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Abstract 

Background:  Malaria in western Kenya is currently characterized by sustained high Plasmodial transmission and 
infection resurgence, despite positive responses in some areas following intensified malaria control interventions 
since 2006. This study aimed to evaluate long-term changes in malaria transmission profiles and to assess patterns of 
asymptomatic malaria infections in school children aged 5–15 years at three sites in western Kenya with heterogene‑
ous malaria transmission and simultaneous malaria control interventions.

Methods:  The study was conducted from 2018 to 2019 and is based on data taken every third year from 2005 to 
2014 during a longitudinal parasitological and mosquito adult surveillance and malaria control programme that was 
initiated in 2002 in the villages of Kombewa, Iguhu, and Marani. Plasmodium spp. infections were determined using 
microscopy. Mosquito samples were identified to species and host blood meal source and sporozoite infections were 
assayed using polymerase chain reaction.

Results:  Plasmodium falciparum was the only malaria parasite evaluated during this study (2018–2019). Asympto‑
matic malaria parasite prevalence in school children decreased in all sites from 2005 to 2008. However, since 2011, 
parasite prevalence has resurged by > 40% in Kombewa and Marani. Malaria vector densities showed similar reduc‑
tions from 2005 to 2008 in all sites, rose steadily until 2014, and decreased again. Overall, Kombewa had a higher risk 
of infection compared to Iguhu (χ2 = 552.52, df = 1, P < 0.0001) and Marani (χ2 = 1127.99, df = 1, P < 0.0001). There 
was a significant difference in probability of non-infection during malaria episodes (log-rank test, χ2 = 617.59, df = 2, 
P < 0.0001) in the study sites, with Kombewa having the least median time of non-infection during malaria episodes. 
Gender bias toward males in infection was observed (χ2 = 27.17, df = 1, P < 0.0001). The annual entomological inocula‑
tion rates were 5.12, 3.65, and 0.50 infective bites/person/year at Kombewa, Iguhu, and Marani, respectively, during 
2018 to 2019.

Conclusions:  Malaria prevalence in western Kenya remains high and has resurged in some sites despite continu‑
ous intervention efforts. Targeting malaria interventions to those with asymptomatic infections who serve as human 
reservoirs might decrease malaria transmission and prevent resurgences. Longitudinal monitoring enables detection 
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Background
Globally, an estimated 241 million cases of malaria were 
reported in 2020 resulting in approximately 627,000 
deaths; 96% of these deaths occurred in Africa and chil-
dren aged < 5 years accounted for 77% of these deaths 
[1]. In Kenya, an estimated 27 million malaria cases and 
12,600 deaths attributed to malaria were reported in 
2020 [1]. Since 2000, malaria mortality and morbidity 
have declined significantly in African countries, includ-
ing Kenya, and have been attributed chiefly to the scale-
up of insecticide-treated net (ITN) distributions, indoor 
residual spraying (IRS), and artemisinin-based combina-
tion therapies (ACTs) [2]. Nonetheless, malaria remains a 
major public health concern in Africa.

Kenya’s Ministry of Health began the country’s first free 
mass long-lasting insecticidal net (LLIN) distribution in 
2006 to children under 5 years and pregnant women, fol-
lowed by a second distribution in 2011 aiming for univer-
sal coverage in targeted areas [3]. Thereafter, there have 
been three successive rounds of distribution in 2014, 2017, 
and 2021 to boost LLIN coverage and replace worn nets 
[3–5]. Indoor residual spraying applications began in 2005 
to prevent epidemics in malaria epidemic-prone areas 
in the highlands [6]. To reduce the malaria burden in the 
Lake Victoria endemic zone, IRS was implemented in tar-
geted districts from 2008 to 2012 [6–8]. However, IRS was 
not applied from 2012 to 2016 because of the detection of 
widespread pyrethroid resistance in malaria vector popu-
lations and lack of a registered non-pyrethroid insecticide 
in the country [9, 10]. After 5 years of no treatments, IRS 
was restarted in 2017 with the micro-encapsulated organo-
phosphate insecticide pirimiphos-methyl (Actellic® 300CS) 
and applied during successive rounds from 2018 to 2021 
in two targeted counties (Migori and Homa Bay) located 
in the Lake Victoria endemic zone, where intense malaria 
transmission occurs throughout the year [11]. Artemisinin-
based combination therapies began in 2004 after several 
years of sulfadoxine-pyrimethamine treatments (1998–
2003) and earlier recognition of widespread antimalarial 
drug failures (e.g. chloroquine) [12, 13]. Malaria control 
programmes face numerous challenges, among them devel-
opment of pyrethroid resistance in malaria vectors [14], 
changes in vector dominance and behaviour [15–17], and 
the emergence of antimalarial drug resistance [18]. In an 
effort to mitigate insecticide resistance, the World Health 
Organization (WHO) has recommended conducting IRS 
with organophosphate and neonicotinoid insecticides and 

using pyrethroid-piperonyl butoxide (PBO) synergized 
treated nets [1], which have been distributed in targeted 
counties in Kenya from 2020 to 2021.

Despite these malaria control efforts, areas in western 
Kenya are experiencing heterogeneity in malaria trans-
mission after interventions, with some areas indicating a 
decline in transmission, while in others, transmission has 
remained unchanged or has resurged [5, 19–21]. A study 
in western Kenya linked these contrasting outcomes to 
malaria vector species composition shifts, insecticide 
resistance, and climatic warming [21]. Similar observa-
tions of varying outcomes in malaria control have been 
observed elsewhere in Africa [22].

This study aimed to evaluate long-term changes in 
malaria transmission profiles and patterns of asympto-
matic malaria infection in three sites with different trans-
mission intensities in western Kenya after distributions of 
new pyrethroid-PBO treated LLINs and applications of 
new IRS formulations. Hopefully, the results presented 
here will help in assessing vector interventions, serve as 
a baseline for the evaluation of new interventions, and 
guide future control planning by the Kenya National 
Malaria Control Programme.

Methods
Study site
The study was conducted in three sites in western Kenya, 
each with different malaria transmission intensity: two 
highland sites, Iguhu (0°08′53′′N; 34°47′16′′E, 1430–
1580  m elevation) (mesoendemic) in Kakamega County 
and Marani (0°35′13′′S; 34°48′11′′E, 1540–1740 m eleva-
tion) (hypoendemic) in Kisii County, and one lowland 
site in Kombewa (0°07′10′′S; 34°29′04′′E, 1150–1300  m 
elevation) (holoendemic) in Kisumu County (Fig. 1).

The climate in western Kenya consists mainly of a 
bimodal pattern of rainfall, a long rainy season between 
April and June, and a short rainy season between Octo-
ber and November [19]. The hot and dry season is from 
January to February while the cool and dry season from 
July to September [19]. All sites have shown variations 
in monthly cumulative precipitation and monthly mean 
maximum and minimum temperatures, ranging from 
29.1 °C to 14.5 °C, respectively [19, 21, 23].

Plasmodium falciparum is the primary malaria para-
site species in the three sites [19]. The first mass dis-
tribution of LLINS in 2006 in western Kenya led to a 
decline of both asymptomatic malaria and clinical cases 

of changes in parasitological and entomological profiles and provides core baseline data for the evaluation of vector 
interventions and guidance for future planning of malaria control.
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[21]. The second mass distribution in 2011 was charac-
terized by a positive response at Iguhu but Kombewa 
and Marani experienced sustained high P. falciparum 
transmission and infection resurgences, respectively, 
despite a third round of LLIN distributions in 2015 [21].

The predominant malaria vector species in the study 
sites are Anopheles gambiae s.s., An. arabiensis, and An. 
funestus [19, 24]. In the lowland site, An. funestus is the 
most abundant and infectious malaria vector, while in 
the highland sites An. gambiae s.s. is the main vector 
responsible for Plasmodial transmission. Recent stud-
ies in this region have observed an increase in the pro-
portion of An. arabiensis in the highlands because of 
vector interventions using LLINs and IRS; these meas-
ures may be suppressing the more anthropophilic and 
endophilic An. gambiae s.s. and killing fewer of the 
more zoophilic An. arabiensis [25]. Hence, high bed-
net coverage in western Kenya may explain decreases 
in vector densities of An. gambiae s.s. in the three sites, 
reductions of An. funestus in Iguhu and Kombewa, and 

temporal alterations in feeding behaviour of An. gam-
biae to earlier host seeking [20].

Study design
Historic Plasmodium falciparum parasite prevalence 
and vector densities
This study was based on longitudinal parasitological 
and adult vector surveillance that commenced in 2002 
(Iguhu) and 2003 (Kombewa and Marani) [19] to date. 
Snapshots of these data were taken every 3 years from 
2005 to 2014 [5, 20, 21]. Data (years 2005, 2008, 2011, 
and 2014) from this period form the basis for the current 
study conducted between 2018 and 2019.

Parasitological surveys
A cohort of 514 volunteer school-aged children aged 
5–15  years were enrolled (January–March 2018) for 
monthly Plasmodium spp. surveys between 1 Janu-
ary 2018 and 31 October 2019 in Kombewa, Iguhu, and 
Marani (Fig. 2). The sample size was calculated based on 

Fig. 1  Map of the study sites in western Kenya
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the size of the study population and parasite prevalence 
from a previous study [5]. Consent was obtained from 
parents or guardians before children could participate 
in the study. Children with no reported chronic or acute 
illness, except malaria, were allowed to participate in the 
study. At the sampling time, children who were found 
to have fever were referred to the nearest government 
health facility for diagnosis and treatment according to 
Kenyan government malaria treatment guidelines [26].

Blood samples were collected using the finger-prick 
method and thick and thin smears prepared on labeled 
slides for malaria parasite species identification and para-
site counts using microscopy. Malaria parasite counts 
were scored against 200 leukocytes. A second micros-
copist carried out random checks on the slide counts 
to ensure microscopy quality. Parasite density was 
expressed as parasites per μl, assuming a count of 8000 
white blood cells per μl of blood [27]. Plasmodium spp. 

Fig. 2  Study design flow chart of the cohort study
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infection data collected from all participants were sub-
jected to prevalence analyses; however, only participants 
with at least 6 months of follow-up were included in the 
Plasmodium spp. infection pattern analyses, including 
duration and probability of non-infections (Fig. 2).

Entomological surveys
Collections of indoor resting vector populations were 
conducted monthly by the pyrethrum spray catch (PSC) 
method [28] in 30 randomly selected houses in each 
study site between 1 January 2018 and 31 October 2019. 
Mosquitoes were identified morphologically as either 
Anopheles gambiae s.l. or An. funestus [29]. DNA was 
extracted [30] from the legs and wings of each mosquito 
specimen to speciate sibling species in An. gambiae s.l. 
and An. funestus using conventional polymerase chain 
reaction (PCR), as described by Scott et  al. [31] and 
Koekemoer et  al. [32], respectively. The DNA extracted 
from the abdomen of each freshly fed female mosquito 
was used to identify host blood meal sources using a 
multiplexed PCR assay [33]. The DNA extracted from the 
head and thorax of each mosquito specimen was used to 
determine sporozoite infections of Plasmodium spp. by 
using a multiplexed real-time quantitative PCR (qPCR) 
assay [34, 35].

Climatic data
Mean monthly rainfall and maximum and minimum 
temperature from 2018 to 2019 were obtained from the 
Kenya Meteorological Department for meteorological 
stations in Kakamega (for Iguhu), Kisii (for Marani), and 
Kisumu (for Kombewa).

Data management and analysis
The variations in parasite prevalence between differ-
ent time periods at Kombewa, Iguhu, and Marani were 
compared using Tukey-Kramer HSD test of analysis of 
variance (ANOVA) with repeated measures. In addition, 
the differences of vector densities between different time 
periods at each site were compared using non-parametric 
Wilcoxon rank-sum tests. Means (95% confidence inter-
val, CI) and proportions were calculated for vector and 
parasite populations. For the primary malaria species, 
Plasmodium falciparum, parasite/gametocyte prevalence 
for each site, each month, was expressed as the percent-
age of microscopically positive samples over the total 
number of samples tested. The Chi-square test was used 
to determine statistical differences in the parasite/game-
tocyte prevalence among the study sites and parasite 
prevalence by age and gender category in each study site. 
Geometric mean parasite density and variations in pro-
portion by month infected in the age and gender in each 
site were compared using Wilcoxon/Kruskal-Wallis tests. 

The variations in the distribution of the proportion of 
surveys being infected among the study sites were deter-
mined using Tukey-Kramer HSD test of ANOVA. Multi-
ple Imputation by Chained Equations (MICE) simulation 
was done to impute the missing data in the time-to-event 
analysis. A Kaplan-Meier curve was built to analyze the 
probability of non-infection during malaria episodes in 
each study site. The log-rank test was applied to compare 
the probability of non-infection during malaria episodes 
in the three study sites adjusted for multiple compari-
sons with Bonferroni corrections. Wald approximations 
were used for hazard ratio 95% confidence interval limit 
effects. Hazard ratios for the asymptomatic malaria 
infections were compared with proportional hazards fit 
by study sites, gender, and age groups.

The monthly density of adult anopheline mosquitoes 
in each study site was calculated as the average number 
of females per house per night (f/h/n) based on monthly 
surveys. Vector density variation among study sites was 
compared using Wilcoxon/Kruskal-Wallis tests. The 
human blood index (HBI) was calculated as the propor-
tion of blood-fed Anopheles mosquito samples that had 
fed on humans to the total tested [36]. The sporozoite 
rates for each site and vector species were calculated as 
the proportion of Anopheles mosquito samples posi-
tive for Plasmodium spp. to the total number tested. The 
annual entomological inoculation rates (EIRs) for each 
site and vector species were calculated as the product of 
the sporozoite rate and human biting rates [37]. Differ-
ences in the mean annual rainfall and mean annual maxi-
mum and minimum temperatures between the study 
sites were computed using the Tukey-Kramer HSD test 
of ANOVA with repeated measures. These analyses were 
done using JMP Pro 16 (SAS Institute, Inc.) and R statis-
tical software (version 4.0.3; R foundation for statistical 
computing, Vienna, Austria).

Results
Historic Plasmodium falciparum parasite prevalence 
and vector densities
Changes in parasite prevalence and vector densities 
in Kombewa, Iguhu, and Marani are shown in Table  1 
from 2005 to 2014. Similar trends in parasite prevalence 
were observed in the three sites, i.e., declining parasite 
prevalence from 2005 to 2008 in all sites, and a rebound-
ing trend in prevalence from 2008 in Iguhu and 2011 in 
Kombewa and Marani (Table  1). In Kombewa, parasite 
prevalence decreased slightly from 2005 (51.16%, 95% 
CI 46.79–55.54) to 2008 (48.06%, 95% CI 41.61–54.51) 
(Tukey-Kramer HSD test, P > 0.05) and then declined 
sharply from 2008 to 2011 (29.80%, 95% CI 19.50–40.10) 
(Tukey-Kramer HSD test, P = 0.006). After that, it rose 
significantly to 45.86% (95% CI 39.34–52.38) in 2014 
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(Tukey-Kramer HSD test, P = 0.02). In Iguhu, a sharp 
decline in parasite prevalence was observed from 2005 
(26.61%, 95% CI 21.88–31.34) to 2008 (6.45%, 95% CI 
4.58–8.32) (Tukey-Kramer HSD test, P < 0.0001) and rose 
steadily to 16.82% (95% CI 13.52–20.12) in 2014 (Tukey-
Kramer HSD test, P = 0.002). In Marani, a steady decline 
of parasite prevalence was observed from 2005 (1.95%, 
95% CI 0.82–3.09) to 2011 (0.35%, 95% CI 0.05–0.66) 
(Tukey-Kramer HSD test, P = 0.04), after which there was 
a sharp rise in 2014 (4.44%, 95% CI 3.37–5.51) (Tukey-
Kramer HSD test, P < 0.0001).

The indoor resting densities of An. gambiae s.l. and An. 
funestus varied significantly in all sites. The vector densi-
ties showed reductions from 2005 to 2008 in all sites and 
thereafter rose steadily until 2014 (Table 1). Studies from 
2005 and 2008 indicate that the indoor resting densities 
of malaria vectors decreased sharply in Kombewa from 
1.04 (95% CI 0.14–1.93) to 0.31 (95% CI 0.15–0.47) f/h/n 
for An. gambiae s.l. (Wilcoxon test, Z = 1.24, P = 0.21) 
and from 2.14 (95% CI 1.16–3.12) to 0.52 (95% CI 0.21–
0.83) f/h/n for An. funestus (Wilcoxon test, Z = 3.38, 
P = 0.0007). Similarly, a decline was observed in Iguhu 
with a reduction from 2.56 (95% CI 0.21–4.91) to 0.36 
(95% CI 0.24–0.48) f/h/n for An. gambiae s.l. (Wilcoxon 
test, Z = 1.62, P = 0.11) and that of An. funestus changed 
significantly from 0.29 (95% CI 0.09–0.49) to 0.02 (95% 
CI 0.01–0.04) f/h/n (Wilcoxon test, Z = 4.03, P < 0.0001). 
In Marani, An. gambiae s.l. densities decreased from 
0.03 (95% CI 0.00–0.05) to 0.01 (95% CI 0.00–0.02) f/h/n 
(Wilcoxon test, Z = 1.07, P = 0.29) between 2005 and 
2008, while no An. funestus were found during the 2 
years. Between 2008 and 2014, the population of indoor 
resting vectors rose steadily in Kombewa (An. gam-
biae s.l., Wilcoxon test, Z = 3.23, P = 0.001; An. funestus, 

Wilcoxon test, Z = 2.51, P = 0.01), Iguhu (An. gambiae 
s.l., Wilcoxon test, Z = 1.47, P = 0.14; An. funestus, Wil-
coxon test, Z = 4.17, P < 0.0001) and Marani (An. gambiae 
s.l., Wilcoxon test, Z = 3.00, P = 0.003; An. funestus, Wil-
coxon test, Z = 4.41, P < 0.0001).

Plasmodium falciparum parasite prevalence, gametocyte 
prevalence, and parasite density
In the 2018–2019 survey, only P. falciparum was found 
and evaluated. The P. falciparum prevalence in Kombewa 
was significantly higher compared to Iguhu (χ2 = 552.52, 
df = 1, P < 0.0001) and Marani (χ2 = 1127.99, df = 1, 
P < 0.0001) (Fig. 3). Compared to 2011, parasite prevalence 
in 2018–2019 has resurged by > 40% in Kombewa and 
Marani, whereas in Iguhu, it has decreased by 7.3%. There 
were no significant differences in P. falciparum prevalence 
between males and females in all sites except Kombewa 
and no significant differences in P. falciparum prevalence 
between age groups at all sites (Additional file 3: Table S1).

The P. falciparum gametocyte prevalence was sig-
nificantly higher in Kombewa compared to Iguhu and 
Marani (χ2 = 7.69, df = 2, P = 0.02) (Fig. 3).

In Kombewa, there was a significant difference in 
the geometric means of P. falciparum density between 
the two age groups, with higher parasite density in the 
5–10 years old group. Similarly, males had higher parasite 
density compared to females (Additional file 3: Table S1).

Plasmodium falciparum infection patterns
The proportion of months infected varied greatly in 
Kombewa (35.9%), Iguhu (14.9%), and Marani (5.8%) 
(Tukey-Kramer HSD test, P < 0.0001) (Additional file  1: 
Fig S1). No significant age and gender variations were 

Table 1  Historic Plasmodium falciparum parasite prevalence and vector densities in Kombewa, Iguhu, and Marani in western Kenya 
[Mean (95%CI)]

a Variations in parasite prevalence between different time periods at each study site were compared using Tukey-Kramer HSD test of analysis of variance (ANOVA) with 
repeated measures
b Variations in vector densities between different time periods at each study site were compared using non-parametric Wilcoxon rank-sum tests

Study sites Kombewa Iguhu Marani

Year Parasite 
prevalence 
(%)a

An. gambiae 
s.l densityb

An. funestus 
densityb

Parasite 
prevalence 
(%)a

An. gambiae 
s.l. densityb

An. funestus 
densityb

Parasite 
prevalence 
(%)a

An. gambiae 
s.l. densityb

An. funestus 
densityb

2005 51.16 (46.79, 
55.54)

1.04 (0.14, 
1.93)

2.14 (1.16, 
3.12)

26.61 (21.88, 
31.34)

2.56 (0.21, 
4.91)

0.29 (0.09, 
0.49)

1.95 (0.82, 
3.09)

0.03 (0.00, 
0.05)

0.00 (0.00, 
0.00)

2008 48.06 (41.61, 
54.51)

0.31 (0.15, 
0.47)

0.52 (0.21, 
0.83)

6.45 (4.58, 
8.32)

0.36 (0.24, 
0.48)

0.02 (0.01, 
0.04)

0.43 (0.11, 
0.74)

0.01 (0.00, 
0.02)

0.00 (0.00, 
0.00)

2011 29.80 (19.50, 
40.10)

0.54 (0.37, 
0.70)

0.95 (0.58, 
1.32)

13.59 (9.55, 
17.64)

0.37 (0.28, 
0.47)

0.12 (0.04, 
0.21)

0.35 (0.05, 
0.66)

0.05 (0.01, 
0.09)

0.29 (0.11, 
0.47)

2014 45.86 (39.34, 
52.38)

0.78 (0.49, 
1.07)

1.38 (1.05, 
1.70)

16.82 (13.52, 
20.12)

0.55 (0.35, 
0.75)

0.31 (0.22, 
0.40)

4.44 (3.37, 
5.51)

0.11 (0.03, 
0.19)

0.59 (0.46, 
0.71)
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found in the proportion of months infected in the study 
sites (Additional file 3: Table S1). Additional file 2: Fig S2 
indicates the distribution of malaria infection patterns in 
the age and gender groups in the study sites.

As shown in Fig.  4, the median time of non-infection 
during malaria first episode was 1.90 [interquartile range 

(IQR): 1.61–2.19] months, 5.46 (IQR: 4.30–6.62) months, 
and 10.86 (IQR: 9.03–12.69) months in Kombewa, Iguhu, 
and Marani, respectively. Median time from first to sec-
ond malaria episodes was 1.95 (IQR: 1.64–2.32) months, 
10.37 (IQR: 8.18–12.57) months, and 65.96 (IQR: 
35.38–122.98) months in Kombewa, Iguhu, and Marani, 

Fig. 3  Plasmodium parasite prevalence (a) and gametocyte prevalence (b) in Kombewa, Iguhu, and Marani in western Kenya. Differences in the 
parasite/gametocyte prevalence among study sites were determined using Chi-square test
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respectively. When exploring time intervals from second 
to third malaria episodes, the median time was 3.24 (IQR: 
2.56–4.10) months, 29.10 (IQR: 16.20–52.25) months, 
and 491.07 (IQR: 60.23–4003.94) months in Kombewa, 
Iguhu, and Marani, respectively. The median time of non-
infection for all malaria episodes was 17.30 (IQR: 16.77–
17.75) months, 23.26 (IQR: 22.40–24.13) months, and 
33.40 (IQR: 30.14–34.65) months in Kombewa, Iguhu, 
and Marani, respectively. There was a significant differ-
ence in probability of non-infection during malaria first 
episode (log-rank test, χ2 = 171.78, df = 2, P < 0.0001), 
first–second episodes (log-rank test, χ2 = 179.33, df = 2, 
P < 0.0001), second–third episodes (log-rank test, 
χ2 = 245.77, df = 2, P < 0.0001), and all episodes (log-rank 
test, χ2 = 617.59, df = 2, P < 0.0001) in the study sites.

For male gender, Kombewa and Iguhu sites were statisti-
cally significant risk factors associated with asymptomatic 
malaria infection. (Additional file 4: Table S2). Unadjusted 
hazard ratios for the infection were significantly higher in 

Kombewa and Iguhu compared to Marani, with similar 
results after adjustment for gender and age. Females had 
a significantly lower unadjusted hazard ratio for the infec-
tion than males, but was insignificant after adjustment for 
sites and ages.

Vector species composition and densities
A total of 583 female anophelines were collected between 
1 January 2018 and 31 October 2019, comprising 458 
(78.6%) An. gambiae s.l. and 125 (21.4%) An. funestus. 
Of these, 479 specimens (391 An. gambiae s.l. and 88 
An. funestus) were analyzed for sibling species. For the 
An. gambiae s.l. specimens, PCR results indicated that 
77.8% were An. gambiae s.s. and 22.2% An. arabiensis 
in Kombewa, 85.7% An. gambiae s.s. and 14.3% An. ara-
biensis in Iguhu, and 33.3% An. gambiae s.s. and 66.7% 
An. arabiensis in Marani. All the An. funestus subjected 
to species identification from the study sites were con-
firmed as An. funestus s.s.

Fig. 4  Kaplan-Meier probability of non-infection during (a) p.f. malaria first episode, (b) first–second episodes, (c) second–third episodes, and (d) all 
p.f. episodes in Kombewa, Iguhu, and Marani in western Kenya. Abbreviations: p.f., Plasmodium falciparum. The probability of non-infection during 
malaria episodes in the study sites were compared using log-rank test
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Fig. 5  Indoor resting densities of An. gambiae s.l. and An. funestus in Kombewa (a), Iguhu (b), and Marani (c) in western Kenya. Differences in vector 
density among study sites was compared using Wilcoxon/Kruskal-Wallis tests
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The mean indoor resting densities of An. gambiae s.l. 
were significantly different among the study sites (Wil-
coxon test, χ2 = 253.44, df = 2, P < 0.0001), with Iguhu 
having the highest densities and Marani the lowest 
densities (Fig.  5; Table  2). Also, the mean densities of 
An. funestus were significantly different among study 
sites (Wilcoxon test, χ2 = 26.03, df = 2, P < 0.0001), with 
Kombewa having the highest densities and Marani the 
lowest (Fig. 5; Table 2). Compared to 2014, vector density 
has decreased by > 60% in all sites except in Iguhu, where 
An. gambiae s.l. density decreased slightly by 9%.

Blood meal indices and annual entomological inoculation 
rate
The blood meals of An. gambiae s.l. and An. funestus 
were mostly of bovine (55.3%) and human (90.4%) origin, 
respectively, in both Kombewa and Iguhu (Additional 
file  5: Table  S3). Due to the small number of mosquito 
collections in Marani, the HBI was not analyzed. Overall, 
the HBI of An. gambiae s.l. and An. funestus was 41.10% 
and 88.00%, respectively.

The annual EIR of An. funestus was threefold higher 
in Kombewa compared to Iguhu (Table 3). In Iguhu, the 
annual EIR of An. gambiae s.l. was threefold higher than 
the corresponding value of An. funestus (Table  3). Due 
to the small number of mosquito collections in Marani, 

the annual EIR was not analyzed. The overall total annual 
EIRs were 5.12, 3.65, and 0.50 infective bites/person/year 
(ib/p/yr) at Kombewa, Iguhu, and Marani, respectively.

Climatic data
Rainfall among the three study sites was not statistically 
different (ANOVA, F(2, 69) = 1.24, P > 0.05). The mean 
annual maximum (ANOVA, F(2, 69) = 29.72, P < 0.0001) 
and minimum (ANOVA, F(2, 69) = 77.19, P < 0.0001) tem-
peratures were significantly different among the sites 
(Additional file 6: Fig S3). The mean annual temperature 
between Iguhu and Marani was not significantly differ-
ent (Tukey-Kramer HSD test, P = 0.0004), whereas it was 
significantly different between Iguhu and Kombewa and 
between Marani and Kombewa (Tukey-Kramer HSD 
test, all P < 0.0001) (Additional file 6: Figure S3).

Discussion
This study evaluated long-term changes in malaria trans-
mission profiles in three sites in western Kenya with het-
erogeneous malaria transmission and high coverage with 
malaria control interventions [10, 38, 39]. The study also 
described the pattern of asymptomatic malaria infection 
in the study sites. Findings of the study demonstrated that 
malaria prevalence remains high or has resurged in some 
sites despite continuous intervention efforts. Results also 
showed that Kombewa had a higher risk of asymptomatic 

Table 2  Indoor resting densities of An. gambiae s.l. and An. funestus in Kombewa, Iguhu, and Marani in western Kenya [mean (95%CI)]

a Differences in vector density among study sites was compared using Wilcoxon/Kruskal-Wallis tests

Sites Density (female/house/night)2018 Density (female/house/night) 2019

An. gambiae s.l.a An. funestusa An. gambiae s.l.a An. funestusa

Kombewa 0.27 (0.05, 0.49) 0.07 (0.01, 0.13) 0.24 (0.08, 0.40) 0.18 (0.00, 0.38)

Iguhu 0.42 (0.20, 0.64) 0.04 (0.00, 0.08) 0.61 (0.28, 0.94) 0.09 (0.00, 0.19)

Marani 0.00 (0.00, 0.02) 0.03 (0.01, 0.05) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)

Table 3  The entomological inoculation rate (EIR) of Anopheles mosquitoes in Kombewa, Iguhu, and Marani in western Kenya

HBI: human biting index

Study site and species Mean no. of sleepers/ 
house

Mosquito density Sporozoite rate HBI Annual EIR

Kombewa

 An. gambiae s.l 2.96 0.26 0.15 0.43 2.07

 An. funestus 0.12 0.24 0.86 3.05

Iguhu

 An. gambiae s.l 3.35 0.50 0.13 0.39 2.76

 An. funestus 0.06 0.14 0.97 0.89

Marani

 An. gambiae s.l 3.11 0.00 0.00 1.00 0.00

 An. funestus 0.02 0.44 0.50 0.50
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infection than Iguhu and Marani and further reported a 
gender bias towards males in infection.

Parasite prevalence has been decreasing since 2005 in 
the three sites and is likely associated with a reduction in 
vector abundance after free mass LLIN distributions after 
2006, application of IRS, and increased use of ACT treat-
ment [8, 19]. However, there has been an observed resur-
gence of parasite prevalence since 2008 (Iguhu) and 2011 
(Kombewa and Marani) and malaria vector densities 
since 2008 in all sites. These changes may be attributed 
to worn-out bednets and irregular use of nets; reduced 
optimum efficacy of LLINs over time; development of 
pyrethroid resistance in malaria vectors and less coverage 
of IRS in epidemic-prone areas [6, 19]. Additionally, in 
2014 the resurgence in malaria transmission observed in 
Marani may also be explained by the increase in ambient 
temperatures between 2012 and 2015 and high rainfall 
in 2014 [21]. The sharp decrease in indoor resting vec-
tor densities since 2014 is likely due to continuous scaling 
up of LLINs in the study area. Nevertheless, despite the 
decrease in vector densities, persistent malaria transmis-
sion in the context of extensive malaria vector control has 
been observed, and this could be attributed to outdoor 
vector biting and resting behaviour to avoid physical con-
tact with insecticide-treated materials, changes in vector 
behaviour to early evening biting and early exiting from 
houses, as reported in western Kenya and other parts of 
Africa [20, 40, 41].

The 2018–2019 study observed a higher prevalence of 
gametocytes in Kombewa and Iguhu than in Marani and 
shows that the populations living in Kombewa and Iguhu 
maintain a large reservoir of infectious gametocytes, thus 
leading to stable and continuous malaria transmission. 
In contrast, the population living in highland village of 
Marani consists of a high proportion of susceptible indi-
viduals and consequently, under suitable climatic condi-
tions, may experience malaria resurgences [42]. Hence, 
monitoring air temperature and precipitation data is 
crucial in predicting vector and parasite dynamics, par-
ticularly in the highlands where slight changes in these 
parameters could lead to malaria epidemics [21].

Many factors have been associated with heterogene-
ity in malaria risk and include biotic, abiotic, and socio-
economic factors [43]. Kombewa had the highest risk 
and hazard ratio of asymptomatic malaria infections in 
the study. Furthermore, the median time interval and 
probability of non-infection during malaria episodes 
were least in Kombewa compared to other study sites, 
indicating increased malaria exposure. The study further 
reported a gender bias towards males in asymptomatic 
malaria infection. Briggs et  al. (2020) [44] observed 
that the sex-based difference might be elucidated by a 
slower clearance of infection in males than females due 

to differences in immune responses [44–46]. In other 
studies, this sex-based difference has been postulated 
to socio-behavioural factors that place men at a higher 
risk [47, 48]. Higher risk of malaria in male children and 
adolescents is likely linked to an array of physiological 
and behavioural changes that could contribute to the 
observed gender bias in this study. The possible expla-
nations put forward for the gender difference in malaria 
infection include roles of sex hormones in the func-
tioning of the immune system, immunological factors, 
cultural factors, and vector exposure, such as not sleep-
ing under a net [45–47, 49]. Therefore, research stud-
ies on sex-based differences in infectious diseases such 
as malaria are essential for providing optimum disease 
management for both genders [46]. In Kombewa, young 
children had a higher parasite density than older individ-
uals. The declining risk of parasitaemia as age increases 
has been documented in other parts of Africa with stable 
malaria transmission, since individuals develop semi-
immunity after continued exposure to infectious mos-
quito bites [50, 51].

Studies conducted over 2 decades ago showed that the 
HBI of indoor resting An. gambiae s.s. in western Kenya 
was 96–97%, indicating that they had fed exclusively 
on humans [52, 53]. However, in this investigation, the 
overall HBI of An. gambiae s.l. in all study sites was only 
41.1%. This behavioural plasticity in host seeking sug-
gests that there has been a shift in blood meal sources, 
which could be attributed to extensive bednet coverage 
in the region [54]. Conversely, An. funestus was highly 
anthropophilic, an observation previously made in Kenya 
and other parts of Africa [52, 55, 56]. Furthermore, in 
studies conducted in Kombewa, the highly anthropo-
philic An. funestus has been reported to have high resist-
ance to pyrethroids, and changes in their biting behaviour 
could be a major factor sustaining high transmission in 
the area amidst extensive malaria vector control [20, 21].

The EIRs obtained in previous studies by Githeko et al. 
[57] and Beier et al. [58] were exceedingly high (91–416 
ib/p/yr) in western Kenya. Since then, there has been a 
decline in the annual P. falciparum inoculation rates, as 
observed by Ndenga et al. (2016), who reported the total 
annual EIRs as 31.1, 16.6, and 0.4 ib/p/yr at Kombewa, 
Iguhu, and Marani, respectively [23]. In the current study, 
the lower inoculation rates recorded could be attributed 
to reduced vector densities and, to some extent, a shift 
to non-human feeding by the malaria vectors due to high 
bednet coverage in the study areas [54]. Nevertheless, 
An. funestus and An. gambiae s.l. played major roles in 
malaria transmission in Kombewa and Iguhu, respec-
tively, despite the comparatively low vector densities, 
indicating high vectorial efficiency of these anophelines 
in transmitting malaria in the region.
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One limitation of our study was that parasitological 
surveys were based on microscopy only, which may not 
detect light plasmodial infections compared to highly 
sensitive PCR-based techniques. Hence, the P. falcipa-
rum prevalence and infection pattern may have been 
underestimated. A second limitation was the lack of 
long-term information on outdoor malaria transmis-
sion dynamics, which may have provided insight to the 
resurgence in P. falciparum transmission despite con-
tinuous intervention efforts.

Conclusions
Malaria prevalence remains high and has resurged in 
some sites in western Kenya despite continuous inter-
vention efforts. Hence, long-time monitoring of malaria 
transmission profiles is essential in evaluating the suc-
cess of current interventions, accurately measuring 
changing malaria epidemiology, and directing strategies 
for future control and elimination efforts. Residing in 
malaria-endemic villages and male gender were signifi-
cant risk factors associated with asymptomatic malaria 
infection, with these individuals serving as human 
reservoirs for sustained malaria transmission. Conse-
quently, targeted control might effectively reduce those 
with asymptomatic infections and potentially decrease 
malaria transmission and prevent resurgences.
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