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Key Messages
•• What is already known about this subject? Artificial 

Intelligence models have been used to predict myocardial 
infarction in rather small patient groups, with under 
1000 individuals.

•• What does this study add? In this UK Biobank prospec-
tive cohort study including over 500 000 persons, we 
demonstrate that extreme gradient boosting (XGBoost), 
a machine learning model, outperforms a logistic regres-
sion model. The XGBoost had a receiver operator char-
acteristic score of 0.86 as compared to the logistic 
regression score of 0.77. Moreover, the XGBoost model 
is transparent, meaning we know what variables affect 
the output.

•• How might this impact on clinical practice: XGBoost, 
a transparent “Explainable AI” model, may bridge the 
gap between medicine and data science: it can be used to 
predict risks of myocardial infarction in both groups and 
individuals.

Introduction
In adults, the prevalence of cardiovascular disease (CVD) is 
close to 50% and is a major cause of morbidity and mortality 
worldwide.1 Notably, this holds true even though annual death 

rates attributable to coronary heart disease (CHD) declined 
31.8% from 2006 to 2016.1 Similarly, a study of over 45 000 
hospitalizations for myocardial infarction (MI) showed a 24% 
decrease from 2000 to 2008.2

This substantial decline in the incidence of coronary heart 
disease is partly driven by modifiable risk factors; changes in 
cholesterol, improved blood pressure control, decreased smok-
ing and increased physical activity.3 Correctly focusing primary 
preventive efforts, such as lifestyle changes, and identifying the 
patients who stand to benefit the most from preventative medi-
cation requires an understanding of the risk factors for the 
development of CVD and MI. This was clearly shown in the 
ASPREE study, where over 19 000 elderly patients were ran-
domly assigned to oral aspirin or placebo.4 No decrease in 
CVD was seen in the aspirin group, on the contrary more 
severe bleeding events were observed, highlighting the benefits 
of individualized risk stratification.

Multiple risk factor models exist. Following the Framingham 
Risk Score, the first large study of CVD risk factors,5 risk 
assessment tools from the American and European cardiology 
societies have been launched; the EURO Score6 and the 
American College of Cardiology (ACC)/American Heart 
Association (AHA) Heart Risk Score.7 These scores include 
classic risk factors such as age, gender, diabetes, smoking, and 

XGBoost, A Novel Explainable AI Technique, in the 
Prediction of Myocardial Infarction: A UK Biobank 
Cohort Study

Alexander Moore1 and Max Bell2,3

1Head of Data Science at Managed Self Limited, London, England, UK. 2Perioperative Medicine 
and Intensive Care, Karolinska University Hospital, Stockholm, Sweden. 3Section of 
Anaesthesiology and Intensive Care Medicine, Department of Physiology, Karolinska Institutet, 
Stockholm, Sweden.

ABSTRACT: We wanted to assess if “Explainable AI” in the form of extreme gradient boosting (XGBoost) could outperform traditional logis-
tic regression in predicting myocardial infarction (MI) in a large cohort. Two machine learning methods, XGBoost and logistic regression, were 
compared in predicting risk of MI. The UK Biobank is a population-based prospective cohort including 502 506 volunteers with active consent, 
aged 40 to 69 years at recruitment from 2006 to 2010. These subjects were followed until end of 2019 and the primary outcome was myocardial 
infarction. Both models were trained using 90% of the cohort. The remaining 10% was used as a test set. Both models were equally precise, but 
the regression model classified more of the healthy class correctly. XGBoost was more accurate in identifying individuals who later suffered a 
myocardial infarction. Receiver operator characteristic (ROC) scores are class size invariant. In this metric XGBoost outperformed the logistic 
regression model, with ROC scores of 0.86 (accuracy 0.75 (CI ±0.00379) and 0.77 (accuracy 0.77 (CI ± 0.00369) respectively. Secondly, we 
demonstrate how SHAPley values can be used to visualize and interpret the predictions made by XGBoost models, both for the cohort test set 
and for individuals. The XGBoost machine learning model shows very promising results in evaluating risk of MI in a large and diverse population. 
This model can be used, and visualized, both for individual assessments and in larger cohorts. The predictions made by the XGBoost models, 
points toward a future where “Explainable AI” may help to bridge the gap between medicine and data science.

Keywords: Myocardial infarction, machine learning, artificial intelligence, cohort study

RECEIVED: January 19, 2022. ACCEPTED: August 26, 2022.

TYPE: Original Research

FUNDING: The author(s) received no financial support for the research, authorship, and/or 
publication of this article.

declaration of conflicting interests: The author(s) declared no potential 
conflicts of interest with respect to the research, authorship, and/or publication of this 
article.

CORRESPONDING AUTHOR: Max Bell, Perioperative Medicine and Intensive Care, 
Karolinska University Hospital, Norrbacka S2:05, Stockholm, 17176, Sweden.  Email: max.
bell@regionstockholm.se

1133611 CIC0010.1177/11795468221133611Clinical Medicine Insights: CardiologyMoore and Bell
research-article2022

https://uk.sagepub.com/en-gb/journals-permissions
mailto:max.bell@regionstockholm.se
mailto:max.bell@regionstockholm.se


2	 Clinical Medicine Insights: Cardiology ﻿

blood pressure. To increase accuracy and individualization for 
cardiovascular risk prediction, biomarkers, such as blood lipids 
have been added to the Framingham Risk Score and to the 
EURO Score.6 Recently, high-sensitivity cardiac troponins 
have been shown not only to be able to detect acute MI, but to 
function as predictors of adverse outcomes.8-10 The Norwegian 
HUNT study added high-sensitivity C-reactive protein, tro-
ponins, and cholesterol to above mentioned classic risk fac-
tors.11 Specifically, troponins provided improved prognostic 
information.

With or without adding biomarkers, an alternative path to 
the improvement of predictive properties is opened by the devel-
opment of machine learning (ML). Recently, a machine learning 
algorithm predicted the likelihood of acute MI, incorporating 
age, sex, with paired high-sensitivity cardiac troponin I outper-
formed the European Society of Cardiology 0/3-hour path-
way.12 This ML algorithm was trained on 3013 patients and 
tested on 7998 patients with suspected myocardial infarction.12

The present study aims to test a machine learning model, 
XGBoost13 on predicting myocardial infarction in a popula-
tion-based cohort of over 500 000 subjects, the UK Biobank.14 
We hypothesized that the ML algorithm would outperform 
logistic regression models.

Methods
Study design

This was a prospective observational study, testing machine 
learning and traditional logistic regression models, described in 
detail below. The North West Multi-Center Research Ethics 
Committee approved the UK Biobank study. All participants 
provided written informed consent to participate. This research 
has been conducted using the UK Biobank Resource under 
Application Number 54045.

Data source, the UK Biobank

UK (United Kingdom) Biobank is a large, population-based 
prospective study, established to allow detailed investigations of 
the genetic and non-genetic determinants of the diseases of 
middle and old age.15,16 The 500 000 participants were assessed 
from 2006 to 2010 in 22 assessment centers throughout the UK, 
the range of settings provided socio-economic and ethnic het-
erogeneity and an urban–rural mix. The wide distribution of all 
exposures allows generalizable associations between baseline 
characteristics and health outcomes. The assessments consisted 
of electronic signed consent; a self-completed touch-screen 
questionnaire; a computer-assisted interview; physical and func-
tional measures and the collection of blood, urine, and saliva.

Patient and public involvement statement

The investigation was conducted using the UK Biobank 
resource. Details of patient and public involvement in the UK 
Biobank are available online. No patients were involved in the 

research question or the outcomes, nor were they involved in 
design the study. No patients advised or interpreted results. 
There are no specific plans to disseminate the results of the pre-
sent project to UK Biobank participants, but the UK Biobank 
disseminates key findings from projects on its website.

Primary outcome

Our models were trained to predict myocardial infarction. This 
was extracted from data-field 6150 in the UK Biobank (“vascu-
lar/heart problems diagnosed by a doctor”). There have been 3 
separate instances where this question was posed to the partici-
pants (initially between 2006 and 2010, the first follow up was 
between 2012 and 2013 and the final follow up was in 2014). 
Any participant who selected “Heart Attack” (11 849 partici-
pants) when answering this question in any of these instances 
was included in our positive class. More details on how these 
features are defined can be found through the UK Biobank15 
and details regarding cardiovascular outcomes are discussed in 
a study from 2019.17

Logistic regression

Logistic regression models are commonly used for risk factor 
analysis.18 They use a logistic function to model a binary depend-
ent variable. A linear combination of predictors (input features) 
is used to calculate the probability that a given input belongs to 
one of the 2 classes. As features are combined linearly, explaining 
the predictions made by logistic regression models is straightfor-
ward. Moreover, logistic regression models have been shown to 
produce classification accuracies that are comparable to state of 
the art machine learning techniques.19 In this study we imple-
ment a linear model for regularized logistic regression.

XGBoost

Extreme Gradient Boost (XGBoost) is a powerful ensemble 
learning method, well suited to tabular datasets. Ensemble 
learning methods aggregate predictions of many individually 
trained classifiers, the combined prediction is typically more 
powerful than an individual classifier.20 In the case of XGBoost 
the ensemble’s constituent classifiers are decision trees.

Decision trees are graphical models, where distinct nodes 
are connected by branches, they are powerful tools for classi-
fication.21 Each node represents a condition that is used to 
split the data. Data will pass along different branches depend-
ent on whether it satisfies the condition at a particular node. 
Nodes at the bottom of a decision tree are known as leaf 
nodes. During training a tree adjusts the decision rules of its 
nodes in order to maximally separate the training data.22 The 
most common class of the training data that terminate in a 
leaf node is assigned to that node after training. In order to 
classify new data, it must first be passed down the decision 
tree. Its class is then determined by the class assigned to the 
leaf node it terminates in.
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XGBoost combines decision trees using a process known as 
gradient boosting.13 Boosting methods build classifiers sequen-
tially, such that the error from one classifier is passed on to the 
next. By training decision trees on the gradient of the loss pro-
duced by the previous tree, XGBoost is capable of producing 
prediction accuracies that match many state of the art super-
vised learning techniques, including neural networks.23 In 
machine learning hyperparameters configure various aspects of 
an algorithm, they must be set before training and they can 
have a big impact on performance.24 There are several hyperpa-
rameters controlling XGBoost, for example the number of 
decision trees to include must be specified. To maximize the 
accuracy of XGBoost these hyperparameters must be opti-
mized. In order to maximize the utility of the training set, 
hyperparameter optimization typically uses a process known as 
cross-validation. Cross-validation randomly partitions the 
training set to produce a small validation set, used to measure 
performance. In this way, the effect of changing a hyperparam-
eter can be quantified and the optimal value can be selected. 
Multiple rounds of cross-validation, with different partitions, 
are common.21

The following hyperparameters are typically optimized 
before training an XGBoost model: the number of estimators 
(decision trees), the max depth of a given decision tree, the 
minimum child weight in a decision tree, the minimum loss 
reduction required to make a partition (gamma), the number of 
columns to be subsampled when constructing a tree, and a reg-
ularization parameter (alpha).

Shapely values (SHAP values) originated as a concept in 
1951 from cooperative game theory.25 More recently they have 
been used as a tool for interpreting ensemble tree models. They 
facilitate the explanation of highly non-linear models, such as 
XGBoost, breaking down the impact of input features on pre-
diction.26 The SHAP value of a feature is calculated using the 
change in a model’s output if that feature’s value was replaced 
with a baseline value.27 Consequently, considering the sum off 
all SHAP values is equivalent to considering the overall differ-
ence between a model’s prediction and the baseline.27 In addi-
tion to breaking down the importance of an individual’s input 
features, SHAP values can explain the global impact of features 
across a population. SHAP values can be visualized in a num-
ber of ways.27

Model training and validation

When validating supervised learning algorithms, it is essential 
that a portion of the data (~10%) is set aside and not used in 
training. This data is known as the test set. An algorithm’s per-
formance can be assessed by measuring its ability to correctly 
map inputs to outputs in the test set. Measuring performance 
on data used during training can result in overfitting or selec-
tion biases.28

Crude accuracy metrics, the total number of correct classifi-
cations, can be misleading when assessing the performance of a 
classification model. Consider a classification task where 0.01% 
of the population are high risk, a model could achieve 99.99% 
accuracy by classifying all individuals as low risk. Receiver 
operator characteristic (ROC) scores reflect the area under-
neath a curve obtained by plotting the true positive rate against 
the false positive rate. They are a more useful measure of per-
formance in classification tasks with unbalanced classes.

Results
Model performance

Results comparing XGBoost with a logistic regression model 
are presented in Table 1. The models were trained using 90% of 
the cohort (~450 000 participants). The remaining 10% (~50 000 
participants) was set aside for use as a test set. The scores in 
Table 1 reflect the performance of both models when classifying 
the test set.

Both models are equally precise but deviate when it comes 
to recall. The logistic regression model has a slightly higher 
recall for class 0.0 (the healthy class) whereas XGBoost has a 
higher recall for class 1.0 (the MI class). This means that the 
logistic regression model classified more of the healthy class 
correctly, whilst XGBoost was more accurate when it came to 
identifying individuals who would go on to suffer a myocardial 
infarction (MI).

The above explains why the logistic regression model has a 
slightly higher crude accuracy score, as the healthy is significantly 
larger than MI class. A model that is more accurately recalling 
participants in the larger class is likely to end up with a larger total 
number of correct classifications. The confidence intervals were 
extremely tight due to the large test set (accuracy XGBoost: 0.75 
(CI ±0.00379) and Logistic regression: 0.77 (CI ±0.00369).

Table 1.  Model comparison.

XGBoost Logistic regression

ROC score 0.86 ROC score 0.77

  Accuracy 0.75 Accuracy 0.77

Class: Precision Recall Precision Recall

0.0 (Healthy) 0.99 0.75 0.99 0.77

1.0 (MI) 0.07 0.81 0.07 0.78
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ROC scores are class size invariant. In this metric XGBoost 
scores significantly higher than the logistic regression model 
(+0.09).

Model visualization

SHAP values from an XGBoost model trained to predict MI 
using the UK Biobank cohort are shown in Figure 1. These were 
calculated for the 50 000 individuals in the test set. Each of these 
individuals is represented by a single data point. Here we see that 
having a high feature value for sex (being male) has a positive 
SHAP value, which means that being male increased the likeli-
hood of being classified as class 1.0 (MI class). Conversely, a low 
feature value for sex (being female) has a negative impact on the 
model, meaning being female contributed to being classified as 
class 0.0 (healthy class). Features in Figure 1 are ordered based 
on their cumulative effect on model output.

SHAP values can also be used to unpack individual predic-
tions made by XGBoost. In Figure 2, the SHAP values for 2 
individuals are displayed, one who was classified as MI class 
(2i) the other was classified as healthy (2ii). Large positive 
SHAP values for diastolic blood pressure, and pulse rate, seen 
in Figure 2a, contributed to one individual being classified as 
MI class. These features have large negative SHAP values for 
the other individual, seen in Figure 2b, meaning they strongly 
contributed to the individual being classified as healthy. Once 
again, features are ordered based on their impact on model out-
put. The ordering of features is different in Figure 2a and b as 
the relative importance of input features can vary between 
individuals.

A SHAP dependence plot represents the impact of 2 input 
variables on classification. Figure 3 explores the impact of 
waist size and sex on MI. Each data point represents an indi-
vidual in the test set, color coded by their sex. Waist size is 
plotted on the x-axis and the SHAP values (or model impact) 
are plotted on the y-axis. From inspecting Figure 3 we can see 
that most of the individuals with particularly small waists are 

Figure 1.  SHAP values extracted from a XGBoost model trained to 

predict MI (~50 000 participants).

Figure 2.  (a) SHAP values for an individual classified as MI class and (b) 

SHAP values for an individual classified as healthy class.
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female, this is associated with negative SHAP values. In these 
cases, an individual’s waist size made it more likely that they 
would be classified as healthy. As waist size increases SHAP 
values increase, this relationship continues linearly to a large 
cluster of individuals with positive SHAP values. In this clus-
ter waist size made it more likely that an individual would be 
classified as belonging to the MI class. The positive correla-
tion between waist size and SHAP value does not continue 
beyond the large cluster.

The impact of having an extremely large waist is different 
for men and women. The men with the largest waists have 
SHAP values that are comparable with individuals in the clus-
ter, implying their waist size had no additional impact on clas-
sification. On the other hand, women in the large cluster tend 
to have the highest SHAP values; waist size is likely to play a 
bigger role in classification for these women.

Discussion
In this large cohort, the XGBoost machine learning model out-
performed a multivariable logistic regression model in assessing 
risk of myocardial infarction. Importantly, our XGBoost model 
also allows for personalized risk estimations.

Previous attempts at using ML models exist in the field of 
cardiology. In 2005, Green et al29 trained artificial neural net-
work (ANN) ensembles and logistic regression models on data 
from 634 patients presenting in the emergency department 
with chest pain. The ANN model performed slightly better 
than the logistic regression, but this was a single center study 
with limited power. Another small study, using data from 310 
patients, tested ANN-algorithms for early diagnosis of acute 
myocardial infarction and prediction of size of infarction in 
patients presenting with chest pain.30 The authors conclude 
that specifically designed ANN-algorithms allow early predic-
tion of major AMI size and could be used for rapid assessment 
of these patients. Numerous studies outside of cardiology have 
tested machine learning models with varying degrees of suc-
cess. Deep learning systems had high sensitivity and specificity 
for identifying diabetic retinopathy and related eye diseases.31 

Using machine learning technology to correctly classify inde-
terminate pulmonary nodules increased the reclassification 
performance, as compared to that of existing risk models.32 In 
contrast, ML algorithms did not outperform traditional regres-
sion approaches in a low-dimensional setting for outcome pre-
diction after traumatic brain injury.33 In 2021 D’Ascenzo et al34 
used a machine learning-based approach in identifying predic-
tors of events after an acute coronary syndrome, showing it to 
be feasible and effective.

The findings in the present study have multiple implica-
tions. First, we show that ML-algorithms allow prediction of 
MI-risk in a large population. In future studies, when more 
high-resolution data is added, it is likely that the machine 
learning models will outperform logistic regression by a wider 
margin. Secondly, the XGBoost model predicts individual 
risk: this allows for patients with elevated risk patterns to aim 
for targeted and tailor-made life-style changes and in some 
cases medical treatments. In concert, these personalized inter-
ventions could decrease cardiac morbidity and possibly even 
add life years. As seen in the results section; the logistic regres-
sion model had a slightly higher crude accuracy score, as the 
healthy participants were significantly more common than 
individuals who would go on to suffer a myocardial infarction. 
Any model that is more accurately recalling participants in the 
larger class is likely to end up with a total number of correct 
classifications. In contrast, ROC scores are not affected by 
variable class sizes. In this metric XGBoost scored signifi-
cantly higher than the logistic regression model. This means 
the risk of false negatives (a person at high risk of MI is clas-
sified as safe) is minimized using XGBoost; from an individual 
and epidemiological standpoint the cost of false negatives is 
much higher than false positives.

Our study has strengths and limitations. We had access to a 
large high-resolution longitudinal dataset from the UK 
Biobank. We trained the XGBoost ML model on 450 000 sub-
jects and tested its performance on 50 000 individuals; com-
pared to previous machine learning cardiology studies with less 
than 1000 patients, this adds to both model performance and 
generalizability. Comparing traditional logistic regression with 
ML models adds to transparency regarding the utility of these 
novel techniques. Said transparency is further achieved by 
choosing XGBoost—this is not a “black box” ML system; we 
can follow how the data flows through the system. Moreover, 
we demonstrate how XGBoost lowers misclassification events 
of patients at risk of myocardial infarction. A potential limita-
tion to any MI-study is how the event is classified and recorded. 
If we had full biomarker and ECG data on all UK Biobank 
participants, we would likely have many more cases; that would 
enable more accurate machine learning and logistic regression 
predictions. Moreover, we acknowledge that our logistic regres-
sion model could be improved by adding interaction terms and 
accounting for non-linearity with regards to certain inputs. It is 
certainly possible to create more precise logistic models, but 
this requires active input from both statisticians and physicians 

Figure 3.  A SHAP dependence exploring the relationship between waist 

size, sex, and myocardial infarction.
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with experience in whatever disease one is modeling. A benefit 
of the XGBoost model approach is that very good predictive 
properties are made possible automatically. The generalizabil-
ity is difficult to assess, studies across other datasets, preferably 
from multiple countries would be valuable.

In conclusion the XGBoost machine learning model shows 
very promising results in evaluating risk of MI in a large and 
diverse population. This model can be used both for individual 
assessments and in larger cohorts.
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