Skip to main content
. 2022 May 10;19(5):2584–2595. doi: 10.1109/TCBB.2022.3173562

TABLE 4. Additional Evaluation Measures of the Methods on the Litcovid and Hoc datsets.

Label-based measures Instance-based measures
Macro-Precision Macro-Recall Micro-Precision Micro-Recall Precision Recall
Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max
LitCovid BioCreative
ML-Net 0.8364 0.8559 0.7309 0.7632 0.8756 0.8827 0.8142 0.8227 0.8849 0.8901 0.8514 0.8591
Binary BERT 0.9103 0.9498 0.8350 0.8690 0.9304 0.9448 0.8969 0.9173 0.9349 0.9408 0.9210 0.9381
Linear BERT 0.9071 0.9388 0.8354 0.8701 0.9276 0.9396 0.8870 0.9093 0.9368 0.9443 0.9143 0.9308
LitMC-BERT (ours) 0.9131 0.9226 0.8574 0.8814 0.9313 0.9366 0.8952 0.9145 0.9418 0.9480 0.9212 0.9355
Hoc
ML-Net 0.7949 0.8356 0.7389 0.7622 0.7667 0.8053 0.7253 0.7448 0.8045 0.8296 0.7826 0.8013
Binary BERT 0.8471 0.8644 0.8661 0.8834 0.8363 0.8562 0.8548 0.8724 0.8565 0.8735 0.8909 0.9095
Linear BERT 0.8772 0.8930 0.8475 0.8630 0.8614 0.8812 0.8496 0.8619 0.8929 0.9116 0.8955 0.9024
LitMC-BERT (ours) 0.8868 0.8983 0.8641 0.8910 0.8718 0.8938 0.8582 0.8787 0.9035 0.9148 0.9038 0.9193