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Quantifying the microstructural and macrostructural geometrical features of the human brain’s 

connections is necessary for understanding normal aging and disease. Here, we examine brain 

white matter diffusion magnetic resonance imaging data from one cross-sectional and two 

longitudinal data sets totaling in 1218 subjects and 2459 sessions of people aged 50–97 years. 

Data was drawn from well-established cohorts, including the Baltimore Longitudinal Study of 

Aging data set, Cambridge Centre for Ageing Neuroscience data set, and the Vanderbilt Memory 

& Aging Project. Quantifying 4 microstructural features and, for the first time, 11 macrostructure-

based features of volume, area, and length across 120 white matter pathways, we apply linear 

mixed effect modeling to investigate changes in pathway-specific features over time, and 

document large age associations within white matter. Conventional diffusion tensor microstructure 

indices are the most age-sensitive measures, with positive age associations for diffusivities and 

negative age associations with anisotropies, with similar patterns observed across all pathways. 

Similarly, pathway shape measures also change with age, with negative age associations for most 

length, surface area, and volume-based features. A particularly novel finding of this study is that 

while trends were homogeneous throughout the brain for microstructure features, macrostructural 

features demonstrated heterogeneity across pathways, whereby several projection, thalamic, and 

commissural tracts exhibited more decline with age compared to association and limbic tracts. 

The findings from this large-scale study provide a comprehensive overview of the age-related 

decline in white matter and demonstrate that macrostructural features may be more sensitive 

to heterogeneous white matter decline. Therefore, leveraging macrostructural features may be 

useful for studying aging and could facilitate comparisons in a variety of diseases or abnormal 

conditions.

Keywords

White matter; Aging; Tractography; Volume; Diffusion MRI

Introduction

To better understand changes related to normal aging, and differences due to disease, it is 

necessary to characterize how and where the brain changes with age. Studies using magnetic 

resonance imaging (MRI) have shown that the brain undergoes significant changes with 

age. Most studies focus on gray matter of the brain, where correlations between cortical 

volumes and age have been consistently described. These findings provide evidence of 

heterogenous patterns of normal age-related changes (Ramanoel et al. 2018; Terribilli et 

al. 2011; Bergfield et al. 2010; Taki et al. 2011; Giorgio et al. 2010; Zuo et al. 2021), 

with detectable differences in neurological diseases and disorders (Pfefferbaum et al. 1992; 

Kimmel et al. 2016; Wang et al. 2019; Jorge et al. 2021; Guo et al. 2014).

While white matter appears relatively homogenous on conventional structural MRI, 

diffusion MRI and subsequent fiber tractography enables investigation of individual fiber 

pathways of the brain. To date, most diffusion MRI studies of aging characterize features 

of tissue microstructure using cross-sectional data sets. For example, diffusion tensor 

imaging (DTI) shows fractional anisotropy (FA) is negatively associated with age, and 

mean diffusivity (MD) positively associated with age across white matter pathways (Abe 
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et al. 2008; Storsve et al. 2016; Yap et al. 2013; Lebel et al. 2012), and have shown 

that advanced multicompartment diffusion modeling also provides sensitive measures of 

age-related microstructural changes (Beck et al. 2021; Toschi et al. 2020; Chang et al. 2015; 

Cox et al. 2016), including measures of neurite volume fractions and dispersion (Beck et al. 

2021; Lawrence et al. 2021), diffusion restrictions (Lawrence et al. 2021), axon diameters 

(Fan et al. 2019), and measures of non-Gaussianity (Dong et al. 2020; Coutu et al. 2014). 

Microstructural features of these fiber pathways are biologically relevant in aging research 

as demyelination is thought to occur in a heterogeneous manner, whereby late-myelinating 

fiber pathways exhibit neurodegeneration prior to other fiber pathways. This idea, known 

as the myelodegeneration hypothesis, has recently been supported by a large-scale diffusion 

MRI study leveraging data from the UK Biobank (n = 7167) (Isaac Tseng et al. 2021). 

Specifically, they found disproportional age-related differences in fiber pathways projecting 

to/from the prefrontal cortex.

While diffusion-based microstructure has been widely studied in aging, the macrostructural 

features of these fiber pathways play a pivotal role along the aging continuum; however, they 

have yet to be studied. As recently described (Yeh 2020), these macrostructural properties

—descriptions of lengths, areas, and volumes—can be used to describe the geometrical 

and connectivity features of fiber bundles. The incorporation of these features into the 

study of aging and aging-related disorders could provide an additional avenue to elucidate 

the mechanisms driving white matter neurodegeneration. Given our prior knowledge, our 

hypothesis is that microstructural and macrostructural features will be disproportionately 

affected in fiber tracts projecting to/from the prefrontal cortex along the aging continuum.

To address our hypothesis, we will leverage three well-established cohorts of aging, 

including two longitudinal cohorts [Baltimore Longitudinal Study of Aging (BLSA) 

(Williams et al. 2019), Vanderbilt Memory & Aging Project (VMAP) (Jefferson et al. 2016)] 

and one cross-sectional cohort [Cambridge Centre for Ageing and Neuroscience (Cam-

CAN) (Taylor et al. 2017)]. Within these cohorts, automated state-of-the art tractography 

segmentation will be conducted within 120 white matter tracts, including association, 

limbic, projection (including thalamic and striatal), and commissural tracts. We will 

then quantify 11 macrostructural features within these tracts, and 4 previously described 

microstructural features, to determine if these metrics exhibit disproportionate age-related 

decline.

Methods

Data

This study used data from three data sets, summarized in Table 1, and contained a total 

of 1218 subjects and 2459 sessions of healthy subjects aged 50–97 years. All data sets 

were filtered to exclude subjects with diagnoses of mild cognitive impairment, Alzheimer’s 

disease, or dementia at baseline, or if they developed these conditions during the follow-up 

interval. Finally, data sets were filtered to focus on subjects aged 50+, due to limited samples 

sizes of each data set with subjects below 50 years.
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First, was the Baltimore Longitudinal Study of Aging (BLSA) data set, with 675 subjects 

scanned multiple times ranging from 1 and 8 sessions, and time between scans ranging from 

1 to 10 years, yielding a total of 1545 diffusion data sets. Diffusion MRI data was acquired 

on a 3 T Philips Achieva scanner (32 gradient directions, b value = 700 s/mm2, TR/TE = 

7454/75 ms, reconstructed voxel size = 0.81 × 0.81 × 2.2 mm, reconstruction matrix = 320 

× 320, acquisition matrix = 115 × 115, field of view = 260 × 260 mm). Second, was data 

from the Vanderbilt Memory & Aging Project (VMAP), with 187 subjects, scanned between 

1 and 4 sessions, with a total of 558 diffusion data sets. Diffusion MRI data was acquired on 

a 3 T Philips Achieva scanner (32 gradient directions, b value = 1000 s/mm2, reconstructed 

voxel size = 2 × 2 × 2 mm). Third, was data from the Cambridge Centre for Ageing 

and Neuroscience (Cam-CAN) data repository (Taylor et al. 2017) with 356 subjects, each 

scanned once using a 3 T Siemens TIM Trio scanner with a 32-channel head coil (30 

directions at b value = 1000 s/mm2, 30 directions at b value = 2000s/mm2, reconstructed 

voxel size = 2 × 2 × 2 mm). All human data sets from Vanderbilt University were acquired 

after informed consent under supervision of the appropriate Institutional Review Board. 

All additional data sets are freely available and unrestricted for non-commercial research 

purposes. This study accessed only de-identified patient information.

Processing

For every session, sets of white matter pathways were virtually dissected using two 

automated fiber tractography pipelines, TractSeg (Wasserthal et al. 2018) and Automatic 

Track Recognition (ATR) (Yeh et al. 2018). Two methods, based on different technological 

and anatomical principles of tractography segmentation were selected to emphasize 

generalizability of results across choices of different workflow (Schilling et al. 2021a).

Throughout the manuscript, TractSeg analysis is presented as primary results, and ATR as 

supplementary.

Briefly, TractSeg was based on convolutional neural networks and performed bundle-

specific tractography based on a field of estimated fiber orientations (Wasserthal et al. 2018). 

We implemented the dockerized version at (https://github.com/MIC-DKFZ/TractSeg), which 

generated fiber orientations using constrained spherical deconvolution with the MRtrix3 

software (Tournier et al. 2019). TractSeg resulted in 71 bundles, visualized in Fig. 1, 

including association, limbic, commissural, thalamic, striatal, and projection and cerebellar 

pathways.

ATR was performed in DSI Studio software using batch automated fiber tracking (Yeh et 

al. 2018). Data were reconstructed using generalized q-sampling imaging (Yeh et al. 2010) 

with a diffusion sampling length ratio of 1.25. A deterministic fiber tracking algorithm 

(Yeh et al. 2013) was used in combination with anatomical priors from a tractography atlas 

(Yeh et al. 2018) to map all pathways using inclusion and exclusion regions of interest. 

Topology-informed pruning (Yeh et al. 2019) was applied to the tractography with 16 

iterations to remove false connections. The Dockerized source code is available at http://

dsi-studio.labsolver.org. ATR resulted. In 49 bundles, visualized in. Supplementary Fig. 1, 

including association, limbic, commissural, thalamic, and projection pathways.
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For each session, and every pathway, several features were extracted. Four microstructural 

features included DTI metrics of FA, MD, radial diffusivity (RD), and axial diffusivity (AD). 

The 11 macrostructure-based features extracted from each pathway (details described in 

(Yeh 2020)) are based on length (mean length, span, diameter; units of mm), area (total 

surface area, total area of end regions; units of mm2), volume (total volume, trunk volume, 

branch volume; units of mm3), and shape (curl, elongation, irregularity; unitless). Summary 

descriptions and equations for all macrostructural features are shown in Table 2.

Quality control (QC) was performed to minimize possible false results due to acquisition 

issues or failure of tractography. For acquisition related QC, sessions were removed from 

analysis if the diffusion weighted correlation was less than 3 standard deviations away from 

the mean correlation (for each data set), or if signal slice dropout occurred in > 10% of 

slices (~3 slices). Individual bundles were removed from the analysis if the number of 

segmented streamlines was less than 3 standard deviations away from the mean number (for 

each pathway), or if the total number of streamlines was below 200 (indicating failure of 

tractography), and subjects were removed from analysis if > 20% of pathways failed QC. We 

note that this stringent QC still resulted in N > 1700 samples for all but 9 pathways. The 

total number of samples per data set is given in supplementary data (Supplementary Table 

1 and Supplementary Table 2), and a list of abbreviations for all 120 (71 + 49) pathways is 

given in the “Appendix”.

Analytical plan

To investigate the relationship between age and each WM feature, linear mixed effects 

modeling was performed, with each (z-normalized) feature, Y, modeled as a linear function 

of age, y = β0 + β1Age + β2Sex + β3TICV + β4CSFV + β5(1 + AGE|DATASET) + 
β6(SUB),, where subjects (SUB) were entered as a random effect (i.e., subject-specific 

random intercept), and subject sex (Sex), total intracranial volume (TICV), and CSF volume 

(CSFV) as fixed effects. In addition, we modelled the association between age and outcome 

variable as data set (DATASET) specific due to expected differences in MR protocols (Jones 

and Diffusion 2010; Farrell et al. 2007; Landman et al. 2007; Schilling et al. 2021c; Ning et 

al. 2020), and included a data set specific random slope and intercept. We note that the TICV 

utilized was calculated from the T1-weighted image from the baseline scan, and is scaled 

appropriately depending on units of the feature, Y (scaled by TICV/4pi)^(1/2) for area, and 

scaled by (3*TICV/4pi)^(1/3 for length).

Due to multiple comparisons, all statistical tests were controlled by the false discovery 

rate at 0.05 to determine significance. All results are presented as the beta coefficient of 

estimate ‘B1’, or in other words “the association of the feature ‘y’ with Age”, which (due to 

normalization) represents the standard deviation change in feature per year. These measures 

are derived for each pathway and each feature. Supplementary results additionally show the 

results as a percent change per year, derived from the slope normalized by the average value 

across the aging population (from 50 to 97), and multiplied by 100, which represents the 

percent change in feature per year.
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Results

Total intracranial volume, white matter, gray matter, and CSF

Supplementary Fig. 2 shows results of global changes in tissue volume. Total GM and 

WM tissue volumes decrease, along with increases in CSF volumes, in agreement with the 

literature. While GM, CSF, and global tissue volume are not the primary aims of this study, 

we did find significant age associations with these measures.

What changes and where?

To summarize association with age for all features and all pathways, we show the beta 

coefficient associations with age for all features in matrix form in Fig. 2, along with boxplots 

highlighting the percent change for all microstructure and all macrostructure features. 

Similar results, but shown as the percent-change-per-year from linear mixed effects models, 

are shown in Supplementary Fig. 3.

Most notably, microstructure measures show fairly homogenous changes across all 

pathways, with negative associations for FA, and again positive associations for diffusivities, 

with median association coefficients with age of − 0.02, and approximately + 0.02 to + 0.03, 

respectively (changes of − 0.2% per year, and +0.3–0.5% per year, respectively). In general, 

features of length, area, and volumes decrease with age, however, changes are heterogenous 

across pathways. Measures of volume (total volume, trunk volume, branch volume) show 

median associations across pathways of − 0.4, − 0.4, and − 0.4 (changes of − 0.9%, − 0.9%, 

and − 0.6% per year). Elongation show positive trends with age, while irregularity decreases 

with age.

Large commissural pathways (the body, splenium, and genu of the corpus callosum), as 

well as thalamic and striatal projections show the strongest negative trends of all features of 

size with age. In addition, a number of association fibers and fasciculi, including the SLF 

sub-components, ILF, FAT, MLF, and PAT of both hemispheres show trends with age for all 

shape features, with greater changes in volumes and area of end regions than mean lengths 

and spans.

Supplementary Figs. 4 and 5 show results from the ATR fiber tractography (for fit 

coefficients and percent-change per year, respectively), which indicate similar changes 

with age and in similar locations, with fit coefficients and percent-change per year 

of similar magnitudes. FA shows negative associations with age, diffusivities show 

positive associations, with microstructure measures associations similar across all pathways. 

Measures of volume show the greatest negative associations with age, with larger changes in 

the commissural and thalamic pathways.

Visualizing change

To visualize where these changes occur, Fig. 3 shows example streamlines, separated 

into association, limbic, commissural, thalamic, projection, and striatal pathways, with 

bundles colored using the previous colormaps, and only showing bundles with statistically 

significant changes (Fig. 3 shows the Beta coefficients from linear mixed-effects models, 
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Supplementary Fig. 6 shows results interpreted as percent-change per year). Notably, the 

changes in FA and MD are similar, with the corticospinal tract (CST) changing the least 

(yet still statistically significant) with age, and the forceps major and anterior thalamic and 

striatal radiations, which occupy a majority of frontal lobe white matter space, changing the 

most. Other pathways show relatively homogenous change across age. Volumes and End 

Region Areas show similar trends, with large changes in the frontal lobe pathways, large 

changes in white matter of the occipital lobe, and small (but statistically significant) changes 

in the pathways associated with motor and pre-motor regions. The mean length decreases 

at a much smaller rate per year, remaining statistically significant, with visual exceptions 

of AC (a small commissural pathway), and projection pathways (including striatal and 

thalamic) to the occipital lobe. Similarly, the left and right OR show increased length with 

age, which would be an intuitive result of increased CSF (i.e., larger ventricles), and thus a 

more tortuous path from occipital lobe to thalamus. Similar results, in similar locations, are 

confirmed using pathways segmented using ATR, and are shown in Supplementary Fig. 7 (as 

Beta coefficients) and Supplementary Fig. 8 (as percent-change per year).

Pathways of interest

To provide even more insight into the microstructural and macrostructural associations 

shown in this study, we have provided illustrations for a projection tract (i.e., anterior 

thalamic radiation, Fig. 4) and commissural tract (i.e., forceps minor, Fig. 5). For the 

anterior thalamic radiation (3D illustration in Fig. 4A), we found significant age-related 

decline in all four microstructural measures (Fig. 4B), in which there was a positive 

age-related association with MD (p = 3E-5), RD (p = 5E-5), and AD (p = 6E-4), and a 

negative association with FA (p = 3E-4). There were also several significant associations 

with macrostructural features for this tract. Figure 4C illustrates 4 of these associations, 

including volume (p = 1E-6), branch volume (p = 3E-3), surface area (p = 1E-7), and area 

of end regions (p = 0.02). Figure 5 illustrates the associations for the forceps minor tract, 

again demonstrating significant positive age-related associations with diffusivities, negative 

age-related associations with FA, and negative age-related associations with volume, surface 

area, and area of end regions.

As expected, plots of the microstructure features and LME best-fit lines in Figs. 4 and 

5 show considerable differences between data sets (Ning et al. 2020; Fortin et al. 2017; 

Mirzaalian et al. 2016). While less described in the literature (Schilling et al. 2021c), 

scanner effects are also introduced in the tractography macrostructural analysis, typically 

leading to data set-specific intercepts, however, with similar age-related slopes. These 

trends generalize to all pathways, for both microstructural and macrostructural features 

(see “Discussion”), justify the use of random effects in the LME model, and emphasize the 

generalizability of age-related trends across all data sets.

Discussion

Using a large, cross sectional and longitudinal data set, we analyze microstructural features 

and, for the first time, shape-based features, of WM pathways across age. We found that 

while microstructural features were globally sensitive to age-related decline, these measures 
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were largely homogeneous in their decline across the association, limbic, projection, 

thalamic, striatal, and commissural fibers. In contrast, we found that macrostructural 

features were non-uniform in their trends in age-related decline. In general, we found 

that, the thalamic and striatal fibers demonstrated the most age-related decline, followed 

the projection and commissural fibers, and finally association and limbic fibers. Thus, 

macrostructural features may be more specific in identifying age-related WM decline and 

could a more sensitive marker for neurodegenerative disorders compared to microstructural 

features.

Age-related microstructural decline

Trends seen in diffusion microstructure indices mirror that from existing literature (Lebel 

et al. 2012; Beck et al. 2021; Lawrence et al. 2021; Fan et al. 2019; Bigham et al. 2022; 

Ardekani et al. 2007; Lebel et al. 2008), which we have confirmed generalize to larger data 

sets, and across data sets with different scanners, vendors, and acquisitions. Diffusivities 

increase with age, with the largest change shown for radial, and mean diffusivities, and 

to a lesser extent, axial diffusivities. Consequently, this leads to a decrease in fractional 

anisotropy. This has traditionally been attributed to myelin loss and/or decreased axonal 

volume fractions and densities (Lebel et al. 2012; Cox et al. 2016; Lebel et al. 2008; Groot 

et al. 2015; Molloy et al. 2021; Nicolas et al. 2020), with supplemental evidence provided 

through advanced multicompartment modeling (Beck et al. 2021; Cox et al. 2016). However, 

care must be taken when interpreting these indices as highly specific markers of tissue 

microstructure, as diffusion (and DTI in particular) is sensitive to a number of potential 

biophysical changes (Wheeler-Kingshott and Cercignani 2009).

Towards this end, a wealth of microstructural models and diffusion representations have 

emerged in recent years, enabling quantitative measures of neurite densities (Lawrence et 

al. 2021), intra- and extra-cellular diffusivities (Beck et al. 2021; Lawrence et al. 2021), 

axonal dispersion (Lawrence et al. 2021), axon diameters (Fan et al. 2019), and diffusion 

non-Gaussianity (Lawrence et al. 2021; Dong et al. 2020), among others, which have 

been shown to be sensitive to age-related changes in white matter. While DTI is generally 

most sensitive to age-related changes throughout the entire white matter (Lawrence et al. 

2021), these other measures may not only be more specific to microstructure but may offer 

improved sensitivity within specific pathways. Here, 2 of our data sets (VMAP, BLSA) are 

single shell acquisitions and do not offer the ability to perform advanced modeling, but there 

is potential to further explore microstructural measures using other data sets, for example 

HCP-aging or UK-Biobank, that incorporate multiple diffusion weightings, in combination 

with the macrostructural features proven here.

As expected, the data sets used in this study showed large effects on quantified measures 

(Ning et al. 2020; Tax et al. 2019) due to differences in acquisition conditions (Farrell et al. 

2007; Landman et al. 2007; Jones and Basser 2004), although the same trends were seen 

across data sets, with only small differences in associations with age. Combination of data 

sets in analysis requires either accounting for these effects in modeling (as performed here) 

or harmonizing data across scanners and sites, which is an active area of interest (Ning et 
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al. 2020; Fortin et al. 2017; Mirzaalian et al. 2016). Harmonization studies can utilize these 

well-characterized effects of age as validation of techniques and algorithms.

Age-related macrostructural decline

While tractography has been used to study the human brain in aging, it is often used to 

simply extract pathway-specific indices of microstructure (or quantitative) measures. Here, 

we study shape-based features of tractography-defined bundles, quantifying basic features 

(e.g., length, diameter, volume) and more comprehensive features (e.g., curl, irregularity, 

elongation). We find that, indeed, the shape of white matter features changes with age. 

Notably, basic macrostructural features such as volume and total surface areas exhibit 

age-related decline, in agreement with the observed trend of a decrease in total white matter 

volume. Furthermore, more comprehensive measures, such as irregularity and elongation, 

show age-related changes such as an increased length-to-diameter ratio (elongation) that 

capture how the overall geometry is changing. While both length and diameter decrease, the 

space occupied by the pathway decreases at a faster rate. Length is constrained to connect 

one cortical region to another and is limited in how fast it can decrease while maintaining 

a connection, and in some cases may even increase to account for ventricular expansion. 

In contrast, axonal loss or overall white matter volume loss leads to the faster decreasing 

bundle diameter.

In our subsequent analysis to determine if there was heterogeneous age-related decline 

between the association, limbic, association, striatal, thalamic, and commissural tracts, we 

found widespread significant differences (see Fig. 2). For example, striatal and thalamic 

pathways generally show the largest age-related changes in volumes, surface areas, 

diameters, and even microstructure, followed by commissural, and finally projection, limbic, 

and association pathways (although even within these sub-types we find heterogenous 

changes). Age-related changes in dimensionless elongation (length ÷ diameter) or 

irregularity [surface area ÷ (π × diameter × length)] were relatively low in the association 

and limbic tracts but higher in projection, commissural, thalamic, and striatal pathways.

Our findings, therefore, indicate that specific white matter features can be used to identify 

age-related decline, and these features can also be incorporated into clinical populations to 

identify abnormal aging patterns. Future work should investigate different trends in disease 

cohorts, where this analysis facilitates asking “what changes?” and “where?”. This also 

results in the creation of a large feature space (10’s of pathways × 10’s of features) for each 

subject, which may facilitate machine learning, deep learning, and dimensionality reduction 

techniques to identify abnormalities in an individual subject or cohort. Similar analysis 

may also be used in an unsupervised fashion—rather than utilizing predefined bundles, a 

connectome-style approach can be used to extract every fiber bundle in a large connectome 

matrix followed by subsequent feature-based analysis of every edge in the connectome.

Like microstructure features, differences in data sets led to very different quantitative shape 

properties which are known to be affected by scanners, vendors, resolution, and acquisition 

settings (Schilling et al. 2021b; Rheault et al. 2020; Chamberland et al. 2018). In particular, 

the CAM–CAM shows the largest differences, likely due to the use of a multi-shell 

acquisition, and its effects on local reconstruction algorithms (Schilling et al. 2018; Daducci 
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et al. 2014; Fillard et al. 2011). The random effects of data set were most pronounced on the 

estimated feature intercepts, rather than slope, thus similar age-related trends are observed 

for all data sets, and generalize to all acquisitions. Future studies should utilize additional 

fiber tractography bundle segmentation algorithms, (Wasserthal et al. 2018; Winter et al. 

2021; Warrington et al. 2020; Guevara et al. 2012; Yendiki et al. 2011), based on different 

features of the signal and streamlines, which may include additional fiber pathways or may 

be more robust to data acquisition.

Global and local changes

In general, all pathways show consistent changes in tissue microstructure with age, 

indicating a largely global change in microstructure. In contrast, shape features of pathways 

show very different effect sizes and relative changes per year across the brain, which 

indicates local changes, and pathway-specific differences image. Overall, this suggests 

that microstructure features of pathways change together, and at relatively the same rates, 

whereas macrostructural features do not and indicate location-specific indices of change, 

whereby projection and commissural fibers exhibit more significant age-related decline. 

Thus, pathway features might be a more sensitive biomarker for differences due to disease or 

disorders.

It is possible to further refine localization specificity of the DTI based analysis using an 

along tract analysis, or along-fiber quantification (AFQ). Assigning microstructural indices 

to positions along a pathway enables analysis of age-related changes at certain positions 

within this pathway. While the novelty of this work is the study of multiple shape and 

geometrical macrostructural features of white matter across age, we did perform an AFQ 

analysis of our 4 microstructural features using a bundle analytics framework with LME 

modeling (Chandio et al. 2020), and show exemplar results for different pathway types 

in Fig. 6 (with AFQ of all pathways given is Supplementary Figs. 9–14). In general, 

microstructural changes are relatively consistent across an entire pathway, with notable 

exceptions in the CST (at the mid-brain) and callosal pathways (at the center-line). This 

nicely parallels the macrostructural analysis, with generally similar declines in volume 

in both the trunk and branches of the pathways. Future work should investigate specific 

locations within pathways that are sensitive to age-related changes, but also investigate 

possible AFQ-style analysis for shape-based features, for example along-pathway diameters 

or volumes.

Limitations

This study has several limitations. While we utilized large samples sizes and showed 

generalizability to very different aging data sets, results were tested on just one bundle 

segmentation algorithm. In addition, many pathways were investigated, significantly more 

than is typical for many studies on aging, and many of these pathways are smaller 

association pathways that may be harder or more variable to track. Nevertheless, the large 

sample size facilitated statistical analysis and findings with small effect sizes. The use of 

different data sets with different acquisitions is known to result in very different quantitative 

indices, and in the current study, very different tractography results. However, we consider 
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this an advantage to the current study, where results generalized across all data, and effect of 

data set was included in modeling.

Future studies should investigate and characterize shape changes across the lifespan. This 

may be particularly relevant in childhood, where large changes in brain structure and 

microstructure are expected. Second, the combination of shape and microstructure features 

in disease should be investigated. There is a significant body of research on DTI changes 

in disease, and it is intuitive that the shape, location, and geometry of pathways may 

also experience significant alterations in such states. Finally, the relationship between GM 

regions and WM structure should be investigated. The full feature space of GM volume, 

thickness, and surface area, in combination with WM macrostructure and microstructure 

features, will facilitate a complete description of changes in the brain during aging.

Conclusions

We provide a comprehensive characterization of WM changes in aging. Using large cross-

sectional and longitudinal diffusion data sets, we have shown that both microstructural 

and macrostructural geometrical features of the human brain change during normal aging. 

Microstructural indices of anisotropy and diffusivity show the largest effects with age, with 

global trends apparent across all pathways. Macrostructural features of volume, surfaces 

areas, and lengths also change with age, with trends that are not uniform across all 

pathways. Thus, tract-specific changes in geometry occur in normal aging. Results from this 

study may be useful in understanding biophysical and structural changes occurring during 

normal aging and will facilitate comparisons in a variety of diseases or abnormal conditions.
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Appendix

The bundles resulting from each segmentation pipeline are given as a list below, with 

acronyms used in the text.
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TractSeg: Arcuate fascicle left (AF_L); Arcuate fascicle right (AF_R); Anterior Thalamic 

Radiation left (ATR_L); Thalamic Radiation right; (ATR_R); Commissure Anterior 

(CA); Rostrum (CC_1; Genu (CC_2); Rostral body (Premotor) (CC_3); Anterior 

midbody (Primary Motor) (CC_4); Posterior midbody (Primary Somatosensory) (CC_5); 

Isthmus (CC_6); Splenium (CC_7); Corpus Callosum—all (CC); Cingulum left (CG_L); 

Cingulum right (CG_R); Corticospinal tract left (CST_L); Corticospinal tract right 

(CST_R); Fronto-pontine tract left (FPT_L); Fronto-pontine tract right (FPT_R); Fornix 

left (FX_L); Fornix right (FX_R); Inferior cerebellar peduncle left (ICP_L); Inferior 

cerebellar peduncle right (ICP_R); Inferior occipito-frontal fascicle left (IFO_L); Inferior 

occipito-frontal fascicle right (IFO_R); Inferior longitudinal fascicle left (ILF_L); Inferior 

longitudinal fascicle right (ILF_R); Middle cerebellar peduncle (MCP); Middle longitudinal 

fascicle left (MLF_L); Middle longitudinal fascicle right (MLF_R); Optic radiation 

left (OR_L); Optic radiation right (OR_R); Parieto-occipital pontine left (POPT_L); 

Parieto-occipital pontine right (POPT_R); Superior cerebellar peduncle left (SCP_L); 

Superior cerebellar peduncle right (SCP_R); Superior longitudinal fascicle III left 

SLF_III_L); Superior longitudinal fascicle III right (SLF_III_R); Superior longitudinal 

fascicle II left (SLF_II_L); Superior longitudinal fascicle II right (SLF_II_R); Superior 

longitudinal fascicle I left (SLF_I_L); Superior longitudinal fascicle I right (SLF_I_R); 

Striato-fronto-orbital left (ST_FO_L); Striato-fronto-orbital right (ST_FO_R); Striato-

occipital left (ST_OCC_L); Striato-occipital right (ST_OCC_R); Striato-parietal left 

(ST_PAR_L); Striato-parietal right (ST_PAR_R); Striato-postcentral left (ST_POSTC_L); 

Striato-postcentral right (ST_POSTC_R); Striato-precentral left (ST_PREC_L); Striato-

precentral right (ST_PREC_R); Striato-prefrontal left (ST_PREF_L); Striato-prefrontal 

right (ST_PREF_R); Striato-premotor left (ST_PREM_L); Striato-premotor right 

(ST_PREM_R); Thalamo-occipital left (T_OCC_L); Thalamo-occipital right (T_OCC_R); 

Thalamo-parietal left (T_PAR_L); Thalamo-parietal right (T_PAR_R); Thalamo-postcentral 

left (T_POSTC_L); Thalamo-postcentral right (T_POSTC_R); Thalamo-precentral 

left (T_PREC_L); Thalamo-precentral right (T_PREC_R); Thalamo-prefrontal left 

(T_PREF_L); Thalamo-prefrontal right (T_PREF_R); Thalamo-premotor left (T_PREM_L); 

Thalamo-premotor right (T_PREM_R); Uncinate fascicle left (UF_L); Uncinate fascicle 

right (UF_R).

ATR: Arcuate_Fasciculus_L (AF_L); Arcuate Fasciculus R (AF_R); Cortico Spinal Tract 

L (CST_L); Cortico Spinal Tract R (CST_R); Cortico Striatal Pathway L (CS_L); 

Cortico Striatal Pathway R (CS_R); Corticobulbar Tract L (CBT_L); Corticobulbar 

Tract R (CBT_R); Corticopontine Tract L (CPT_L); Corticopontine Tract R (CPT_R); 

Corticothalamic Pathway L (CTP_L); Corticothalamic Pathway R (CTP_R); Inferior 

Cerebellar Peduncle L (ICP_L); Inferior Cerebellar Peduncle R (ICP_R); Inferior Fronto 

Occipital Fasciculus L (IFOF_L); Inferior Fronto Occipital Fasciculus R (IFOF_R); Inferior 

Longitudinal Fasciculus L (ILF_L); Inferior Longitudinal Fasciculus R (ILF_R); Optic 

Radiation L (OR_L); Optic Radiation R (OR_R); Middle Longitudinal Fasciculus L 

(MdLF_L); Middle Longitudinal Fasciculus R (MdLF_R); Uncinate Fasciculus L (UF_L); 

Uncinate Fasciculus R (UF_R).
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Fig. 1. 
We investigated microstructure and macrostructure features of 71 pathways virtually 

dissected using TractSeg (Wasserthal et al. 2018), visualized and organized into association, 

limbic, commissural, thalamic, striatal, and projection and cerebellar pathways
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Fig. 2. 
What and where changes occur during aging. The beta coefficient from linear mixed 

effects modeling is shown as a matrix for all features across all pathways, and also shown 

as boxplots for both microstructural features (left) and macrostructural features (right). 

Boxplots are shown separated by pathway types. Results are shown for TractSeg-derived 

pathways
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Fig. 3. 
Bundle-based visualization of associations with age. Bundles that have significant 

associations with age are colored based on Beta-association coefficient from linear mixed-

effects models, for 5 selected features. Only those with statistically significant change with 

age are displayed. Results are shown for TractSeg-derived pathways
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Fig. 4. 
Example microstructural and macrostructural associations for a projection white matter tract. 

A 3D illustration of the anterior thalamic radiation (ThA) is shown (A), as it exhibited 

significant microstructural (B) and microstructural decline (C). For each microstructural and 

macrostructural plot, colored datapoints and lines represent individual cohorts
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Fig. 5. 
Example microstructural and macrostructural associations for a commissural white matter 

tract. A 3D illustration of the forceps minor (CCfmin) is shown (A), as it exhibited 

significant microstructural (B) and microstructural decline (C). For each microstructural 

and macrostructural plot, colored datapoints and lines represent individual cohorts
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Fig. 6. 
Along-tract analysis for example association, commissural, thalamic, limbic, projection, and 

striatal pathways. Streamlines are color coded red-to-blue based on position along pathway, 

while plots show beta coefficient from linear mixed modelling for FA, MD, AD, and 

RD. Following the bundle analytics framework (Chandio et al. 2020), positions that show 

significant age-related effects at a significance level of p < 0.001 are marked with circles
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