of
COVID-19 patients with both untargeted metabolome and proteome
measurements16. The patients were grouped by severity defined in
the previous study and days to timepoint 0, which was set as day of
progression for severe patients and day of symptom onset for non-
severe patients. The third dataset was from separate cohort of
COVID-19 patients with both targeted and untargeted metabolome
measurements17. The patients were not grouped by sampling time-
point because of limited clinical information. Common lipids were
identified by unique molecular formula or HMID from Human
MetabolomeDatabase among these 3 datasets and PAMPer lipidomic
dataset. Mean z-score scaled value for each group for patients or
healthy subjects was used to compare the lipid levels among 4
datasets. The two external datasets of COVID-19 were publicly
available and the dataset from survival cohort of trauma patients was
available upon request.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data underlying Figs. 1d, e, 2f, 5b, e and Supplementary Figs. 4a, 6g and
9b are provided as Source Data files. The lipidomics dataset generated
in this study have been deposited in the Mendeley Data under https://
doi.org/10.17632/7stf7dtxcz.2 (https://data.mendeley.com/datasets/
7stf7dtxcz/draft?a=3e078e7f-5068-4b8e-a5a9-ef414db279bd) and are
provided in SupplementaryData 11. The individual internal standard of
Plasma lipidomic profiling by Metabolon Inc (Morrisville, NC 27560,
USA) is commercially available (https://sciex.com/products/
consumables/lipidyzer-platform-kits) and can be found in Supple-
mentaryData 10. The publicmetabolomic or lipidomic dataset re-used
in this study can be found with the original publications16,17. The
remaining data are available within the article or from the authors
upon request. Data from the survival cohort of trauma patients26 re-
used in this study were obtained through request and are not publicly
available. Source data are provided with this paper.

Code availability
Code supporting the current study is deposited at https://github.com/
Junru-max/PAMPer-Lipidomic-analysis.
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