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Abstract 

Background:  Fecal microbiota transplantation (FMT) effectively prevents the recurrence of Clostridioides difficile 
infection (CDI). Long-term engraftment of donor-specific microbial consortia may occur in the recipient, but poten-
tial further transfer to other sites, including the vertical transmission of donor-specific strains to future generations, 
has not been investigated. Here, we report, for the first time, the cross-generational transmission of specific bacterial 
strains from an FMT donor to a pregnant patient with CDI and further to her child, born at term, 26 weeks after the 
FMT treatment.

Methods:  A pregnant woman (gestation week 12 + 5) with CDI was treated with FMT via colonoscopy. She gave 
vaginal birth at term to a healthy baby. Fecal samples were collected from the feces donor, the mother (before FMT, 
and 1, 8, 15, 22, 26, and 50 weeks after FMT), and the infant (meconium at birth and 3 and 6 months after birth). 
Fecal samples were profiled by deep metagenomic sequencing for strain-level analysis. The microbial transfer was 
monitored using single nucleotide variants in metagenomes and further compared to a collection of metagenomic 
samples from 651 healthy infants and 58 healthy adults.

Results:  The single FMT procedure led to an uneventful and sustained clinical resolution in the patient, who experi-
enced no further CDI-related symptoms up to 50 weeks after treatment. The gut microbiota of the patient with CDI 
differed considerably from the healthy donor and was characterized as low in alpha diversity and enriched for several 
potential pathogens. The FMT successfully normalized the patient’s gut microbiota, likely by donor microbiota transfer 
and engraftment. Importantly, our analysis revealed that some specific strains were transferred from the donor to the 
patient and then further to the infant, thus demonstrating cross-generational microbial transfer.

Conclusions:  The evidence for cross-generational strain transfer following FMT provides novel insights into the 
dynamics and engraftment of bacterial strains from healthy donors. The data suggests FMT treatment of pregnant 
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Background
The commensal bacterial community residing in the 
human intestinal tract has attracted much attention in 
recent years and may represent a novel therapeutic target 
in various disease states [1]. Disturbances of this micro-
bial ecosystem, e.g., by oral exposure to antibiotics, may 
disrupt the normal function of the microbiota potentially 
leading to acute expansion of opportunistic pathogenic 
bacteria [2]. A clinically important example of this is 
antibiotic-associated development of Clostridioides dif-
ficile infection (CDI), which accounts for approximately 
half a million infections per year in the USA alone [3] 
and thus represents a major healthcare challenge. Indeed, 
antibiotic treatment of infections carries an intrinsic risk 
of acquiring CDI, especially in vulnerable patient groups. 
This also explains the high recurrence rates observed fol-
lowing guideline-adherent treatment of patients with 
CDI, using vancomycin or fidaxomicin [4, 5]. In con-
trast, fecal microbiota transplantation (FMT) has proven 
exceptionally efficient to treat recurrent CDI with success 
rates ranging between 85 and 95% [6–10], underpinning 
the large potential of aiming at the microbiota as a thera-
peutic target, e.g., by re-establishing a rich and diverse 
ecosystem. The mode of action for FMT remains incom-
pletely understood, but the transfer and possible engraft-
ment of a microbiota from a healthy donor to a patient 
may prevent the recurrence of C. difficile via coloniza-
tion resistance or competition for nutrients, as well as 
through the production of bacteriocins, secondary bile 
acids, short-chain fatty acids, or other metabolites [11, 
12]. Additionally, donor-derived bacteriophages that are 
transferred to the recipient may also be involved [13]. 
Although consistent and defined bacterial consortia for 
CDI treatment are not yet available [14, 15], some ben-
eficial species are likely mediators of a successful FMT 
[16], including members from families Ruminococcaceae, 
Lachnospiraceae, Bacteroidaceae, Rikenellaceae, and 
Porphyromonadaceae [17–20].

Previous studies have shown that long-term engraft-
ment of bacterial communities (a transferable core gut 
microbiota) in the recipient may occur following FMT 
in patients with CDI [21, 22]. A recent study utilized 
metagenomic sequencing to track bacterial strains in 13 
longitudinal clinical FMT interventions and reported 
that 71% of donor microbiota strains persisted in the 
recipients 5 years after the FMT and concurrently 80% 

of pre-FMT strains were seemingly eradicated from the 
recipient microbiota [22]. These observations highlight 
the potential of establishing a stable intestinal bacte-
rial community in a patient with CDI, which to some 
extent results from transfer and engraftment in adult 
life. A consequence of this may be further transfer from 
the gut environment to other sites, including the verti-
cal transmission of donor-specific strains to future gen-
erations during birth and early life intestinal microbiota 
establishment—as the mother’s gut is the major source 
of an infant’s intestinal microbiota [23]. Such transfer 
could potentially also function as a novel approach to 
facilitate neonatal seeding, by first modulating the gut 
microbiota of the pregnant mother by FMT and then 
allowing natural transfer to the new-born, e.g., of 
important infant associated Bifidobacterium longum 
strains [24].

Pregnancy is considered a contraindication for FMT 
in most guidelines [25], and studies of FMT during 
pregnancy are scarce [6]. Only a single clinical case 
report has been published, reporting the success-
ful use of FMT during pregnancy for the treatment of 
CDI [26]. For this reason, vertical transmission of FMT 
donor-derived strains from the recipient patient to the 
newborn child has not previously been investigated. 
It is intrinsically challenging to unequivocally iden-
tify and track specific strains from the fecal donor as 
such strains may be very similar to conspecific strains 
already present in the patient before the FMT, which 
due to antibiotic treatment and/or CDI may be below 
the detection limit. A series of metagenomic tools have 
previously been developed to perform strain analysis 
either based on de novo assembling, reference database 
alignment, or statistical modeling of allele frequen-
cies [27]. Conspecific strain resolution requires higher 
sequencing depth than species-level detection, which 
poses a challenge as there is generally little overlap in 
the species that are abundant in the adult and infant 
breastfed gut. We therefore developed and bench-
marked a highly sensitive method based on allele fre-
quencies that enable us to track engrafting strains in 
small sample populations.

In the present case report, we demonstrate the ver-
tical transfer of donor strains to a recipient with later 
further transfer to the newborn infant. Based on the 
strain-level variation across individuals, we monitored 

women as a potential strategy to introduce beneficial strains or even bacterial consortia to infants, i.e., neonatal 
seeding.
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the potential microbial transfer from the feces donor 
to the patient and further to the infant by identifying 
single nucleotide variants (SNVs) in the metagenomic 
samples.

Materials and methods
The patient and the medical history
The patient was a Danish Caucasian woman, 29 years 
of age at the time of FMT treatment, and with no previ-
ous history of CDI. She became sick with diarrhea after 
having received oral V-Penicillin 2 mill IE three times/
day (Vepicombin® Novum, Takeda Pharma A/S, Taas-
trup, Denmark) for 3 days and metronidazole 500 mg 
three times per day for periodontal disease. One month 
later, she became pregnant, and shortly after, she started 
to show gastro-intestinal symptoms, including frequent 
soft and liquid stools. She was prescribed metronidazole 
for 8 days, but she failed to recover. A positive PCR test 
of C. difficile toxin-producing genes tcdA and tcdB [28] 
confirmed the diagnosis of CDI. Second-line treatment 
with vancomycin 125 mg four times per day for 2 weeks 
conferred transient improvement, but clinical symptoms 
relapsed less than a week after cessation. Sixteen days 
after the vancomycin treatment ended, the patient was 
therefore administered a single colonoscopic FMT treat-
ment at the Department of Hepatology and Gastroenter-
ology at Aarhus University Hospital (AUH), at a gestation 

time of 12 + 5 weeks. The patient recovered, had an une-
ventful pregnancy course, and later gave term birth to a 
healthy infant (Fig. 1 and Fig. S1).

Fecal microbiota transplantation
The anonymous feces donor was recruited from the Pub-
lic Blood Center at AUH. The donated feces was thor-
oughly screened for pathogens as previously described 
[29] and was mixed with sterile saline, filtered to remove 
large particles, mixed with glycerol, and stored at − 80 °C 
in portions in cryobags following standard procedures 
[30]. The FMT was administered in the lower gastroin-
testinal tract with a flexible tube (colonoscope) inserted 
into the rectum and reaching the terminal ileum. The 
fecal suspension was infused into the terminal ileum, 
cecum, and ascending colon. A donor feces suspension 
originating from approximately 50 g of fresh feces was 
transplanted during the FMT. After the FMT, the patient 
was observed for 1 h and thereafter with scheduled out-
patient follow-up.

Fecal samples
Fecal samples were collected from the patient during 
active CDI before the FMT (P-pre-FMT) and at 1 week 
(P1w), 8 weeks (P8w), 15 weeks (P15w), 22 weeks (P22w), 
26 weeks (P26w, at term), and 50 weeks (P50w, 6 months 
after giving birth) after the FMT (Fig. 1).

Fig. 1  Timeline indicating vancomycin treatment, FMT, sampling time points for the mother and infant. Sampling time was relative to FMT (for the 
patient) or time of birth (for the infant). Colors indicate samples from donor (red), patient (blue, with samples taken before FMT (P-pre-FMT) and at 1, 
8, 15, 22, 26, and 50 weeks after FMT), infant (green, with samples taken at birth (I0m) and at 3 and 6 months after birth), and an independent donor 
not used for the specific FMT (yellow). The patient vaginally delivered a healthy child at term, i.e., 26 weeks after the FMT
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Fecal samples were also collected from the infant 
at birth (I0m, meconium), 3 months old (I3m), and 6 
months old (I6m). The donor fecal material was also 
used for analysis. A fecal sample from a healthy donor, 
not used for the FMT of the patient, was included in the 
analysis and named “independent donor.” In total, twelve 
fecal samples were collected and investigated by shotgun 
metagenomic sequencing. Furthermore, metagenomic 
data from 651 healthy 1-year-old Danish infants [31] and 
58 healthy Danish adults [32] were included for compari-
son purposes.

DNA extraction and sequencing
DNA was extracted from 0.18–0.22 g of feces content of 
each sample with the DNeasy® PowerLyzer® PowerSoil® 
isolation kit (Qiagen) according to the manufacturer’s 
recommendations. The concentration of the extracted 
DNA was determined by fluorometric Quantification 
(Qubit 2.0 Fluorometer, Thermo Fisher Scientific) and 
stored at − 20 °C until use. Library preparation was pre-
formed using the Nextera XT DNA Library Preparation 
Kit (Illumina, Int., San Diego, CA, USA) according to the 
manufacturer’s recommendation, by the DTU in-house 
facility (DTU Multi-Assay Core (DMAC), Technical Uni-
versity of Denmark). Size confirmation of the target was 
performed on a Bioanalyzer DNA 1000 chip (Agilent 
Technology, CA), and the DNA concentration was deter-
mined with Qubit  2.0 Fluorometer. DNA libraries were 
mixed in equimolar ratios. Sequencing was performed as 
a 150-bp paired-end run on HiSeq 3000/4000 (Illumina 
Int., San Diego, CA USA) at Novogene Europe’s facility 
following the manufacturer’s recommendations.

Screening for Clostridioides difficile toxin genes
Analysis of fecal samples for the presence of C. difficile 
toxin genes was performed with SYBR-green-based 
quantitative PCR (qPCR). We used primers targeting 
the C. difficile toxin genes tcdA (F: AAT TTA GCT GCA 
GCA TCT GAC ATA G, R: TTC CCA ACG GTC TAG 
TCC AAT AG) and tcdB (F: GGA GAA TGG AAG GTG 
GTT CA, R: CTG GTG TCC ATC CTG TTT CC). The 
PCR reactions each contained 5.5 μl LightCycler® 480 II 
SYBR Green I Master (Roche Diagnostics A/S, Hvidovre, 
Denmark), 0.2 μM of each primer, and 2 μl template 
DNA in a total reaction volume of 11 μl. Reaction con-
ditions were as follows: initial 95 °C for 5 min, followed 
by 45 cycles of 95 °C for 10 s, 60 °C for 15 s, and 72 °C 
for 45 s. Finally, a melting curve was generated by gradu-
ally increasing the temperature (95 °C for 5 s, 68 °C for 1 
min and increasing the temperature to 98 °C with a rate 
of 0.11 °C/s with continuous fluorescence detection).

Gene catalog and metagenomic species definitions
As a reference gene catalog, we used the Clinical Micro-
biomics Human Gut HG04 gene catalog (14,355,839 
genes), which was created based on 12,170 non-public 
deep-sequenced human gut specimens (including 481 
from infants), 9428 publicly available metagenomes com-
piled from 43 countries [33], and 3567 publicly avail-
able genome assemblies from isolated microbial strains 
[34–36]. For taxonomic abundance profiling, we used 
the Clinical Microbiomics human-gut MGS catalog 
(HGMGS version HG4.D.1) with a set of 2095 metagen-
omic species (MGS), each represented by a set of genes 
with highly coherent abundance profiles and base com-
positions across the 12,170 metagenomes. The metagen-
omic species concept has been described previously [37].

To taxonomically annotate an MGS, we blasted its 
genes against the NCBI RefSeq genome database (2020-
01-27) and used rank-specific annotation criteria. Spe-
cifically, we assigned a taxon to an MGS if at least M % of 
its genes were mapped to the taxon and no more than D 
% of its genes were mapped to a different taxon. We only 
considered blast hits with an alignment length ≥ 100 bp, 
≥ 50% query coverage, and % identity ≥ PID. Here, we 
define PID = (95, 95, 85, 75, 65, 55, 50, 45); M = (75, 75, 
60, 50, 40, 30, 25, 20); and D = (10, 10, 10, 20, 20, 20, 20, 
15) for subspecies, species, genus, family, order, class, 
phylum, and superkingdom, respectively. Finally, we pro-
cessed each MGS with CheckM [38] and updated our 
annotation with the CheckM result if this resulted in a 
lower taxonomic rank.

Sequencing data preprocessing
Raw FASTQ files were filtered to remove host contami-
nation by discarding read pairs in which either read 
mapped to the human reference genome GRCh38 with 
Bowtie2 (v.2.3.4.1) [39]. Reads were then trimmed to 
remove adapters and bases with a Phred score below 20 
using AdapterRemoval (v.2.2.4) [40]. Read pairs in which 
both reads passed filtering with a length of at least 100 bp 
were retained; these were classified as high-quality non-
host (HQNH) reads. We obtained an average size of 9.0 
± 4.4 (mean ± standard deviation) Gbases for HQNH 
reads and achieved coverages ranging from 79.8 to 99.0% 
based on the Nonpareil 3 [41] (Fig. S2).

Mapping reads to the gene catalog
HQNH reads were mapped to the gene catalog using 
BWA mem (v.0.7.16a) [42]. An individual read was con-
sidered mapped to a gene if the mapping quality (MAPQ) 
was ≥ 20 and the read aligned with ≥ 95% identity over 
≥ 100 bp. However, if > 10 bases of the read did not align 
to the gene or extend beyond the gene, the read was 
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considered unmapped. Reads meeting the alignment 
length and identity criteria but not the MAPQ threshold 
were considered multi-mapped.

Each read pair was counted as either (1) mapped to a 
specific gene, if one or both individual reads mapped to 
a gene; (2) multi-mapped, if neither read was mapped, 
and at least one was multi-mapped; or (3) unmapped, 
if neither individual read mapped. If the two reads each 
mapped to a different gene, the gene mapped by read 1 
was counted but not the gene mapped by read 2. A gene 
count table was created with the number of mapped read 
pairs for each gene.

MGS relative abundance calculation
For each MGS, a signature gene set was defined as the 
100 genes optimized for accurate abundance and phylo-
genetic profiling of the MGS using a proprietary method. 
In short, signature genes are selected to be omnipresent 
among conspecific strains and distinct from any other gut 
organism, including uncharacterized species. Moreover, 
the genes show an even abundance-dependent mapping 
across 12,170 samples thereby allowing the detection of 
low abundant MGS. An MGS count table was created by 
counting the number of reads mapped to the MGS signa-
ture genes per sample. An MGS was considered detected 
if reads from a sample mapped to at least three of its sig-
nature genes; measurements that did not satisfy this cri-
terion were set to zero. Based on internal benchmarks 
using a set of samples down sampled to 10 million and 
subsequently to 250,000 reads, this threshold of 3 genes 
results in 99.6% specificity when comparing MGS detec-
tion in the shallow sample to the signal in the deep sam-
ple. The relative abundance of each MGS was calculated 
by normalizing the MGS count table according to effec-
tive gene length and then normalized sample-wise to sum 
to 100%.

Down-sampled (rarefied) MGS abundance profiles 
were calculated by random sampling, without replace-
ment, of a fixed number of signature gene counts per 
sample, and then following the procedure described 
above. In this study, 71,081 signature gene counts were 
sampled.

Phylogeny
SNVs were identified from all the alignments between 
sequencing reads and MGS-specific signature genes. 
BCFtools multiallelic-caller (v.1.11) was used to extract 
information about alleles for each position of the signa-
ture genes for the subset of alignments with a MAPQ ≥ 
30 [43, 44]. Bases with a base calling quality < 13 were 
filtered. All alternative alleles were kept while indels 
were filtered. The phylogenetic tree for an MGS was 
built based on the SNV data. For each MGS, the major 

strain DNA sequences across the 100 MGS signature 
genes were identified in the samples with at least 250 
reads mapping to the signature genes and where at least 
10 (10%) of the signature genes were detected. For each 
position along a signature gene, reads calling the ref-
erence allele and any other alternative allele (SNV). A 
minimum depth of at least 2 reads was required to call 
a position. If multiple alleles were observed for a posi-
tion, 98% of the reads had to call the same allele. If the 
allele frequency was below 98%, the position was said 
to be mixed and no allele was called. If more than 20% 
of the covered positions in a gene were mixed in a sam-
ple, the entire gene was unknown (corresponding to 
“N”) for that sample. The sample-specific inferred DNA 
sequences across the 100 signature genes were combined, 
and sequences were combined across samples to produce 
one multiple sequence alignments. The position which 
was not called in any sample (corresponding to “N”) were 
trimmed. Phylogenetic trees were inferred using IQtree2 
(v.2.1.2) [45, 46]. ModelFinder was used to select a substi-
tution model for each of the genes [47].

All trees were rooted using an outgroup of two 
MGS. The outgroup was selected as the two MGS 
that contained the highest number of genes that were 
homologous to the signature genes in the target MGS. 
Homologous genes (marker genes) shared between 
MGSs were identified by annotating all MGS genes at the 
protein level to PFAM and TIGRFAM protein families 
based on the homology search using INTERPROSCAN 
(v.5.50-84.0) [48]. Genes that were annotated to more 
than one PFAM or TIGRFAM family were excluded. Pro-
tein families detected more than once in an MGS were 
also filtered. Once the marker genes had been identified, 
these were aligned at the protein level using MAFFT 
(v.7.453) [49, 50]. The protein alignment was translated 
back to the nucleotide.

Strain level profiling
For tracking of strains, we used an approach imple-
mented at Clinical Microbiomics. The investigations 
were based on the identified signature gene SNVs from 
each sample for the MGSs that were detected in at least 
one infant sample. To track donor strain transfer to 
the patient and later to the infant, two different meth-
ods were implemented. Initially, we tried to distinguish 
between strains of the same species found in the patient 
prior to the FMT (P-pre-FMT) and in the donor, by 
identifying the polymorphic positions between the two 
samples (P-pre-FMT and donor). To reduce the effect of 
sequencing errors, these positions were filtered to have 
at least two reads coverage and an allelic frequency of 
at least 98%, which is in line with a previous study [51]. 
If 50 or more polymorphic positions could be found 
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between the two strains, the depths of each of the poly-
morphic positions were summed for all the other samples 
from the patient and infant. Furthermore, a total of 50 or 
more reads mapping to these positions were required for 
looking at the proportion of the different strains within a 
sample. We will refer to this part of the engraftment pro-
filing as the discriminative positions method (Fig. S3A).

Alternatively, when the pre-FMT strain could not be 
identified, either because it was absent or had insufficient 
data, we estimated the distance between the post-FMT 
strain and the donor strain and related it to phyloge-
netic distances estimated from gut microbiome samples 
from two Danish cohorts to detect strain transfers. The 
expected variation within each species was identified 
by creating phylogenetic trees for MGSs based on 709 
metagenomic samples from healthy, Danish infants (n = 
651) and adults (n = 58). The 1% percentile of all phy-
logenetic distances within the tree was identified and 
used as the maximum percentage of allowed dissimilar-
ity between the same strains to account for the fact that 
different species evolve at different rates [52, 53]. Phy-
logenetic distances correspond to the number of muta-
tion events per base and are therefore not necessarily 
the same as the observed number of dissimilarities but 
likely close. The observed dissimilarities between the 
donor and other samples, corresponding to “1—the aver-
age nucleotide identity (ANI),” were calculated based on 
all positions for an MGS with at least 2 reads coverage 
and 98% allelic frequency within a sample. Samples with 
an overlap of at least 1000 positions with the donor sam-
ple were included in the analysis. The donor strain was 
expected to be transferred to a sample if the fraction of 
dissimilar positions were smaller than the 1% percentile 
of all phylogenetic distances. This part of the engraft-
ment profiling is referred to as the percentage of identical 
alleles method (Fig. S3B).

To validate the results found with the two differ-
ent strain profiling methods, we created an arti-
ficial dataset with samples containing two strains 
(DSM 22959 [GCF_008000975.1] and JCM 30893 
[GCF_009731575.1]) of Akkermansia muciniphila iso-
lated from human feces. The whole genomes of these 
two strains were downloaded from NCBI, and the aver-
age nucleotide identity (ANI) between the two strains 
was assessed to be 98.69% using fastANI (v.1.1) [54]. 
Reads of 150 bp were simulated from the genomes with 
wgsim from samtools (v.1.9) [55], setting mutation rate 
and indel fraction to zero but using the default base 
error rate. FASTQ files were simulated with wgsim at 20 
times the coverage of one of the strains. bbmap (v.38.9) 
[56] reformat was used to downsize the FASTQ files to 
different coverages (20×, 10×, 4×, 2×, and 1×) and per-
centages (0%, 1%, 2%, 5%, 10%, 30%, 50%, 70%, 90%, 95%, 

98%, 99%, or 100%) of the strains. The FASTQ files from 
the two different strains were combined to contain a 
total of 100% within the same coverage. We applied both 
strain profiling methods to this dataset to evaluate their 
performance.

Analysis of short‑chain fatty acids
The short-chain fatty acids (SCFAs) in fecal samples were 
profiled with a gas chromatography-mass spectrometry 
(GC-MS) method specially targeted to SCFAs using a 
high polarity column. Briefly, 250–500 mg of feces was 
diluted with three times the volume (weight [g]/volume 
[μL]) of PBS (i.e., 750–1500 μL) and vortexed to make a 
slurry. Then, samples were centrifuged three times at 
16,000 g for 30 min. Thereafter, the supernatant was fil-
tered through Costar SpinX centrifuge filters 0.2 μm at 
the recommended top speed of 15,000 g for 2 min until 
clear. The obtained fecal water was stored at − 20 °C 
before analysis at MS-Omics (Vedbæk, Denmark). For 
analysis, samples were acidified using hydrochloride acid, 
and deuterium-labeled internal standards were added. All 
samples were analyzed in a randomized order. Analysis 
was performed using a high polarity column (Zebron™ 
ZB-FFAP, GC Cap. Column 30 m × 0.25 mm × 0.25 
μm) installed in a GC (7890B, Agilent) coupled with a 
quadropole detector (5977B, Agilent). The system was 
controlled by ChemStation (Agilent). Raw data was con-
verted to netCDF format using Chemstation (Agilent), 
before the data was imported and processed in Matlab 
R2014b (Mathworks, Inc.) using the PARADISe software 
described by Johnsen et al. [57].

Results
Clinical outcomes
Following the application of the FMT, all CDI-related 
symptoms (including frequent soft and liquid stools) 
alleviated within 24 h, and no adverse effects related 
to the FMT were observed. The C. difficile toxin genes 
tcdA and tcdB were detected in the patient’s feces prior 
to FMT (P-pre-FMT), but not in feces samples 1 week 
after the FMT nor at any subsequent sampling points 
(Fig. S4). No recurrence of CDI-related symptoms was 
recorded during the follow-up. The infant was fully 
developed and vaginally delivered at term and without 
complications. The infant was exclusively breastfed until 
4 months of age, when porridge and infant formula were 
gradually introduced alongside continued breastfeeding. 
The infant had no clinical signs of CDI during the study 
period, although both tcdA and tcdB genes were detected 
by qPCR at the age of 6 months (Fig. S4). Consistent 
with this observation, C. difficile was also detected by 
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metagenomic sequencing in samples P-pre-FMT (relative 
abundance 7.9 × 10−6) and I6m (6.7 × 10−5).

Gut microbiota composition differences 
between the donor, patient, and infant
The patient pre-FMT displayed a lower species/MGS 
richness than the donor and all later patient sampling 
time points (Fig. 2A). The infant at 3 and 6 months of age 
displayed even lower microbial richness, but the rich-
ness at birth was similar to that of the mother (Fig. 2A). 
A similar pattern was observed for Shannon diversity 
(Fig. 2A). To assess the changes in overall gut microbial 
community composition, we estimated the beta diver-
sity of gut microbiota at the species/MGS level based on 
Bray-Curtis distances visualized by principal coordinate 

analysis (PCoA) (Fig. 2B). The patient pre-FMT was well 
separated from all the post-FMT samples and the donor, 
which was also the case for the infant sampled at both 3 
and 6 months of age. Notably, the patient post-FMT sam-
ples were clustered together with those from the donor, 
the independent donor, and the infant at birth (meco-
nium) (Fig. 2B).

Next, we depicted the gut microbiota composition at 
the family level (Fig. 2C). Compared with the donor, the 
patient pre-FMT had marked lower relative abundances 
of Bacteroidaceae, Ruminococcaceae, Rikenellaceae, and 
higher relative abundances of Lachnospiraceae, Bifido-
bacteriaceae, Erysipelotrichaceae, Sutterellaceae, and 
Veillonellaceae. However, after FMT, the depleted fam-
ily pre-FMT were largely restored. The restoration of 

Fig. 2  Gut microbiota compositional differences between the donor, patient, and infant. A Alpha diversity (observed richness and Shannon 
diversity) for all subjects. B Beta diversity of all subjects based on the Bray-Curtis distance and visualized with principal coordinates analysis (PCoA). 
C The taxonomic composition for the top 20 families. Less abundant families were merged as “Others.” Fecal samples were collected from the donor 
and an independent (not-used) donor as well as from the patient during active CDI before the fecal microbiota transplantation (P-pre-FMT) and at 1 
week (P1w), 8 weeks (P8w), 15 weeks (P15w), 22 weeks (P22w), 26 weeks (P26w, at term), and 50 weeks (P50w, 6 months after giving birth) after the 
FMT. Fecal samples were collected from the infant at birth (I0m, meconium), 3 months old (I3m), and 6 months old (I6m)
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gut microbiota composition in the patient post-FMT 
could also be evidenced by the highly consistent micro-
bial differences in genus-level abundances between the 
patient pre-FMT and the donor, in comparison with the 
differences before and after FMT (average of all post-
FMT patient samples) (Fig. S5). The independent donor 
showed a different microbial composition compared to 
that of the actual donor, especially for families Bacteroi-
daceae and Rikenellaceae, which likely contributed to the 
distance in the ordination (Fig. S6).

Accompanying the microbiota shift, SCFAs also 
showed differential concentrations across samples 
(Fig. S7). The fecal concentration of most SCFAs was 
low in the patient before FMT compared with the 
donor and after the FMT treatment, i.e., butyrate, 
propionate, and valerate.

We further assessed the top 50 species having the 
highest variance in the relative abundances in the donor 
and patient before and after FMT (Fig. S8). Many of 
these species were abundant in patient pre-FMT and 
depleted in the donor and patient post-FMT, or vice 
versa. The patient pre-FMT carried higher relative 
abundances of putatively pathogenetic species, such 
as Clostridium innocuum (associated with extra-intes-
tinal clostridial infection) [58], Clostridium symbio-
sum (associated with colorectal adenocarcinoma) [59], 
Clostridium clostridioforme (involved in bacteremia) 
[60], Veillonella parvula (producing lipopolysaccha-
ride, which is the main virulence factor that leads to 
meningitis) [61], Flavonifractor plautii (associated with 
colorectal cancer) [62], and Ruminococcus gnavus (asso-
ciated with Crohn’s disease) [63].

Transfer of microbes at the species level 
between the donor and patient
We further assessed the gut microbiota dissimilarity 
between the patient and the actual donor or the inde-
pendent donor over time at the species/MGS level 
(Fig.  3A). The calculated Bray-Curtis distance between 
donor and patient was very large pre-FMT but was 
reduced dramatically 1 week after FMT and thereaf-
ter underwent a gradual increasing trend until week 50, 
except for an unexplained reduction at week 26. Com-
pared with the donor used for FMT, the independent 
donor generally had larger Bray-Curtis dissimilarities to 
the patient (Fig. 3A). Next, we estimated the proportion 
of shared species between the patient and the donor over 
time (Fig.  3B). Before the FMT, the patient had 64.5% 
of species common to the donor, while after FMT, the 
proportion increased to 90.8% at week 1 and remained 
higher albeit with a decreasing trend until 50 weeks after 
the FMT. The independent donor shared much fewer 
species with the patient (Fig. 3B).

To investigate the potential contribution sources of the 
bacteria identified in the patient after FMT, we strati-
fied the patient post-FMT gut microbiota into four cat-
egories, namely shared, donor-specific, recipient-specific, 
and newly detected (Fig.  3C, Fig. S9). We found that 
donor-specific species were the highest in percentage and 
accounted for 58.3% at week 1 and roughly remained sta-
ble during the study period. The following contributions 
were the shared, newly detected, and recipient-specific 
species (Fig.  3C). In comparison, when the independ-
ent donor was used in place of the actual donor in these 
analyses, the proportions of donor-specific and shared 
species were lower at all sampling time points. Also, we 
followed the transferred donor-specific species after 
FMT and found that over 80% of these could be suc-
cessfully transferred and maintained until 50 weeks (Fig. 
S10), much higher than the independent donor. Due to 
the transfer of donor-specific species, the patient post-
FMT was very different from the baseline (P-pre-FMT) 
in the gut microbiota composition based on the Bray-
Curtis dissimilarity (> 0.970) (Fig. S11), which is consist-
ent with the results in Fig. 2B.

Although the donor-specific species represented the 
largest proportion in number, their abundances were 
low (Fig. S12) and were largely from the families Bacte-
roidaceae, Lachnospiraceae, Clostridiaceae, and Rumino-
coccaceae. A full list of these transferred donor-specific 
species is shown in Fig. S13. Because the species with the 
highest abundances were present in both donor and pre-
FMT samples, we were unable to detect transfer at the 
species level for bacteria; therefore, a deeper level investi-
gation of microbial transfer was necessary.

Transfer of microbes at the strain level between the donor, 
patient, and infant
Due to subspecies heterogeneity in the human micro-
biome [53], the transfer of microbes was further inves-
tigated at the strain level based on the tracking of SNVs 
in the metagenomic data. Using these SNVs we were 
able to identify donor strains in two different ways. The 
first method (discriminative positions) estimated the 
relative abundance of the donor as well as the patient 
pre-FMT strain for those species that had sufficient cov-
erage in both the P-pre-FMT and donor strain to iden-
tify discriminative SNVs between them (Fig. 4A). When 
a species was detected in the donor sample but not in the 
P-pre-FMT sample or when it was too low abundant in 
the P-pre-FMT sample to identify discriminatory SNVs, 
the donor strains were tracked using the SNV-similarity 
between the post-FMT strain and donor strain in com-
parison to its similarity to strains identified from other, 
unrelated individuals (percentage of identical alleles, 
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example of the phylogeny base of this method in Fig. 4B). 
We found that both methods performed well, when eval-
uated on a mock dataset (Fig. S14).

When looking at the percentage of identical alleles, 
we could investigate the strain transfers for 120 differ-
ent species, which was close to half of all the species 
(241) detected in the donor sample. Of these 120 spe-
cies, 116 of them were also detected at the species level 
in one or more of the patient samples, and 99% of them 
(115/116 species) had strain transfer from the donor to 
the patient (Fig.  4C, Fig. S15). In addition, we observed 
alternative strains in one or more patient samples for 14 
of the species (Fig. S16). In the infant samples, we were 
able to detect 87 different species and found donor strain 

engraftment in 92% of these (80 species). However, of 
these 80 species, 87.5% (70 species) were only found in 
the meconium sample and much fewer donor strains 
were detected in the infant’s gut at later time points 
(3.8% [3/80] in the 3-month sample and 12.5% [10/80] in 
the 6-month infant sample) (Fig. S17). Interestingly, we 
found that when strains of the same species co-existed in 
the mother after the treatment, both strains were trans-
mitted to the infant as well (Fig. 4A).

Collectively, the strain transfers identified based on dis-
criminative alleles (Fig.  4A) were few but consistent and 
to some extent included in the strain transfers identified 
based on the percentage of identical alleles (Fig.  4C). For 
example, the strain transfer in the species Bifidobacterium 

Fig. 3  Transfer of donor microbes to the patient, estimated at the species level. A The Bray-Curtis distance between the patient and the donor or 
the independent (not-used) donor over time. B The proportion of species common to the patient and the donor or independent donor over time. 
C Contributions to the patient post-FMT gut microbiota. Possible sources were divided into four categories, namely donor-specific (species from the 
donor and not shared with the patient pre-FMT), shared (species common to donor and the patient pre-FMT), recipient-specific (species from the 
patient pre-FMT and not shared with the donor), and newly detected (species not included in the above categories, possibly from the environment 
or below the detection limit). Line types indicate the measurement was performed with the donor (solid) or the independent donor (dashed). 
Fecal samples were collected from the donor and an independent (not-used) donor as well as from the patient during active CDI before the fecal 
microbiota transplantation (P-pre-FMT) and at 1 week (P1w), 8 weeks (P8w), 15 weeks (P15w), 22 weeks (P22w), 26 weeks (P26w, at term), and 50 
weeks (P50w, 6 months after giving birth) after the FMT
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longum was confirmed by both methods, thus underscor-
ing an actual transfer event. Out of the 115 species where 
the donor strains showed engraftment in the mother, 82 
were also detected at the species level in at least one infant 
sample. For 79 of these 82 species engrafting the mother, 

the donor strain was also detected in the infant, indicating 
that most of the donor strains (96.3%) were transferred from 
mother to infant, although this is mostly based on the detec-
tion of donor strains in the meconium sample. Interestingly, 
we were able to detect a Bifidobacterium breve donor strain 

Fig. 4  Transmission of donor strains to the patient and maternal transmission to the infant. A The proportion of donor and pre-FMT patient strains 
from four different species detected in the infant at birth and 3 and 6 months after birth, based on discriminative positions. B The phylogenetic tree 
for HG4D.0018—Eubacterium rectale containing 246 strains identified from publicly available adult and infant samples from healthy Danes. Donor 
and patient samples are highlighted in blue and red, respectively. The phylogenetic tree highlighted in the box is the zoom of the bigger tree. C 
Detection of donor strain in patient and infant samples across 120 different species based on the percentage of identical alleles between strains 
identified in the donor and in the patient or infant samples. Fecal samples were collected from the FMT donor and an independent (not-used) feces 
donor as well as from the patient during active CDI before the FMT (P-pre-FMT) and at 1 week (P1w), 8 weeks (P8w), 15 weeks (P15w), 22 weeks 
(P22w), 26 weeks (P26w, at term), and 50 weeks (P50w, 6 months after giving birth) after the FMT. Fecal samples were collected from the infant at 
birth (I0m, meconium), 3 months old (I3m), and 6 months old (I6m)
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across all infant samples, even though we never detected 
it in the mother. B. breve is associated with the breastfed 
microbiome [24], and it is therefore expected that its abun-
dance would be higher in the infant than in the mother. Co-
existence of both the donor and maternal pre-FMT derived 
B. longum subsp. longum strains was observed in the infant. 
At 3 months of age, the donor strains were the dominant 
strain in the infant, while the maternal pre-FMT strain 
had become the vastly dominant strain at 6 months of age 
(Fig. 4A). Additional details for strain transfer findings are 
available in the supplementary material Section S1.

Discussion
The FMT treatment of the pregnant CDI patient reported 
here was successful and deemed necessary to ensure 
the health of both the patient and the unborn child. In 
addition to curing the patient, the procedure uniquely 
allowed us to investigate the potential cross-genera-
tional transfer of donor-derived microbiota from donor 
to patient and further to the infant. We demonstrate, at 
the strain level and for the first time, the vertical trans-
fer of donor fecal bacteria administered during routine 
FMT from a recipient mother to her later-born infant. 
This was achieved by analyzing SNV patterns from the 
metagenomic samples. Our results suggest the frequent 
presence of donor strains in both the patient samples 
(99% of donor strains) and infant meconium (92% of 
donor strains). Furthermore, the finding of a donor 
strain (B. breve) in the infant that was not detected in the 
mother suggests that some strains transferred from the 
donor remained below the detection level in the mother 
but were still passed on at birth (Fig.  4C). Interestingly, 
the dynamics of the B. longum strains originating from 
either patient (P-pre-FMT) or donor (Fig. 4A) indicated 
a dominance of the donor-derived strain in the infant at 
3 months, during exclusive breastfeeding, and later a shift 
to almost complete dominance of the mother derived 
strain at 6 months. The observed “strain sweep” may be 
linked to the introduction of complementary foods. The 
lower level of donor strain detection in the infant sam-
ples at 3 and 6 months after birth, compared to meco-
nium, could be explained by a high ecological selection 
pressure in the infant gut, e.g., due to human milk oligo-
saccharides (HMOs) [64], and only strains with suitable 
fitness will be present at detectable abundances. Also, 
it cannot be ruled out that physical contamination of 
meconium samples could have occurred during the sam-
pling process but perinatal transfer from the mother dur-
ing vaginal birth seems most likely [65]. Nevertheless, we 
were still able to detect donor strains in 12.5% of species 
in the infant samples at 6 months of age, indicating fre-
quent strain transfer and engraftment. The relatively high 
level of donor-derived strains in the infant at 6 months 

demonstrates the frequent cross-generational trans-
fer of newly introduced bacterial strains in the mother, 
considering the potential influences of maternal micro-
bial dysbiosis on the newborn [66], it indicates FMT as 
a potential strategy for neonatal seeding for instance 
FMT or probiotic treatment before delivery could nor-
malize maternal microbiota before birth and avoid 
“unhealthy” strain/community transfer to the infant. 
Such an approach would however need further validation 
in larger studies and should also include in-depth safety 
assessments of the donor-derived bacterial consortia to 
avoid long-term consequences of engrafting and spread-
ing potentially problematic strains in the gut community 
of the infant. The gut microbiome has been suggested to 
further mature until the age of 2.5 years [67]; thus, more 
long-term studies of donor strain engraftment in the 
child would be interesting to investigate in future studies.

Regarding the CDI, we observed substantial differ-
ences in the gut microbiota composition between the 
patient and the healthy donor. The gut microbiota in the 
patient pre-FMT was characterized by low alpha diver-
sity (Fig. 2A) and depletion of members in families Bacte-
roidaceae, Ruminococcaceae, and Rikenellaceae (Fig. 2C, 
Fig. S5), which is consistent with previous reports [17–
20]. Following FMT, the gut microbiota of the patient was 
normalized to a healthier status, which was evidenced by 
the increased alpha diversity and reduced dissimilarity to 
the donor (Fig. 2A, B). The patient pre-FMT was observed 
to harbor a reservoir of potential pathogens (Fig. S8); 
however, these pathogens were largely reduced by the 
FMT and thereafter represented similar abundances as in 
the donor. Together, this suggests that FMT successfully 
normalized the gut microbiota structure and potentially 
inhibited the growth of pathogens [12]. After FMT, the 
depleted families such as Bacteroidaceae, Rikenellaceae, 
and Ruminococcaceae were largely restored (Fig. 2C, Fig. 
S5), likely by direct transfer and engraftment (Fig. 3, Fig. 
S12). These families together with Lachnospiraceae have 
been suggested to be positively associated with FMT 
response [18, 68] and included strains, such as Bacte-
roides, Dorea, Roseburia, Alistipes, and Parabacteroides 
are beneficial for a successful FMT, potentially due to 
their ability to produce short-chain fatty acids [16, 18, 
69]. Consistently, we observed that FMT led to an over-
all increase in SCFAs (Fig. S7). Especially, the restoration 
of valerate by FMT potentially inhibited the growth of C. 
difficile and may have contributed to the clinical resolu-
tions [70].

Conclusions
We here present evidence for strain transfer from an 
FMT donor to a pregnant patient and further to her 
newborn baby. The findings substantiate the possibility 
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that introduced exogenous strains in the gut environ-
ment during FMT treatment may propagate across 
generations potentially facilitating a novel approach for 
modulating the intestinal microbiota.
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