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Abstract

Thousands of chemical properties can be calculated for small molecules, which can be used to 

place the molecules within the context of a broader “chemical space.” These definitions vary 

based on compounds of interest and the goals for the given chemical space definition. Here, we 

introduce a customizable (i.e., modular) Python module, chespa, built to easily assess different 

chemical space definitions through clustering of compounds in these spaces and visualizing trends 

of these clusters. To demonstrate this, chespa currently streamlines prediction of various molecular 

descriptors (predicted chemical properties, molecular substructures, AI-based chemical space, and 

chemical class ontology) in order to test 6 different chemical space definitions. Furthermore, we 

investigated how these varying definitions trend with mass spectrometry (MS)-based observability, 

i.e., the ability of a molecule to be observed with MS (e.g., as a function of the molecule 

ionizability), using an example data set from the U.S. EPA’s Non-Targeted Analysis Collaborative 

Trial (ENTACT), where blinded samples had been analyzed previously, providing 1,398 data 

points. Improved understanding of observability would offer many advantages in small molecule 

identification, such as (i) a priori selection of experimental conditions based on suspected sample 

composition, (ii) the ability to reduce the number of candidate structures during compound 

identification by removing those less likely to ionize, and, in turn, (iii) a reduced false discovery 

rate and increased confidence in identifications. Factors controlling observability are not fully 

understood, making prediction of this property non-trivial and a prime candidate for chemical 

space analysis. Chespa is available at github.com/pnnl/chespa.
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INTRODUCTION

The discipline of metabolomics seeks to confidently identify and quantify (i.e. measure) the 

entire small molecule composition of a given sample. The composition and complexity of a 

metabolome can be described by placing the representative compounds within the context of 

a broader “chemical space.” Chemical space is the multidimensional space defined by a set 

of descriptors, in which each dimension is represented by either empirical or computational 

descriptors, and compounds are placed in this space based on their property values compared 

to all other molecule property values.1 Thousands of molecular properties can be calculated 

for a single compound using the wide range of cheminformatics, machine learning, and 

quantum chemistry-based software currently available.2–4 Although historically scientists 

have tended toward chemical property-based chemical spaces, the descriptors that define a 

chemical space do not have to be solely based on chemical properties. A chemical space 

can be built using principal components from a principal component analysis (derived from 

many sources, including traditional properties), latent vectors from artificial intelligence-

based latent space, ontological categorization of the compounds, substructure enumeration, 

and others. Due to the nature of how chemical space is defined, the size of the space 

depends on how many descriptors are chosen, how many molecules are used to define 

that space, and other limitations placed on it. For example, it is estimated that there are 

over 1060 compounds in druglike chemical space, which is only one example of a limited 

chemical space (e.g., in this case, small molecules made up of only carbon, nitrogen, 

oxygen, and sulfur atoms5), yet other chemical spaces are estimated to expand beyond 10100 

compounds.6

These spaces are useful for researchers in many ways, including to explore the 

metabolome,7–8 search the space of lead-like compounds for potential drugs,9–10 generate 

new compounds to fill gaps in the space,11–13 and predict properties of molecules.14–16 

There are tools available that can easily visualize various definitions of chemical space,17 

generate novel compounds,11, 18 and predict their associated properties,18 but there are 

still many gaps in the field of chemical space analysis. Most chemical spaces created to 

date are focused on a small set of molecules in order to find new structures with similar 

properties,19–20 and so larger chemical spaces have not yet been fully explored. It is 
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important to analyze these larger chemical spaces as there are unpopulated areas within 

them that could contain valuable chemical information,21 although, to date, there have not 

been many tools to automate chemical space analysis. Tools that have been made available 

to date are not open-access, open-source, nor built to assess any given chemical space.22

Toward this end, we introduce a Python module, chespa, that can be used to assess 

compounds based on varying definitions of chemical space. Specifically, chespa provides an 

adjustable framework for expansive chemical space analysis, which in this first instantiation 

provides automation of chemical space based on predicted chemical properties, molecular 

substructures, AI-based chemical space, and chemical class ontology. For each of these 

different chemical space aspects, as an initial implementation, we based our chemical 

property-derived chemical spaces on principal component analysis (PCA) of properties 

from ChemAxon, three substructure-based chemical spaces (one based on Open Babel’s23 

MACCS and two from SPECTRe24), our AI-derived chemical space on a recent variational 

auto-encoder, DarkChem,18 and our initial chemical class ontology on ClassyFire.25 

However, chespa was built so other chemical spaces, properties, ontologies, and AI-based 

methods could be easily incorporated in the future. This module was designed to automate 

clustering of compounds based on where they fall across these varying chemical space 

definitions, assess how each definition of chemical space performs, and use this information 

to investigate trends in measurable chemical properties.

One such property that can be investigated using chemical space is mass spectrometry 

(MS)-based observability: the ability to use MS to detect a compound given some set 

of experimental conditions. The observability of a molecule using MS is highly variable 

as it can vary according to the innate ionizability of a compound, MS instrument 

sensitivity, sensitivity of connected instrumentations (e.g. ion mobility spectrometry; IMS), 

matrix effects (e.g. influences of concentration, other compounds present), chromatography 

techniques (e.g. mobile phase composition, flow rate), ionization source parameters (e.g. 

temperature, voltage) and general treatment of the output data (post-processing and adducts/

multimers searched for).

Here, we show an example use of chespa: analysis of molecule observability in the set of 

blinded complex mixtures created for the U.S. Environmental Protection Agency’s (EPA) 

Non-Targeted Analysis Collaborative Trial (ENTACT),26 a study focused on testing current 

metabolite identification techniques. Previously,27 we studied these samples and provided 

evidence of presence for compounds in the samples based, in part, on m/z and collision cross 

section (CCS) values collected using electrospray ionization (ESI) coupled with IMS-MS. 

In this paper, we use the information from 545 true positives and 853 true negatives (as 

confirmed by the EPA after unblinding) and present our findings on how our instrumentation 

performed with these samples when focusing on protonated, deprotonated, and sodiated 

adducts.

Our goal here is to describe chespa, demonstrate its application for a simple dataset, and lay 

the foundation for rigorous assessment of various properties in order to better understand 

observability. We provide chespa as an open source Python module, and all code and data 

reported for this analysis is available at github.com/pnnl/chespa, complete with a Binder28 
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(an open-source sharable, executable environment available online) and working data for 

easy testing and exploration.

METHODS

chespa.

Chespa is a Python module made to streamline calculation of chemical descriptors and 

chemical spaces, perform and assess clustering of molecular sets in chemical spaces, 

compare differences between chemical spaces, and generate plots to evaluate and visualize 

the results. Chespa combines the functionality of several disparate pre-existing and custom 

in-house tools, in order to facilitate chemical space analysis of large sets of molecules. 

Chespa consists of 4 scripts that assist in the prediction of chemical descriptors described 

here (i.e. wrappers for DarkChem, ClassyFire, ChemAxon, and SPECTRe, though it should 

be noted these tools are not included as part of chespa and must be downloaded separately), 

2 scripts that aid in chemical space data processing and plotting, and 2 interactive Jupyter 

Notebooks (v6.0.1) that assist in piecing together the analysis workflow. The architecture of 

chespa was designed so that new or custom tools can be easily added. Note, unlike the other 

tools used here, ChemAxon does require a license to access all functionality, but licenses are 

typically free for academic users. Alternatively, ChemAxon can be easily swapped out for a 

different property calculator. To lead the interested reader through each step of chespa-based 

analysis shown in this application note and associated Supplemental Information, a Binder28 

was created. This Binder enables full testing of chespa through the browser, and the link 

to launch it is available in the GitHub repo (github.com/pnnl/chespa). Because chespa is 

available online using this platform, their servers can be used for processing; however, to 

save any modifications made to this environment, a local downloaded copy is required. 

As can be seen in this Binder, Python 3.7.6 (and it’s standard library) was used alongside 

numpy (v1.16.5),29 scikit-learn (v0.21.3),30 bmdcluster (v0.3.1),31 and pandas (v0.25.1),32 

for data processing. RDKit (v2020.03.2),33 seaborn (v0.9.0),34 and matplotlib (v3.1.1)35 

were used for generating figures.

Timings for this tool and the calculators we use in this paper are available in Table S1. It 

should be noted that there is no inherent limit in the number of compounds or dimensions 

that can be run through chespa, but increasing the number of dimensions for any given 

chemical space will increase the time required for this tool to run, and should be considered 

during selection of chemical descriptors while also considering the number of compounds, 

the user’s own computational resources, and allowable processing time.

Example Dataset.

Experimental data was collected from the analysis of 10 samples provided through the 

ENTACT study.26 Full experimental details are provided in Nunez et al.27 All samples were 

analyzed with an Agilent 6560 drift tube IMS coupled with a quadrupole time-of-flight 

mass spectrometer36–37 using ESI in both positive and negative ionization modes. During 

this analysis, we labeled compounds as present or not present based on a scoring metric 

output by the Multi-Attribute Matching Engine (MAME). Here, we refer only to the 545 

compounds that were “observed” in our analysis (i.e., true positives; meaning labeled as 
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present and confirmed by the EPA that they were spiked into the given sample), and 853 that 

were “not observed” (i.e., true negatives; meaning no evidence was found of their presence) 

by ESI after scoring optimization. Example data is shown in Figure S1.

The EPA’s ToxCast library was provided as a suspect library for the ENTACT challenge. 

For the analysis of samples described above, we processed compounds in this library to 

their expected most “ionizable” form (desalted, neutralized, major tautomer). This modified 

library, composed of 4,346 compounds, is used here and refered to as our suspect library.

Data Preparation.

Properties were added to the suspect library using chespa. ClassyFire,25 a web-based, 

automated chemical classification tool, was used to define the superclass of each compound. 

DarkChem18 latent space vectors were also added as LS1-128 (representing the 128 

dimensions used to define its latent space). Helper functions are included in chespa to 

facilitate the calculation of these properties (helper_darkchem.py and helper_classyfire.py).

A chemical space (here, called the Property Chemical Space; PCS) was defined 

previously,18 and was built from ~91 million compounds and 10 chemical properties. To 

fit the ENTACT suspect library into this space, the same properties were calculated for these 

compounds. Five were calculated with ChemAxon’s cxcalc (v18.8.0): ring bond percent, 

pKa of the most acidic atom, logP, Harary index, and Balaban index. The remaining 

5 were exact (monoisotopic) mass and atom ratios (N/H, N/C, O/H, and O/C). These 

ratios were calculated using formula-processing code (formula_module.py) and molmass.py/

elements.py (which were provided by Christoph Gohlke at the University of California, 

Irvine). All of this code is made available as part of chespa. Once these properties were 

calculated, compounds were placed into PCS using PCS’s chemical property averages and 

standard deviations and principal component analysis (PCA) results. First, mean imputation 

was performed using the averages calculated for the PCS. Then, data for each property was 

normalized by dividing by the standard deviation of its respective variable in the PCS and 

subtracting the average of its respective variable in the PCS. Principal components from 

the PCS were then used to transform this data and calculate the 10 principle component 

variables, PC1-10. See Supporting Data for all calculated values and the code provided with 

this paper (specifically, helper_chemspace.py for streamlined prediction of these values). 

All PCS variables described here are also available in the repository shared with this paper 

(located in data/pca).

Substructures were found using Open Babel’s MACCS fingerprints (166 pre-defined 

substructures).23 These were then converted into a binary matrix, where each row represents 

a compound and each column represents a substructure. Cells are filled with a 1 if the 

given substructure was found in that compound, and a 0 if not. Empty columns (meaning no 

compound in the suspect library contained that given substructure) were removed.

Substructures were also found using SPECTRe, a Python tool that applies the concept of 

subgraph isomorphism in chemical search to find all substructures in a given compound, 

regardless of the substructure size.24 A helper function is provided to aid in the generation of 

these substructures (helper_substructures.py). Data here is similar to that used for MACCS 
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(a binary matrix), except the number of substructures is not pre-defined, all substructures 

found for the suspect library are used.

Clustering.

Scikit-learn’s (v.0.16.1)38 KMeans class, provided in the chespa cluster module, was used 

for clustering Property Chemical Space PC vectors (PC1-10) and DarkChem latent space 

vectors (LS1-128). Default parameters were used except the random_state was set to 

10. Silhouette analysis, also available as part of Scikit-learn, was used to determine the 

appropriate number of clusters (n_clusters).39 For substructures, clustering was performed 

using Python package bmdcluster,31 due to this data being binary.

RESULTS AND DISCUSSION

Grouping and Clustering.

Property chemical space clusters (referred to here as ChemSpace clusters) were produced 

by first fitting compounds from the suspect library into the chemical space defined18 then 

clustered using KMeans. The chemical space covered by compounds from the suspect 

library, and the first 2 principal components (covering 51% variance), is shown in Figure 

1. Silhouette analysis was performed and 8 clusters was deemed the best balance between 

the number of groups and group sizes (Figure S3). A complete breakdown of the number of 

compounds in each of these clusters (and following groups/clusters), given the full suspect 

library or only spiked in, observed, or not observed compounds, is shown in Figure S4. 

Statistics on the distribution and sizes of these clusters (and following discussed in this 

section) are available in the Supporting Information (SI RD1).

For the DarkChem clusters, silhouette analysis was performed again (Figure S5) and 8 

clusters was deemed the best balance between the number of groups and group sizes.

In the case of ClassyFire, due to being a single categorical column, the top 7 most 

commonly found superclasses in the suspect library were labeled ClassyFire Superclass 

groups 1–7. Compounds that fell into any other superclass, or that were left unlabeled 

(ClassyFire is based on classifications used in the literature in the past, so not all compounds 

receive a label at all levels of the provided hierarchy), were placed into an eighth group. This 

total number of groups was desirable due to the results from Property Chemical Space and 

DarkChem.

Since SPECTRe is not limited by substructure size, or a pre-defined list, 5,502,426 

substructures were found for this suspect library. To reduce sparse data, substructures that 

were represented in less than 1% of the suspect library were removed, leaving 1,288 total 

substructures. Again, due to the results from Chemical Space and DarkChem Substructure 

clusters, 8 clusters were used when producing clusters based on MACCS and SPECTRe 

substructures.

As a quick look into the molecular structures each of these groups/clusters are composed of, 

5 randomly chosen representative compounds falling into each of them is shown in Figure 2 

and Figure S6-S10.
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Analysis of Trends in Observability.

The distribution of compounds in each of these groups/clusters was compared to find 

potential trends for molecules that could and could not be observed (Figure 3). Relative 

difference and the number of members in each cluster were also used to investigate 

differences between the amount of compounds observed or not for each cluster (Figure 

S11). To show how the distributions of compounds in each cluster look in respect to only 

those compounds observed, a similar figure was created using the number of total observed 

compounds (rather than spiked in) as the denominator for compounds observed with (+)

−ESI and (−)−ESI (Figure S12). Combined results for compounds observed by either (+)

−ESI or (−)−ESI (i.e., a view into how ESI performed in general) are also shown in Figure 

S13. Analysis was also done for the 6 maximum substructures, found using SPECTRe 

(Figure S14), but due to extensive overlap between groups and insignificant trends, these 

results were not investigated further.

To enable the investigation of how chemical properties may affect observability, the 

average properties (using the 10 variables in the definition of Property Chemical Space) 

of compounds in each of the groups/clusters for the full library, spiked in compounds, or 

compounds that were observed or not observed, are shown in Figure 4 and Figure S15-S34. 

The average properties when not considering these groups/clusters is shown in Figure S34.

After considering all these types of clustering methods in different chemical spaces, one 

of the strongest trends between molecules observed and not observed was that molecules 

in ChemSpace Cluster 1 were not observed often. This can be found when using relative 

difference (Figure S11), where this cluster has a value of −166% and is a fairly large cluster 

with 94 members. From this group, only 8 members were observed and 86 (10.8 times more) 

were not observed. Average properties of these compounds show, relative to all spiked in 

compounds, a lower logP (partition coefficient) (0.86 vs 2.75, p-value: 8.6E-23) (Figure 4). 

Additionally, average mass of this cluster is significantly lower than masses of all spiked 

in compounds (159.8 vs. 260.8, p-value: 1.9E-26). This does give a good example where 

inherent ionizability is difficult to decouple from other experimental factors, such as matrix 

effects and instrument response, as compounds with low mass and high hydrophilicity 

typically have lower ESI activity relative to larger and more hydrophobic molecules.40–43 

Ionizability-specific trends have been closely investigated previously by Liigand et al.44 This 

study reported the ionization of over 400 compounds across varying concentration, solvent, 

and instrument types and provides a machine learning-based tool to predict the ionization 

propensity of a given compound and the concentration of compounds in a solution based on 

the observed experimental data. Chemical descriptors they found to be most influential on 

their model were number of hydrogen atoms, number of nitrogen atoms, pH, viscosity, and 

presence of ammonium ions. These are the types of properties that can be utilized in chespa 
to analyze ionizability if desired by the user.

Overall, these different chemical spaces appear to enable the analysis of observability trends 

to varying degrees. ClassyFire Superclass appears to contribute the least, but additional 

ontological information could assist here. The analysis of potential trends due to chemical 

properties (as discussed above) is interesting and could be much more fruitful with 

additional properties available. This is not done here due to a more comprehensive dataset 
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needed to really assess varying trends. Additional discussion about the trends seen here are 

available in the SI (SI RD2).

CONCLUSIONS

Observability of molecules by MS is a challenging property to predict based on molecular 

structure, sample matrix, and analysis conditions, yet it has the potential to aid in lowering 

false discovery rates associated with small molecule identification and, in the case of 

targeted studies, reducing experimentation cost and time. Understanding the factors that 

contribute to observability could improve current compound identification techniques, 

especially in complex samples that can have 10–100’s of thousands of unique molecules. 

With an ability to predict what compounds can be observed given some set of experimental 

conditions, libraries of candidate compounds could be pruned to remove molecules if they 

have a low chance of being observable. The hope is to decrease the false positive rate 

during small molecule identification steps (and improve true positive rates) to increase the 

value of the data used to assess hypotheses regarding the analyzed samples. Additionally, 

considering targeted methods, experimental set up (such as chosen ionization mode) could 

be selected for a given set of molecules of interest, reducing the cost of experimentation 

and focusing efforts where they are most beneficial. Due to the many variables that control 

observability, many questions still remain, including which compounds will be observable 

given a specific matrix, what properties of their molecular structure contribute to this, and, if 

they are observed in an ionized form, which adducts do they form? To date, software tools 

are nascent and do not provide automated functionality required to begin answering these 

questions.

To evaluate this important property, we developed a Python module, chespa, that can be 

used to streamline the chemical space analysis and assess and compare observability trends. 

To demonstrate an example use of chespa, we used data generated during our participation 

in the ENTACT challenge.27, 45 While these initial results shown here are only relevant 

to our data in the context of the ENTACT challenge, we show how chespa could be used 

in subsequent studies to begin finding the critical features of molecules as they relate to 

observability or potentially other relevant properties. We imagine that with a sufficiently 

large dataset, with a wide variability in molecules and sample matrix types, chespa can be 

used to eventually build a predictive model for observability. Furthermore, chespa was built 

in a modular manner so that additional properties or cluster types can be added.

For example, a future application of this module can be to establish set clusters using a 

library with billions of compounds to define them. Along this line, using many predicted 

properties (versus the 10 used here) would be much more powerful, as it would provide 

more information about the trends seen in observability and make this module even more 

powerful. Pairing this with a larger set of experimentally-determined observability data 

would allow for binning of compounds into clusters based on predicted properties and 

used to predict whether they will be observable or not, and even in different conditions 

such as ionization mode. This could lead to lower false discovery rates and more 

efficient experimentation. Once these clusters are formed, using visualization software like 
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WebMolCS17 could further assist in analysis, as this tool helps visualize chemical space in 

an interactive way.

Additionally, as mentioned, this module could be used to help assess other experimentally-

measurable or predicted properties, such as toxicity, ligand affinity, and blood-brain barrier 

permeability. One example would be expanding the information used to predict ligand-based 

affinity for specific receptors, which are often based on a small set of input parameters.46

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Chemical space covered by each KMeans cluster.
(a) Distribution of predicted properties. (b) PC1 and 2 from the principal component analysis 

performed on the properties plotted in (a).
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Figure 2. 
Five randomly chosen compounds in each of the 8 Chemical Space clusters.
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Figure 3. Distribution of spiked in compounds observed using positive vs. negative mode ESI, 
and the distribution of those that were not observed in any sample.
Compounds were split into groups by ClassyFire superclass groups, ChemSpace clusters, 

DarkChem clusters, and substructure (MACCS and SPECTRe) clusters.
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Figure 4. Average properties of compounds in Chemical Space clusters, considering only spiked 
in compounds.
Error bars represent the standard deviation.
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