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Graphical Abstract

We present an overview highlighting the recent achievements in anti-
inflammatory hydrogel dressings, from preparation mechanisms to application
methods in wound healing. Categories of anti-inflammatory hydrogel dressings
are based on the specific mechanisms of anti-inflammatory activities for which
hydrogel dressings are created, for example scavenging excessive ROS, seques-
tering chemokines and promoting M1-to-M2 polarization of macrophages.
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Abstract
Hydrogels are promising and widely utilized in the biomedical field. In recent
years, the anti-inflammatory function of hydrogel dressings has been signif-
icantly improved, addressing many clinical challenges presented in ongoing
endeavours to promote wound healing. Wound healing is a cascaded and highly
complex process, especially in chronic wounds, such as diabetic and severe
burn wounds, in which adverse endogenous or exogenous factors can inter-
fere with inflammatory regulation, leading to the disruption of the healing
process. Although insufficient wound inflammation is uncommon, excessive
inflammatory infiltration is an almost universal feature of chronic wounds,
which impedes a histological repair of the wound in a predictable biological
step and chronological order. Therefore, resolving excessive inflammation in
wound healing is essential. In the past 5 years, extensive research has been
conducted on hydrogel dressings to address excessive inflammation in wound
healing, specifically by efficiently scavenging excessive free radicals, sequester-
ing chemokines and promoting M1-to-M2 polarization of macrophages, thereby
regulating inflammation and promoting wound healing. In this study, we intro-
duced novel anti-inflammatory hydrogel dressings and demonstrated innovative
methods for their preparation and application to achieve enhanced healing.
In addition, we summarize the most important properties required for wound
healing and discuss our analysis of potential challenges yet to be addressed.
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1 INTRODUCTION

As one of the most important organs of the human body,
which protects us from harsh external environments, the
skin is often damaged by traumas, severe burns, ulcers and
various other injuries, thus disrupting its protective barrier
functions and vital role in sensory perception. In addition,
such injuries affect a patient’smental health and constitute
an enormous societal economic burden.1,2 Therefore, iden-
tifying effective therapeutic strategies to promote wound
healing is an extremely urgent requirement.

1.1 Wound healing process

When skin is damaged and a wound is formed, the
body initiates the healing process, consisting mainly
of haemostasis, inflammation, proliferation and
remodelling.3,4 The haemostatic process involves some
highly complex biological activities. First, the small
blood vessels and capillaries around the wound reac-
tively constrict to reduce local blood flow.5 Subsequently,
the platelets are attracted to aggregate into blood clots
by the exposed collagen fibres. Concomitantly, the
platelets will release vasoactive substances, such as 5-
hydroxytryptamine and prostaglandins, which further
constrict blood vessels and slow blood flow. Meanwhile,
the phospholipids and adenosine diphosphate released by
platelets will attract more platelets to aggregate into blood
clots. Finally, the endogenous and exogenous coagulation
processes are initiated.6–8
The followed stage is the inflammatory phase. The

inflammatory response is characterized by increased vas-
cular permeability and activated inflammatory cells, such
as monocytes, lymphocytes and neutrophils, migrating to
the wound in response to chemokines. The inflamma-
tory mediators and inflammatory cells are essential for
the removal of necrotic tissue and foreign bodies, and
initiation and regulation of wound repair.7–9
The proliferative phase, closely linked to the inflam-

matory phase, is a prerequisite for re-establishing skin
barrier function.9–11 The main cells, involved in the pro-
cess of skin reconstruction, are keratinocytes, fibroblasts
and vascular endothelial cells. These cells accomplish
wound epithelial regeneration, neovascularization and
granulation tissue formation through their proliferation
and migration activity.12

The remodelling phase, involving the maturation and
reconstruction of nascent tissues, is the final stage
of wound healing.12,13 The maturation process mainly
includes the degradation of excess collagen fibres by col-
lagenase, rearrangement of collagen and regression of
overgrown capillaries, which may last for months to
years. Ultimately, the granulation tissue formed in wound
healing evolves into normal connective tissue.13,14
Numerous endogenous and exogenous adverse factors

can disrupt the physiological healing processes, among
which the inflammatory phase is the most susceptible to
interference. Wound tissue produces various proinflam-
matory cytokines and chemokines at the initial step in the
inflammatory phase, which results in the infiltration of
neutrophils and macrophages at injured sites. Neutrophils
are required to remove debris and digest invading bac-
teria through phagocytosis, releasing caustic proteolytic
enzymes and producing free radicals in the process of their
cleansing activities. Additional cells present in wound
sites include macrophages, which mediate angiogene-
sis, fibroplasia and extracellular matrix (ECM) produc-
tion, thereby bridging the inflammatory and proliferative
phases.15 Importantly, moderate inflammation facilitates
the removal of necrotic tissue, kills local bacteria and pro-
motes wound healing. However, excessive inflammatory
infiltration interferes with normal healing events, such as
collagen deposition, angiogenesis and granulation tissue
formation. Therefore, it is imperative for inflammation in
the wound to be precisely modulated at a level suitable
to promote wound healing yet prevented from reaching a
level that impedes it.

1.2 Hydrogel dressings

Unlike traditional dressings, such as bandages and gauzes,
hydrogel dressings are widely acknowledged for their
excellent properties, including mechanical properties that
are compatible with biological tissues and exceptional
water retention capacity which can keep the wound moist
and continuously absorb exudate. In addition, their oppor-
tune biodegradation avoids secondary damage during
dressing replacement, making them ideal wound dressing
materials.16–19 Furthermore, compared to other emerg-
ing dressings, such as foam and films, hydrogels possess
a three-dimensional porous network structure similar to
that of a natural ECM, providing a framework for cells
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TABLE 1 Commercial hydrogel dressings in wound healing

Product name Hydrogel composition Applications References
Aquaderm 2-Acrylamido-2-methyl-1-

propanesulfonic acid/2-hydroxy-
2-methylpropiophenone/propylene/
glycol/polyethylene glycol
dimethacrylate

Radiation-related chronic wounds/mild
burns/pressure ulcers

22,143,144

INTRASITE Gel CMC/propylene glycol Chronic wounds 22,142

MEDIHONEY Glucose oxidase/Leptospermum
compounds

Mild burns/surgical incisions/various
ulcers

22,146

Neoheal Hydrogel PEG/PVP/Agar Mild burns/various ulcers/chronic
wounds

22,142,148

NU-GEL SA Various ulcers 22,142

Purilon CA/SCMC Various ulcers/mild burns 22,142

Restore Hydrogel HA Chronic wounds 22,142

Simpurity
HydroGel

Acrylate/PVA/polyethylene
oxide/polyurethane

Mild burns/chronic wounds 22,142

SOLOSITE Gel CMC/glycerol Various ulcers/mild burns/skin tears 22,142,149

Suprasorb G Acrylic polymers/polyethylene/
phenoxyethanol

Chronic wounds/various ulcers/mild
burns

22,142,145,147

Abbreviations: CA, calcium alginate; CMC, carboxymethyl cellulose; HA, hyaluronic acid; PEG, polyethylene glycol; PVA, polyvinyl alcohol; PVP, polyvinyl
pyrrolidone; SA, sodium alginate; SCMC, sodium carboxymethyl cellulose.

to proliferate and migrate. More importantly, hydrogel
dressings can be structurally and biochemically designed
and functionally integrated to acquire various advanta-
geous properties,20–24 of which anti-inflammatory hydro-
gel dressings are foremost representatives. Some commer-
cial hydrogel dressings in wound healing are summarized
in Table 1.
In recent years, reactive oxygen species (ROS),

chemokines and macrophage phenotypes have been
at the centre of research on targeting excessive inflamma-
tion in wounds.20-22,25,26 Natural or synthetic polymers are
combined by physical or chemical cross-linking methods
to present different functions and properties. Physical
cross-linking mainly includes hydrophobic association,
hydrogen bonding and ionic interactions. The polymers
are connected by covalent bonds in chemical cross-
linking, including disulphide, a Schiff base and borate
ester bond.25,26 The cross-linking methods depend on
the nature of the polymers. Some cross-linking methods
in hydrogel dressings are summarized in Table 2. By
integrating drugs, small bioactive molecules and novel
biomaterials into a hydrogel matrix, anti-inflammatory
hydrogel dressings can scavenge excessive free radicals,
sequester chemokines and promote M1-to-M2 polarization
of macrophages, thereby resolving excessive inflamma-
tion in the wound and thus promoting wound healing.
Over the past 5 years, intensive research has been con-
ducted on anti-inflammatory hydrogels, but there has
been no comprehensive review of anti-inflammatory
hydrogel dressings. Here, we present an overview high-

lighting the recent achievements in anti-inflammatory
hydrogel dressings, from preparation mechanisms to
application methods in wound healing. Categories of
anti-inflammatory hydrogel dressings are based on the
specific mechanisms of anti-inflammatory activities
for which hydrogel dressings are created, for example
scavenging excessive ROS, sequestering chemokines
and promoting M1-to-M2 polarization of macrophages
(Figure 1).

2 SCAVENGING EXCESSIVE ROS

Radical derivatives of O2 are known as ROS, well-known
members of which include hydroxyl radicals (•OH), super-
oxide anion (•O2

−), peroxide (•O2
−2), hydroxyl ions (OH−)

and peroxide (•O2
−2).27,28 Low concentrations of ROS have

been demonstrated to facilitate thewound healing.29,30 For
example, as secondary messengers of inflammatory cells
during wound healing, ROS coordinate the recruitment of
lymphocytes to awound, as demonstrated in the ability of a
10 μM concentration of H2O2 to act as a chemotactic agent
for inflammatory cells, a function that is independent of
blood-bound signal components.27 In addition, ROS reg-
ulate angiogenesis and optimize blood perfusion into the
wound-healing area, and 100 μM concentration of H2O2
can stimulate angiogenesis via VEGF (vascular endothe-
lial growth factor) signalling.27 Furthermore, a burst of
ROS induced by phagocytes play a significant role in host
defence against invading microorganisms.31
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F IGURE 1 (A) Therapeutic strategies of anti-inflammatory hydrogel dressings. The categories of anti-inflammatory hydrogel dressings
are based on specific targeted mechanisms of anti-inflammatory hydrogel dressings: scavenging excessive reactive oxygen species (ROS),
sequestering chemokines and promoting M1-to-M2 polarization of macrophages. (B) By integrating drugs, bioactive small molecules and
novel biomaterials into the hydrogel matrix, anti-inflammatory hydrogel dressings can promote angiogenesis, collagen deposition and
epithelial cell migration, minimize fibrosis and remodel the extracellular matrix (ECM), promoting wound healing.
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TABLE 2 Cross-linking methods in hydrogel dressings

Cross-linking
methods

Interaction
modes Hydrogel composition Properties References

Physical
cross-linking

Hydrophobic
association

Hydroxybutyl chitosan/
poly(sulfobetaine
methacrylate)

Thermosensitive/self-healing/antibiofouling/
antibacterial

150

Hydrogen
bonding

Tannic acid/gelatin Antibacterial/antioxidant/haemostatic/
anti-inflammatory

151

Ionic
interactions

Polydopamine/Ag
nanoparticles/
polypyrrole-grafted
gelatin/ferric ions

Self-healing/conductive/antibacterial/
antioxidant

152

Chemical
cross-linking

Disulphide
bonds

Keratin/Au(III)
salt/deferoxamine

Injectable/biocompatible/haemostatic 153

Schiff base Quaternized chitosan/
benzaldehyde-terminated
Pluronic F127/curcumin

Self-healing/adhesive/biocompatible/
haemostatic/PH responsive/antioxidant

154

Borate ester
bonds

Hyaluronate methacrylate
grafted with phenylboronic
acid/catechin

Glucose responsive/biocompatible/
antioxidant

155

However, adverse factors in a wound, such as hypergly-
caemia and severe infection, bring a persistent infiltration
of inflammatory cells, predominantly neutrophils and
macrophages that produce large amounts of ROS with
detrimental effects.32 In addition, antioxidant capacity is
inherently limited in tissues and, when it is relatively
deficient, ROS will destroy the structure of DNA, pro-
teins and cell membrane lipids, leading to cell damage
and apoptosis.33,34 Thus, tissue damage activates a cas-
cade of inflammatory responses, which induces oxidative
stress causing persistent inflammatory infiltration, thus
initiating a vicious cycle that results in advancing the
deterioration of the wound environment.35–37 Therefore,
there is an urgent need for effective strategies to scavenge
excessive ROS in wounds.
Recently, various antioxidant components introduced

into hydrogels individually or integrated into multifunc-
tional hydrogels through simple combinations, modifica-
tions and polymerizations have functioned successfully in
scavenging excessiveROS inwounds effectively facilitating
woundhealing.38 Depending on their nature, these compo-
nents are classified into five categories: natural polyphe-
nols, polysaccharides, amino acids, synthetic polymers39
and new metal nanomaterials. The following is an elab-
oration according to the antioxidant components in the
hydrogel dressings summarized in Table 3.

2.1 Natural polyphenols

The phenolic hydroxyl groups of natural polyphenols
can stabilize ROS through hydrogen shift and electron

transfer reactions. In addition, these groups of natural
polyphenols chelate transition metals, protect and acti-
vate antioxidant enzymes and inhibit oxidative enzymes
from resisting oxidative stress.40 Furthermore, it is worth
noting that some natural polyphenols possess outstanding
antimicrobial activity.41 Natural polyphenols mainly com-
prise flavonoids (quercetin, geranin, catechin, catechol,
curcumin etc.) and acid ester polyphenols (ferulic acid,
gallic acid, tannic acid, derived esters etc.) (Figure 2).42–44
Curcumin (Cur), themain active ingredient of turmeric,

possesses potent anti-infective, antioxidant and anti-
inflammatory activities,45 which is a promising agent for
topical use on wounds. di Luca et al. constructed a mul-
tifunctional composite prepared by combining hydrogels
loaded with curcumin and microparticle systems con-
taining the antimicrobial polyphenol, quercetin.46 The
final composite hydrogel system was demonstrated to
reduce H2O2-induced oxidative cell stress and prolifer-
ation of methicillin-resistant Staphylococcus aureus. In
addition, Yang et al. introduced a thione group into a
carboxymethyl chitosan (CS) hydrogel,47 and the result-
ing hydrogel significantly accelerated the wound healing
process by inhibiting oxidative cell damage.
Resveratrol, a polyphenolic antioxidant compound, is

promising in wound healing for its excellent capacity for
modulating tissue regeneration, production of cytokines
and insulin sensitivity.48 Comotto et al. functionalized
an alginate dressing with the natural antioxidants cur-
cumin and resveratrol to enhance its anti-inflammatory
and antibacterial action.49 The antioxidant compounds
functioned as antibacterial agents and improved cell via-
bility.
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TABLE 3 Antioxidant components in hydrogel

Category
Antioxidant
component Hydrogel composition Effect of hydrogel dressings References

Natural
polyphenols

Curcumin Curcumin/quercetin/
gelatin

Reduced H2O2-induced oxidative stress of
cells and proliferation of methicillin-
resistant Staphylococcus aureus

46

Resveratrol Resveratrol/curcumin/
alginate

Showed superior antioxidant capability and
antibacterial activity and improved cell
viability

49

Gallic acid Gallic acid/gelatin
hydroxyphenyl propionic

Scavenged the DPPH radicals and hydroxyl
radicals and accelerated the wound
healing process

51

Ferulic acid Feruloyl-modified
peptide/glycol chitosan

Enhanced the regeneration of the
epithelium and connective tissue

53

Tannic acid Tannic acid/PVA/PEG/
carboxylated
chitosan/HA

Accelerated collagen deposition, decreased
TNF-α levels and facilitated the
expression of VEGF

55

Polysaccharide Dextran Carboxy betaine
dextran/sulfobetaine
dextran

Showed a faster healing rate than natural
dextran hydrogels and a commercial
wound dressing (DuoDERM film)

64

Alginate Oxidized alginate/gelatin/
chitooligosaccharide and
salicylic acid conjugates

Exhibited improved antioxidant activity
and promoted wound healing

67

Paramylon Paramylon Resolved wound inflammation and
facilitated angiogenesis to promote
wound healing

68

Amino acids
and peptides

Arginine Arginine derivatives/
dopamine-functionalized
HA

Showed greater DPPH, hydroxyl radical
scavenging rates and better wound
healing outcomes than the HA-DA
hydrogel

72

Silk fibroin
peptide

Silk fibroin peptide–
grafted hydroxypropyl
chitosan/oxidized
microcrystalline cellu-
lose/tetramethylpyrazine

Exhibited excellent antioxidant capability
and accelerated wound healing process
while impeding scar formation

75

Pearl peptides Pearl peptides/selenium-
containing block-
functionalized PEG/
polypropylene glycol

Improved skin fibroblast viability, reduced
oxidative stress of cells and promoted
angiogenesis in wound healing

77

Synthetic
polymer
materials

Polyvinyl
alcohol

PVA/GM-CSF/mupirocin Decreased the ROS level and upregulated
M2 phenotype macrophages in the
wound

78

PEA PAA/PEA Possessed high hygroscopicity and
antioxidant properties, allowing it to
absorb and interact with exudates,
thereby scavenging ROS

79

Dopamine Dopamine-substituted
multidomain peptide

Shortened the inflammatory stage of the
healing process significantly

82

(Continues)
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TABLE 3 (Continued)

Category
Antioxidant
component Hydrogel composition Effect of hydrogel dressings References

Novel metal
nanomaterials

Se nanoparti-
cles

Selenium nanoparticles/
bacterial cellulose/gelatin

Showed superior antibacterial activity and
outstanding antioxidant capability

93

CeO2 nanopar-
ticles

CeO2 nanoparticles/
chitosan

Showed high antioxidant activities and
antibacterial effect, significantly
enhancing wound healing

95

Cu5.4O
nanoparti-
cles

Cu5.4O nanoparticles/
star-shaped PEG/heparin

Adsorbed the inflammatory chemokines
MCP-1 and IL-8, scavenged ROS from
exudate to reduce oxidative stress and
promoted angiogenesis

96

Abbreviations: DPPH, 1′-diphenyl-2-picrylhydrazyl; HA, hyaluronic acid; IL-8, interleukin-8; MCP-1, monocyte chemotactic protein-1; PAA, polyacrylic acid; PEA,
polyesteramide; PEG, polyethylene glycol; PVA, polyvinyl alcohol; ROS, reactive oxygen species; TNF-α, tumour necrosis factor-α; VEGF, vascular endothelial
growth factor.

F IGURE 2 Structure of natural polyphenols

Gallic acid, an important phenolic compound, pos-
sesses unique properties, including anti-inflammatory,
antimicrobial and free radical scavenging activities.50 Thi
et al. created an injectable hydrogel by introducing the
antioxidant gallic acid–conjugated gelatin into a gelatin–
hydroxyphenyl propionic hydrogel.51 The antioxidant

hydrogel scavenged hydroxyl radicals and 1′-diphenyl-2-
picrylhydrazyl (DPPH) radicals, efficiently accelerating the
wound healing process.
Ferulic acid, a hydroxycinnamic acid present in the

plant cell wall, is a natural antioxidant.52 Wei et al. pre-
pared an antioxidant supramolecular hydrogel based on
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feruloyl-modified peptides and glycol CS through a mild
laccase-mediated cross-linking reaction.53 The prepared
feruloyl antioxidant hydrogel enhanced the regeneration
of the epithelium and connective tissue.
Tannic acid, a natural polyphenol derived from plants,

has been widely employed in biomaterial design, includ-
ing surface functionalization, protein modification and
cross-linking of biomaterials.54 For example, Li et al. intro-
duced tannic acid into a bilayer hydrogel, forming a dual
cross-linked network and endowing the hydrogel with
adhesive properties, antibacterial activity and antioxidant
capacity.55 The resulting hydrogel significantly accelerated
collagen deposition, facilitated the expression ofVEGFand
decreased tumour necrosis factor-α (TNF-α) levels.
In recent years, natural polyphenols have been widely

recognized for their biomedical applications. However, the
low utilization rate from raw materials and lack of sta-
bility in hydrogels limit their development. These aspects
still need to be improved for better application in the
bioengineering field.

2.2 Polysaccharides

Polysaccharides, comprising repeating units of monosac-
charides, arewidely applied inmedical domains, including
drug delivery, wound dressing, tissue engineering and
bioimaging.56 The structure of polysaccharides, rich in
hydroxyl and carboxyl groups, forms the basis of hydro-
gen shift and electron transfer reactions. Polysaccharides
exert antioxidant effects through the following two strate-
gies: (1) scavenging free radicals directly or indirectly
and (2) increasing the activity of antioxidant enzymes or
decreasing the activity of oxidative enzymes.57–60 Mean-
while, polysaccharides can interact with a wide range of
biomolecules (nucleic acids, proteins and phospholipids),
providing ample scope for the design of hydrogel appli-
cations that incorporate their specific beneficial, wound
healing attributes.61,62
Dextran, a natural polysaccharide produced by bacteria,

possesses excellent water retention capacity, acts as a mild
scavenger of ROS and reduces platelet hyperactivation.63
Qiu et al. constructed a zwitterionic dextran–based hydro-
gel utilizing carboxybetaine dextran and sulfobetaine
dextran.64 The prepared hydrogel dressing showed a faster
healing rate than both natural dextran hydrogels and a
commercial wound dressing (DuoDERM film) due to its
excellent antioxidant capacity.
Alginate, extracted from seaweed species, has been

widely utilized in biomedical field for their high
biocompatibility.65,66 Oh et al. fabricated oxidized alginate
and gelatin hydrogels loaded with chitooligosaccharide
and salicylic acid conjugates synthesized by grafting

polymerization.67 The resulting hydrogel exhibited
improved antioxidant activity and thus accelerated
wound healing process. In addition, Lei et al. constructed
hydrogels utilizing paramylon derived from Euglena
gracilis with intrinsic antioxidant and anti-inflammatory
properties.68 The prepared hydrogel could effectively
resolve wound inflammation and facilitate angiogenesis
to promote wound healing.
For their excellent biocompatibility and extensive inter-

actions with biomolecules, polysaccharides are currently
combined with various antioxidant components to pre-
pare hydrogels that are more conducive to clinical
applications.

2.3 Amino acids and peptides

Various amino acids and peptides can react directly with
ROS owing to abundant functional groups, such as amino,
hydroxyl, carboxyl and sulphur bonds. In particular, the
antioxidant effect of amino acids containing phenolic
hydroxyl or sulfhydryl groups is more pronounced.69 In
addition, these amino acid functional groups present the
possibility of cross-linking and grafting modification with
hydrogels.
Arginine, an essential amino acid in humans, assumes

enormous importance in cell physiology. The carbon–
nitrogen double bond in the guanidine group of arginine
endows it with antioxidant properties.70–72 Zhang et al.
developed novel hydrogels (HA-DA/AD) by introducing
arginine derivatives (AD) into dopamine-functionalized
hyaluronic acid (HA-DA).73 The HA-DA/AD hydrogel
showed greater DPPH and hydroxyl radical scavenging
rates and better wound healing outcomes than simple HA-
DA hydrogels. Although researchers have attempted to
integrate amino acids with hydrogel systems, the molec-
ular mechanism of free radical scavenging of amino acids
has not been clearly elucidated, which provides a direction
for subsequent research.
Silk fibroin peptide, hydrolysate of silk fibroin obtained

from the silkworm cocoons, possesses significant antiox-
idant properties.74 Liu et al. prepared an injectable
HMSC hydrogel loaded with tetramethylpyrazine based
on silk fibroin peptide–grafted hydroxypropyl CS and oxi-
dized microcrystalline cellulose.75 The resulting hydrogel
exhibited excellent antioxidant capability and accelerated
wound healing process while impeding scar formation.
Pearl peptides, extracted from pearl powder, have

strong antioxidant and antibacterial properties.76 Liu et al.
designed pearl peptide–loaded antioxidant hydrogels uti-
lizing selenium-containing block-functionalized polyethy-
lene glycol (PEG)/Polypropylene glycol polymers.77 The
pearl peptide hydrogels improved skin fibroblast viability,
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F IGURE 3 Schematic illustration of the reactive oxygen species (ROS)-responsive hydrogel loaded with therapeutics for the treatment of
bacterially infected wounds.78 Source: © 2020 Elsevier Ltd.

reduced oxidative stress of cells and promoted angiogene-
sis in wound healing.
Most of these natural materials in hydrogels men-

tioned earlier have good biocompatibility, but their high
enzymatic degradability and low physical and chemical
stabilities are a major obstacle to widespread biomedical
applications. These properties are particularly important
concern in natural materials, which may be resolved by
synthetic polymer materials.

2.4 Synthetic polymer materials

Over the years, researchers have been inspired to design
polymeric materials with excellent properties to compen-
sate for the shortcomings of natural active ingredients.34,37
Zhao et al. developed an ROS-scavenging hydrogel by
utilizing polyvinyl alcohol (PVA) cross-linked by an ROS-
responsive linker.78 The resulting hydrogel decreased the
ROS level and upregulated M2 phenotype macrophages
in wounds (Figure 3). Zhang et al. designed a multifunc-
tional hydrogel combining polyacrylic acid (PAA) formed
by the cross-linking polymerization of acrylic acid with
an arginine-based unsaturated polyamide polyesteramide
(PEA) through a photopolymerization reaction.79 The
PAA/PEA hybrid hydrogel possessed high hygroscopic-
ity and antioxidant properties, allowing it to absorb and
interact with exudates, thereby scavenging ROS.
Several studies have shown that dopamine-like sub-

stances with abundant catechol groups on their surfaces
are considered good scavengers of ROS. The catechol

moiety confers antioxidant capacity to dopamine, which
scavenges ROS in a dose-dependent manner.80,81 Hus-
sain et al. developed a dopamine-substituted multidomain
peptide with strong skin adhesion, antimicrobial activ-
ity and antioxidant capacity.82 The dopamine-substituted
multidomain peptide hydrogel significantly shortened the
inflammatory phase of the healing process.
Puerarin, a natural plant extract, is characterized by

its excellent antioxidant capacity for inhibiting cellu-
lar damage and lipid peroxidation. As a complementary
therapeutic drug, puerarin is applied with dopamine on
wounds to accelerate the healing process.83 Herein, Zhang
et al. prepared a polydopamine/puerarin nanoparticle–
incorporated PEG diacrylate hybrid hydrogel with antioxi-
dant properties.84 The prepared hydrogel presented excel-
lent cell proliferation and accelerated regeneration in a
whole-layer skin defect model.
Synthetic polymermaterials have overcome someweak-

nesses of natural active ingredients, but their poor bio-
compatibility and complex preparation procedures impede
their further development. Perhaps an effective combina-
tion of natural and synthetic materials would be a better
choice, such as PEG and heparin.

2.5 Novel metal nanomaterials

Interestingly, it has been discovered that specific metals
and their oxides possess antioxidant properties when fab-
ricated into nanomaterials. Selected metal oxide nanopar-
ticles, such as CeO2, behave as antioxidant enzymes,
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that is, nanozymes in pathological conditions, such as
superoxide dismutase, catalase and glutathione perox-
idase. Nanozymes have substantial catalytically active
surface atoms and thus are highly active, whereas natural
enzymes usually have only one active centre, thus mak-
ing them more efficient in catalytic reactions than natural
enzymes.85–88
Selenium nanoparticles (SeNPs) are attractive for their

prominent anticancer, antiviral and antibacterial activ-
ities and significant anti-inflammatory and antioxidant
properties in wound healing.89–92 Mao et al. constructed
several multifunctional nanocomposite hydrogel dress-
ings based on bacterial cellulose (BC), gelatin (Gel) and
SeNPs.93 The decoration of SeNPs endowed the hydrogel
with superior antibacterial activity and outstanding antiox-
idant and anti-inflammatory properties. In addition, the
BC/Gel/SeNPs hydrogel showed excellent performance in
skin wound healing.
Nano CeO2 has attracted wide attention in

nanomedicine due to its extensive applications in
drug delivery, biosensing and medicine. Meanwhile, CeO2
nanoparticles with outstanding biocompatibility are rela-
tively stable and environmentally friendly.94 Ahmed et al.
employed a method for the rapid and environmentally
friendly synthesis of CeO2 nanoparticles from extracts
of yellow marshmallow root (Althaea officinalis).95 A CS
hydrogel film, which incorporated the green synthesized
cerium oxide nanoparticles, showed high antioxidant
activities and antibacterial effects, significantly enhancing
wound healing. In addition, Peng et al. developed a com-
posite hydrogel, including Cu5.4O ultrasmall nanozymes,
for scavenging ROS and star polyethylene glycol (StarPEG)
and heparin for sequestering chemokines.96 The hydro-
gel dressing effectively adsorbed the inflammatory
chemokines (monocyte chemotactic protein-1 [MCP-1]
and interleukin-8 [IL-8]), suppressing the massive migra-
tion of inflammatory cells. In addition, it scavenged ROS
from wound exudate, reducing oxidative stress by the
sustained release of Cu5.4O.
The novel metal and its compound nanomaterials rep-

resent a new direction for the development of antioxidant
hydrogels. Opportunities that have appeared to date offer
a small view towards many materials yet to be discovered
for the enhancement of wound healing.

3 SEQUESTERING CHEMOKINES

3.1 Chemokines

Chemokines, a small family of cytokines, were first identi-
fied as substances that aid leukocyte recruitment to sites
of injury or infection,97 thereby releasing soluble factors

to influence the wound healing process. Most chemokine
amino acid sequences contain four conserved cysteine
residues. According to the polypeptide chain cysteine loca-
tion, chemokines are classified into four subclasses: C,
CC, CXC and CX3C (C indicates cysteine, and X indi-
cates any amino acid), most of which belong to the CC
and CXC families. Among them, CXC chemokines are
further subdivided according to the presence of glutamate–
leucine–arginine (ELR) motifs in front of the first cysteine
residue. ELR (+) chemokines promote angiogenesis, and
ELR (−) chemokines are deemed to possess an angiostatic
effect.98
Chemokines interact with cells through G protein-

coupled seven-transmembrane receptors (Figure 4). One
type of receptor can bind to multiple chemokines, and the
same chemokine can interact with several different types
of receptors, allowing chemokines to play important roles
in the pathobiological processes of chronic inflammation,
tumourigenesis and autoimmune diseases.99,100 Involved
in all phases of wound healing (haemostasis, inflamma-
tion, proliferation, remodelling), chemokines can influ-
ence wound healing events, such as angiogenesis, collagen
deposition and re-epithelialization.101–103 However, per-
sistent chemokine hyperfiltration in wounds has been
reported to lead to poor wound healing.104–106 Therefore,
therapeutic strategies targeting excessive proinflammatory
chemokines in wounds have been constantly upgraded,
and potential approaches to target chemokines include
monoclonal antibodies, small-molecule antagonists and
glycosaminoglycans (GAGs) that interfere with the dis-
tribution of chemokines.101 GAG-based anti-inflammatory
hydrogels are among the most prominent wound-healing
therapeutic strategies. Hydrogels are prepared by flexi-
bly utilizing various biomimetic materials based on the
principle of interaction between GAGs and chemokines
to capture excessive proinflammatory chemokines from
wounds to promote wound healing.

3.2 Glycosaminoglycan hydrogel
dressings in wound healing

GAGs, a family of negatively charged linear polysaccha-
rides, are widely found on the surface of human cells and
in the ECM.107 Capable of interacting with various pro-
teins, including cytokines, growth factors, proteases and
chemokines, GAGs mediate physiological processes, such
as cell adhesion and intracellular signal transduction. In
addition, GAGs participate in multiple diseases, including
cardiovascular diseases, neurodegenerative diseases and
tumours, through the electrostatic interactions between
positively charged amino acid residues and negatively
charged sulphate groups.108
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F IGURE 4 (A) Chemokine family structure. According to the polypeptide chain cysteine location, chemokines are classified into four
subclasses: C, CC, CXC and CX3C. The C subfamily is characterized by only one of the proximal N-terminal cysteines; in the CC subfamily,
there are two interconnected cysteines; in the CXC family, the first two cysteines are separated by one amino acid; and in the CX3C family,
there are three amino acids between the first two cysteines. The first and third cysteines (C) in the sequence form a disulphide bond, and the
second cysteine also forms a covalent bond with the third, stabilizing the tertiary structure of chemokines. (B) Chemokine receptor. They are
seven-transmembrane GPCRs. There are a short acidic N-terminus outside the cell membrane, binding exclusively to ligand, and three
extracellular and three intracellular loops, and the intracellular C-terminus initiates the intracellular cascade reaction.

In complex wounds (such as diabetic and burn
wounds), persistent and excessive inflammatory cells
infiltration produces massive amounts of proinflam-
matory chemokines, such as MCP-1 and IL-8, which
further aggravate the invasion of inflammatory cells
into the wound bed, thereby perpetuating chronic
inflammation.109,110 One important feature of chemokines
is their ability to bind to ECM GAGs, a process mediated
by the electrostatic interaction described earlier.109 It has
been demonstrated that the significant GAG-bindingmotif
on chemokines is usually BBXB or BBBXXBX, where B
and X represent basic and any amino acid, respectively.
In addition, specific chemokine-binding epitopes on GAG
have been identified, such as the 2-O-sulphate group on
the allulose unit.107 Accordingly, the sulphation pattern
of GAGs governs multiple binding events, such as the
distribution of chemokines within the ECM, controlling
immune cells activation and migration.110–112
Lohmann et al. customized amodular hydrogel based on

StarPEG and GAG heparin derivatives to achieve maximal
chemokine sequestration.110 As a result, the inflammatory
chemokines IL-8, macrophage inflammatory protein 1 and
MCP-1 in wound fluids were effectively scavenged, inhibit-

ing the migration of human monocytes and neutrophils.
In addition, the resulting hydrogel showed better perfor-
mance than the standard-of-care product PROMOGRAN
with respect to granulation tissue formation, angiogene-
sis and wound closure in a delayed wound healing model.
Similarly, Schirmer et al. developed a wound contact
layer based on a StarPEG-GAG hydrogel.111 The compos-
ite wound contact layer dampened excessive inflammatory
signals without affecting the levels of pro-regenerative
growth factors, promoting wound healing by increasing
granulation tissue formation, vascularization and deposi-
tion of collagen fibres (Figure 5).
Additionally, Qin et al. prepared a hydrogel that mim-

ics the ECM, consisting of an HA-derived component with
anti-inflammatory activity and a gelatin-derived compo-
nent with adhesion sites for cell anchoring.112 The results
showed that the HA-Gel hydrogel was a viable therapeutic
option for full-thickness wounds by effectively depleting
the proinflammatory chemokineMCP-1 in the wound bed.
However, the function of chemokines in wounds is

extraordinarily complex. The anti-inflammatory hydrogel
is not intended to sequester or remove all chemokines but
to target and sequester chemokines that are detrimental,
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F IGURE 5 (A) P1 reflects global charge density of glycosaminoglycan (GAG); (B) positively charged patches at the chemokine surface;
(C) P2 reflects the local charge density between GAG and single positively charged amino acid residues of the protein surface; (D) a wound
contact layer composite dressing is applied on the surface of the chronic wound performing its function.111 Source: © 2021 The Authors.
Advanced Science published by Wiley-VCH GmbH

such as MCP-1 and IL-8, thereby promoting wound heal-
ing. Conversely, loading special chemokines that facilitate
wound healing into hydrogel dressings can accelerate the
wound healing process. Xu et al. customized a biomimetic
hydrogel utilizing PVA and CS as hybrid materials while
loadedwith chemotactic factor (SDF-1) to stimulate a rapid
in situ recruitment of bone marrow mesenchymal stem
cells (BMSCs) for rapid wound repair and regeneration.113
The doped chemokines can be consistently released from
the hydrogel and significantly recruit BMSCs in vitro and
in vivo. The hydrogel-based biomimetic PVA/CS hybrids
for the local release of chemokines are a promising vehi-
cle to improve healing outcomes without causing scar
formation or any other adverse complications.
In fact, based on electrostatic interactions, negatively

charged polysaccharides will inevitably deplete some pos-
itively charged soluble proteins that facilitate wound
healing, such as VEGF. How to dampen this side effect is
an urgent issue that needs to be addressed. The sulphation
degree and concentration of GAGs in hydrogels maybe a
possible research direction.

4 PROMOTINGM1-TO-M2
POLARIZATION OFMACROPHAGES

4.1 Macrophages

Macrophages play a vital role in recognizing and removing
pathogens, cellular debris and phagocytosis of apoptotic
neutrophils in the early stages of wound healing and
enhancing angiogenesis, collagen deposition and epithe-
lial cell migration in the later stages.114 Macrophages in
the skin are classified into two categories depending on
their origin: (1) resident macrophage populations formed
before birth and (2) monocytes recruited to the injured
area from the circulatory system and then differentiating
into macrophages. The first group of macrophages con-
sists of self-renewing cells produced by the embryonic yolk
sac.115 Monocyte-derived macrophages initially migrate to
injured areas via damage-associated molecular pattern or
pathogen-associated molecular pattern signalling. In addi-
tion, monocytes are also recruited through damaged blood
vessels.115,116 Depending on the role of macrophages in
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wound healing, they are classified into proinflammatory
macrophages (M1) and anti-inflammatory macrophages
(M2). This classification is still controversial, as the ori-
gin of anti-inflammatory macrophages (M2), the method
of phenotypic transition from M1 to M2 and the rela-
tive proportions of each in macrophage populations all
remain obscure. However, it is important to analyse the
functions of different types ofmacrophages inwound heal-
ing. Proinflammatory macrophages (M1) produce ROS,
nitric oxide, IL-6, TNF-α, matrix metalloproteinase 9
and so on to recognize and remove pathogens, cellular
debris and apoptotic neutrophils in the early stages. Anti-
inflammatory macrophages (M2) exert their effects in the
proliferative and remodelling phases of wound healing.
They bring high levels of growth factors (platelet-derived
growth factor, insulin-like growth factor 1 etc.), metal-
loproteinase inhibitor 1, arginase 1 (Arg-1) and so on to
promote angiogenesis, collagen deposition and epithelial
cell migration and to minimize fibrosis and remodel the
ECM.116–119 Similar to the overlap of stages in wound
healing, some macrophages share proinflammatory and
anti-inflammatory phenotypes and may even exert other
effects as well.

4.2 Polarization of macrophages in
wound healing

The polarization of macrophages is highly dependent on
the woundmicroenvironment,114 which is dynamic during
the healing process, thus affecting the phenotype and func-
tions of macrophages. Adverse factors, such as hypergly-
caemia and bacterial infections, impede the polarization of
proinflammatory macrophages (M1) to anti-inflammatory
macrophages (M2).120 The wound then remains in the
inflammatory phase, impairing epithelial regeneration,
collagen deposition and angiogenesis and hindering the
wound from shifting to the repair phase. Therefore, how
to promote the polarization of the persistent proinflam-
matory macrophages (M1) in wounds becomes a critically
urgent problem.
In recent years, various dressings have been designed

to regulate the microenvironment of chronic wounds with
an expectation of promoting macrophage polarization in
the later stages of wound healing. Among them, hydrogel
dressings have attracted the greatest attention. Hydro-
gels can be designed to immunomodulate chronic wounds
by delivering bioactive molecules, including antimicrobial
molecules, immunomodulatory components, growth fac-
tors, genes and cells, promoting the polarization of M1
macrophages to M2, thus accelerating the wound healing
process.121 Selected bioactivemolecules for use in hydrogel
dressings are summarized in Table 4.

Prostaglandin E2 (PGE2), secreted by mesenchy-
mal stem cells, can promote the polarization of M1
macrophages to alleviate inflammation and accelerate the
skin wound healing process.122,123 Zhang et al. incorpo-
rated PGE2 into a CS hydrogel (CS + PGE2 hydrogel).124
The experimental results showed that the controlled
release of PGE2 attenuated the inflammatory response
by inducing the polarization of M1 macrophages to M2,
and the CS + PGE2 hydrogel could modulate the balance
between the three overlapping phases of inflammation,
regeneration and remodelling in wound healing.
Lactic acid–producing bacteria, the most commonly

utilized probiotics, have great effects on protecting the
host against microorganisms harmful to the human body,
strengthening the host immune system and reducing
metabolic disorders.125 Lu et al. designed a heparin–
poloxamer thermoresponsive hydrogel incorporating a
delivery system comprising living Lactococcus.126 The lac-
tic acid secreted by the living, probiotic system can induce
M2 phenotypic transformation of macrophages, signifi-
cantly promoting angiogenesis in diabetic wounds, and
the resulting hydrogel can also produce and protect VEGF,
increasing proliferation, migration and tube formation of
endothelial cells (Figure 6).
Modifying the original dressing via physical or chem-

ical approaches may enhance the functions of hydrogel
applications. For example, Das et al. utilized a modi-
fied collagen gel dressing, shifting macrophages towards
an anti-inflammatory phenotype and attenuating inflam-
matory responses.127 The resulting hydrogel can change
wound inflammation outcomes by increasing the produc-
tion of anti-inflammatory IL-10, IL-4 and proangiogenic
VEGF.
Meanwhile, paeoniflorin, themain bioactive component

of the total glucoside extracted from peony, can control
macrophage activity.128–131 Yang et al. prepared a high
molecular weight HA-based hydrogel loaded with paeoni-
florin extracted from Paeonia lactiflora.132 The constructed
hydrogel dressing significantly promoted the polariza-
tion of macrophages from M1 to M2, and this result was
accompanied by improved inflammation, angiogenesis,
re-epithelialization and collagen deposition.
As a small molecule signal transduction motif, H2S

exerts a therapeutic effect by penetrating the cell mem-
brane, and one of the mechanisms of its therapeutic
effect is to promote the phenotypic transformation of
macrophages to M2 macrophages.133–135 Herein, Wu et al.
incorporated a pH-controllable H2S donor (JK1) into an
HA-based biomimetic hydrogel, thereby constructing a
hybrid system.136 The resulting hybrid hydrogel can facil-
itate the polarization of proinflammatory macrophages
(M1) to anti-inflammatorymacrophages (M2), significantly
accelerating the wound regeneration process through
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TABLE 4 Bioactive molecules that promote macrophage polarization

Bioactive
molecules

Hydrogel
composition Effect of hydrogel dressings References

PGE2 PGE2/Chitosan Modulated the balance between three overlapping
phases of inflammation, regeneration and
remodelling during wound healing

124

Lactic acid Lactococcus/heparin-
poloxamer

Induced M2 phenotypic transformation of
macrophages and produced and protected VEGF

126

Collagen Modified collagen Shifted macrophages towards an anti-inflammatory
phenotype and attenuated inflammatory responses

127

Paeoniflorin Paeoniflorin/HA Promoted the polarization of macrophages from M1
to M2 and improved angiogenesis,
re-epithelialization and collagen deposition

132

H2S JK1(H2S donor)/HA Facilitated the polarization of proinflammatory
macrophages (M1) to anti-inflammatory
macrophages (M2)

136

Bioactive glass BG/SA Induced the polarization of M2 phenotype and
enhanced the synthesis of fibroblast ECM and
vascularization of endothelial cells

139

miR-223* miR-223*/HA Increased the expression of the anti-inflammatory
gene Arg-1 and decreased the expression of
proinflammatory markers, including TNF-α, IL-1β
and IL-6

140

Abbreviations: ECM, extracellular matrix; HA, hyaluronic acid; PGE2, prostaglandin E2; SA, sodium alginate; TNF-α, tumour necrosis factor-α; VEGF, vascular
endothelial growth factor.

F IGURE 6 Illustration of the HP@LL_VEGF hydrogel modulating the wound microenvironment to accelerate angiogenesis and wound
regeneration.126 Source: © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

increased re-epithelialization, vascularization and deposi-
tion of collagen fibres on dermal wounds.
Bioactive glass, a group of materials consisting of

SiO2, CaO, Na2O and P2O5, is a remarkable bioactive

material widely applied in clinical practice for tissue
transplantation.137 The ion products of bioactive glass
have been demonstrated to activate the M2 phenotype
of macrophages and stimulate the secretion of more
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anti-inflammatory growth factors by macrophages.138 Zhu
et al. explored the function of the bioactive glass/sodium
alginate hydrogel and showed that it could induce
the polarization of the M2 phenotype and upregulate
the expression of anti-inflammatory genes.139 In addi-
tion, M2-polarized macrophages further recruited fibrob-
lasts and endothelial cells, enhancing the synthesis
of fibroblast ECM and vascularization of endothelial
cells.
Gene delivery is considered a versatile alternative strat-

egy, of which the main aim is to immunomodulate the
phenotype of macrophages, increase anti-inflammatory
cytokine expression, reduce the secretion of proinflamma-
tory cytokines and enhance the recruitment of Treg cells to
suppress inflammation. Here, Saleh et al. developed adhe-
sive hydrogels containing miR-223 5p mimic (miR-223*)
to control the polarization of macrophages in wounds.140
These hydrogels demonstrated the upregulation of miR-
223* in J774A.1 macrophages, increased the expression of
the anti-inflammatory gene Arg-1 and decreased the pro-
duction of proinflammatory markers, including TNF-α,
IL-1β and IL-6.
The level of inflammation in wounds is dynamic,

and the phenotype of macrophages varies according to
the wound microenvironment. Macrophages display dif-
ferent phenotypes to perform various roles during the
wound healing process. They exhibit a proinflammatory
M1 phenotype in the early inflammatory stages and an
anti-inflammatory M2 phenotype in the repair stages. A
phenotypic continuum may exist during the process, with
some cells sharing the phenotypic characteristics of M1
and M2 macrophages.141 The phenotypic regulation of
macrophages is a sophisticated process. Insufficient M1
macrophages in the early stages may lead to severe infec-
tion or delayed wound healing, whereas excessive M2
macrophages in the later stages may result in scar for-
mation. However, current dressings lack the ability to
precisely modulating the phenotype of macrophages to
achieve predictably ideal results. In addition, few studies
on hydrogels have uncovered the molecular mechanisms
of macrophage polarization, which is of great significance
for the precise regulation of macrophage activity in wound
healing. Therefore, more research is needed to solve this
major issue.

5 CONCLUSION AND PERSPECTIVES

The regulation of inflammation in wounds is complex.
Insufficient inflammation levels in the early stages and
excessive inflammation infiltration in later stages both lead
to the disruption of the healing process, with the latter
being more common in wound healing. Therefore, various
advanced anti-inflammatory biomaterials have been used

in wound healing in recent years, especially in treating
chronic wounds. Among them, anti-inflammatory hydro-
gel dressings can chemically, mechanically and electrically
mimic skin functions and, thus, have attracted consid-
erable attention. This review summarizes the scope of
emerging anti-inflammatory hydrogel dressings, focusing
on three required aspects of wound healing: scavenging
excessive free radicals, sequestering chemokines and pro-
moting M1-to-M2 polarization of macrophages. However,
the development of anti-inflammatory hydrogel dressings
for enhanced wound healing is still in the early stages.
These approaches also face unique challenges related
to their biocompatibility, technology and clinical results,
which must be addressed before the previous treatments
can be transformed into clinical applications. Unfortu-
nately, animal models for which treatments have been
evaluated cannot fully replicate the complexity of chronic
wound healing in humans, and human physiology is vastly
distinct from that of the mouse. In addition, the safety of
hydrogels must be evaluated carefully, as they may trig-
ger inappropriate immune responses, such as infections,
allergies and autoimmune diseases. Therefore, intensive
research is needed to allow the creation of promising
anti-inflammatory hydrogel dressings for successful use in
clinical applications.
In the future, anti-inflammatory hydrogel dressingsmay

afford opportunities for a precise modulation of wound
healing processes, with real-time monitoring of wound
inflammation levels using wearable sensors and imaging
devices, perhaps with automated stimulus responsiveness
and other technologies to adjust therapeutic strategies.
Such advances in the development of precise treatment of
wounds will improve patient curing rates, alleviate pain
and reduce costs. Meanwhile, anti-inflammatory hydro-
gels may also be loadedwith other functional components,
such as haemostatic, conductive and adhesive materials,
making anti-inflammatory hydrogel dressings more pow-
erful and predictable for clinical applications, which is a
vitally important subject in translational research, partic-
ularly in the use of advanced anti-inflammatory hydrogel
dressings. Translational research may generate clinically
meaningful outcomes in wound healing that improve
human health and allow fundamental scientific findings
to be translatedmore efficiently into practical applications.
Clearly, this will require the concerted efforts of a wide
range of researchers and clinicians, but the outcomes can
be transformative.
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