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ABSTRACT: A practical and effective implementation of density
functional theory based embedding is reported, which allows us to
treat both periodic and aperiodic systems on an equal footing. Its
essence is the expansion of orbitals and electron density of the
periodic system using Gaussian basis functions, rather than plane-
waves, which provides a unique all-electron direct-space repre-
sentation, thus avoiding the need for pseudopotentials. This makes
the construction of embedding potential for a molecular active
subsystem due to a periodic environment quite convenient, as
transformation between representations is far from trivial. The
three flavors of embedding, molecule-in-molecule, molecule-in-
periodic, and periodic-in-periodic embedding, are implemented
using embedding potentials based on non-additive kinetic energy
density functionals (approximate) and level-shift projection operator (exact). The embedding scheme is coupled with a variety of
correlated wave function theory (WFT) methods, thereby providing an efficient way to study the ground and excited state properties
of low-dimensional systems using high-level methods for the region of interest. Finally, an implementation of real time−time-
dependent density functional embedding theory (RT-TDDFET) is presented that uses a projection operator-based embedding
potential and provides accurate results compared to full RT-TDDFT for systems with uncoupled excitations. The embedding
potential is calculated efficiently using a combination of density fitting and continuous fast multipole method for the Coulomb term.
The applicability of (i) WFT-in-DFT embedding, in predicting the adsorption and excitation energies, and (ii) RT-TDDFET, in
predicting the absorption spectra, is explored for various test systems.

1. INTRODUCTION
Hybrid systems, such as molecules adsorbed on or attached to
metallic and semiconducting surfaces or nanostructures,
constitute a particular challenge to electronic structure
calculations because both the extended (periodic) character
of the surface and the localized (aperiodic) molecular
properties and spectroscopic observables need to be described
properly. For example, metals and semiconductors are typically
well described, applying density functional theory (DFT) and
functionals based on the local density approximation (LDA) or
generalized gradient approaches (GGAs). However, for
molecules, in many cases, computationally more challenging
hybrid or range-separated hybrid functionals are necessary for a
proper description of the electronic structures. This may be
even more important for molecules adsorbed on metallic
surfaces, as new (charge-transfer) states of the combined
hybrid system may build up, the proper description of which
may require reaching for wave function-based quantum
chemical methods. In addition, imposing the usual periodic
boundary conditions in electronic structure calculations may
result in a periodic pattern of molecules with much higher

surface coverage than encountered in experiments, which may
lead to spurious interactions between neighboring molecules.
Using larger supercells can help to reduce the interactions but
significantly increases the computational demand.

One of the major challenges in the application of state-of-
the-art wave function theory (WFT) methods to such hybrid
chemical systems is their unfavorable N3−8 scaling with respect
to system size. Therefore, the choice of the method used is
usually based on a reasonable trade-off between speed and
accuracy. However, because the region of interest in such
systems is usually small, it is desirable to use embedding-based
strategies that allow using different levels of theory for different
portions of the system. Embedding techniques rely on
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partitioning the total system into active and environment
subsystems based on wave function or density.
Kohn−Sham DFT (KS-DFT) provides a theoretically exact

framework for density functional theory based embedding that
relies on partitioning the real space electronic density ρ(r).
The most common way to realize DFT-in-DFT embedding is
via frozen density embedding (FDE), wherein the total energy
is minimized with respect to the active subsystem density,
while the environment density is kept frozen. The theory and
methodology was introduced by Wesolowski and Warshel1

based on earlier work by Cortana.2 Within FDE, the influence
of the environment on the active subsystem is considered
through an effective embedding potential which, for the most
part, depends on the environment density. This allows
different levels of treatment for active and environment
subsystems. Despite the desirable nature, FDE is impaired by
the need for approximate kinetic energy density functionals
(KEDFs), rendering it useful only for weakly interacting
subsystems. This can be addressed by using potential inversion
techniques3−6 or projection operators.7−9 The projection
operator enforces the Pauli exclusion principle between
subsystems and eliminates the need for KEDFs.
Extension of DFT-based embedding to time-dependent

DFT (TDDFT) for the study of excited states has been
explored by several groups.10,11 It is also known as subsystem
TDDFT or FDE-TDDFT. While most of the works are based
on the linear-response TDDFT (LR-TDDFT) formalism, only
the implementations by Krishtal et al.12 and De Santis et al.13

have investigated the coupling of FDE to real time-TDDFT
(RT-TDDFT). The former is implemented in Quantum
ESPRESSO14 and is based on plane waves, while the latter
employs Gaussian basis functions (BFs). Both the implemen-
tations are approximate in nature due to the use of KEDF-
based embedding potentials. RT-TDDFT allows the study of
the non-linear matter−radiation interactions at the femto-
second time-scale and can be used to monitor the electron-
dynamics in real-time.
Coupling of DFT-based embedding with correlated WFT

methods such as coupled-cluster singles and doubles (CCSD)
has consistently been shown to improve the DFT description
of both ground and excited state properties of hybrid systems,
even with the approximate KEDF-based embedding poten-
tial.6,15−19 The expensive correlated calculation is restricted to
the active subsystem (region of interest) embedded in an
environment described by DFT. This is extremely useful as it
offers the best of both worlds, that is, the accuracy of WFT
methods and the speed of DFT. Due to its tremendous success
it has been used to accelerate the study of solute−solvent
systems via molecule-in-molecule embedding, as well as
molecules adsorbed on a surface via molecule-in-periodic
embedding. Carter and co-workers have been the pioneers of
molecule (WFT)-in-periodic(DFT) embedding; however,
their implementations have usually relied on a plane-wave
DFT calculation for the periodic system and localized basis
calculation for the molecular subsystem.6,15,20,21 Therefore, to
construct the embedding potential for the molecular
subsystem, a transformation from the plane-wave to localized
basis is necessary which is not trivial. Recently, an
implementation based on mixed Gaussian plane-wave basis
has been reported using products of atomic orbital BFs.22

Chulhai and Goodpaster’s QSoME embedding software19

based on PySCF19 is a recent example of an implementation
utilizing Gaussian basis for the periodic subsystem; however,

PySCF calculates potential matrices in reciprocal space which
leads to efficiency issues especially for the Coulomb term.
Notable implementations supporting periodic systems are also
found in KOALA23 (Gaussian basis) and Quantum ESPRES-
SO24,25 (plane-wave basis) programs. The former allows
performing WFT-in-WFT calculations by combining wave
function FDE with one-dimensional periodicity. The latter, on
the other hand, allows FDE calculations of two or more
subsystems where more than one subsystem can be periodic
and has been successfully used to embed neutral and charged
subsystems inside a periodic subsystem, thereby allowing the
calculation of ionization potentials.26

In this work, an efficient and flexible implementation of
DFT-based embedding using only Gaussian BFs within the
TURBOMOLE program package27 is described. This allows us
to treat the periodic and molecular systems at the same footing
as well as easy construction of embedding potential. Both
KEDF and projection operator-based embedding potentials are
employed to perform molecule-in-molecule, periodic-in-peri-
odic, and molecule-in-periodic embedding. The Coulomb
term, in embedding calculations involving periodic systems, is
computed entirely in the direct space using only Gaussian BFs.
Successful application of WFT-in-DFT to study the van der
Waals interaction between H2 (molecular) and H10 chain
(periodic) is demonstrated, despite an approximate KEDF-
based embedding potential. Next, the WFT-in-DFT excitation
energies, using different embedding potentials, of organic
solutes in water, as well as the adenine−thymine base pair are
compared with the results obtained from WFT calculations on
the entire system. A projection-operator-based exact periodic-
in-periodic embedding implementation is also reported that
supports k-point sampling. Finally, the applicability of the
embedding scheme coupled with RT-TDDFT using approx-
imate or exact embedding potentials with or without a
supermolecular basis is explored.

2. THEORY AND IMPLEMENTATION DETAILS
In the following, the various embedding methodologies on
which the current DFT-based embedding implementation is
based on are described shortly.
2.1. Frozen Density Embedding. Only the key concepts

of FDE are discussed in the following, while the readers are
referred to the review by Wesolowski et al.28 for a detailed
overview on FDE. For the sake of simplicity, only the closed-
shell case is considered here. However, the formalism can
straightforwardly be generalized for the open-shell case and is
outlined in detail in ref 29. Within the FDE1 formalism, the
total electron density ρtot of the system is partitioned into
active and environment subsystem densities, ρact and ρenv, such
that ρtot = ρact + ρenv. For a given frozen ρenv, the ρact is
determined by solving the Kohn−Sham constrained electron
density (KSCED) equations
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where v r( )eff
KS act[ ] is the usual KS effective potential of the

isolated active subsystem, ϕi
act are the KS orbitals of the active

subsystem, and vemb is the embedding potential describing the
effect of the environment subsystem. It is defined as
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where the first and second potentials on the right hand side are
due to the nuclei and electrons of the environment,
respectively. The third term is the non-additive exchange−
correlation potential and the last term is responsible for
enforcing the Pauli exclusion principle between the sub-
systems7,29 and is known as the non-additive kinetic potential
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which is evaluated using an approximate KEDF. The
embedding potential in eq 2 is exact in the limit of the exact
KEDF. However, there are certain conditions that the densities
are required to fulfill in order to recover the exact energy of the
total system: (a) the environment density should be a non-
negative function ρenv(r) ≥ 0 and (b) the environment density
should never be larger than the exact ground-state total density
of the system ∀rρtot(r) ≥ ρenv(r). Therefore, FDE can give only
the upper bound of the ground state energy of the total system
if ρenv violates the above conditions. As a result, the quality of
the results that one obtains is dependent on the choice of ρenv.
One possible choice is to use the isolated environment density
without the active subsystem. Alternatively, freeze-and-thaw
(FaT) cycles may be performed to obtain a relaxed ρenv. FaT
refers to the procedure where the roles of the active and
environment subsystem are interchanged iteratively and was
first introduced by Wesolowski and Weber.30 Although, in
principle, the partitioning of the total system is not unique, the
FaT procedure yields unique subsystem densities as an artifact
of approximate KEDFs (see discussions in refs 28 and 31).
Furthermore, due to the approximate KEDFs, the vemb defined
in eq 2 is suitable only for weakly overlapping subsystem
densities.32,33

2.2. Projection-Based Embedding for Molecular
Systems. The need for approximate KEDFs within the FDE
formalism stems from the fact that the KS orbitals of active and
environment subsystems are not orthogonal with respect to
each other. Therefore, the total kinetic energy of the system
(Ts

tot) cannot be written as a simple sum of the kinetic energies
of the subsystems T T( )s s

act env+ but also requires a non-
additive component (Ts

nadd). However, this orthogonality can
be enforced by employing a level-shift projection operator
introduced by Manby and Miller.7 Projection-based FDE is
also known as “FDE with external orthogonality”.8 The level-
shift projection operator is defined as PB = μSABDBSBA, where
SAB is the overlap matrix of the active subsystem (A) BFs with
the environment (B) BFs, DB is the density matrix of the
environment subsystem, and μ is the parameter that tends to
infinity ideally and is taken to be 106 in practical
implementation. Essentially, the level-shift projection operator
raises the energy of the ith environment orbital ( i

env) to a very
high value ( )i

env + for calculations on the active subsystem,
thereby ensuring orthogonality between the subsystems and

enforcing the Pauli exclusion principle. The embedding
potential, in the matrix form, can therefore be written as

V V J X Pemb nuc
env

elec
env

nadd B= + + + (4)

with the elements Mμν of the first three matrices on the right
hand side M V J X( , , )nuc

env
elec
env

nadd= defined as

M vact act= | | (5)

where v v r r( ), d , Er
r r rnuc

env ( ) ,
( )

env
xc
nadd act env

act= | |
[ ] and μact, νact are

the BFs of the active subsystem. The method proposed by
Manby and Miller7 requires a KS-DFT calculation on the
entire system, and subsequently, the orbitals associated with
the active and environment subsystems are identified for
projection-based FDE. Alternatively, a more convenient
procedure was proposed by Chulhai and Jensen,8 in which,
starting from arbitrary subsystem KS orbitals, FaT cycles are
performed to converge to the exact subsystem densities (KS
orbitals). It should be noted here that projection-based FDE
requires a supermolecular basis for the subsystems in order to
achieve exact supermolecular DFT results and the approximate
monomolecular basis results do not offer any significant
improvement over the classic FDE with KEDFs (see Table S1
of the Supporting Information in ref 18). An alternative to the
level-shift projection operator is the Huzinaga operator34 that
provides better accuracy in the monomolecular basis.18

2.3. Projection-Based Embedding for Periodic Sys-
tems. For projection-based FDE to work for periodic systems,
the only requirement is to make sure that the occupied Bloch
orbitals of the active subsystem at a particular k-point are
orthogonal to the occupied Bloch orbitals of subsystem B at
the same k-point.19 The orthogonality of Bloch orbitals ψk at
distinct k-points is ensured inherently. Therefore, the level-
shift projection operator can be written as

P S D S( )k k k k
B AB B BA= (6)

where SAB
k is the overlap matrix of the Bloch functions of A and

B, with elements

S Seik k k k L L
;AB A B

L
;AB

T
= | =

(7)

To embed an active periodic subsystem in a periodic
environment, the embedding potential is constructed analo-
gously to eq 4, where all the terms are replaced by their
periodic counterparts. In the matrix form, the embedding
potential at a particular k-point can be written as

V V J X Pk k k k k
emb nuc

,env
elec

,env
nadd B= + + + (8)

where Vnuc
k,env and Jeleck,env are the Coulomb potential matrices due

to the nuclei and the electrons of the periodic environment,
respectively, and Xnadd

k is the non-additive exchange−
correlation matrix. These are obtained from a Fourier
transform of their real-space counterparts

M Meik

L

k L LT
=

(9)

where Mμν are the elements of the potential matrices, and L is
the lattice vector. Similar to the molecular case, a supersystem
basis along with FaT is required for exact results. This
periodic-in-periodic framework can also be extended to
perform a molecule-in-periodic embedding as shown in ref 19.
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2.4. Extension to Correlated WFT Methods (WFT-in-
DFT). FDE can be coupled with higher level (WFT) methods
using the frozen density embedding theory (FDET)28 and the
working equations can be found in ref 35 for variational WFT
methods, and in ref 36 for non-variational WFT methods. In
this work, however, the energy-error compensation ansatz,
made popular by Carter and co-workers37 is employed to
perform WFT-in-DFT embedding. Using this approach, the
molecular DFT embedding potentials can be used to perform
WFT-in-DFT embedding (also known as high level-in-low
level embedding19) in a straightforward and practical manner.
This is done by adding the purely DFT-based vemb to the
Hartree−Fock (HF) core potential of the active subsystem and
obtaining the converged HF reference orbitals. Any post-HF
method can then be used to obtain an improved description of
ground state and excited state properties. It should be noted
that in some implementations, the embedding potential (or a
part of it) may be updated self-consistently during the HF
(variational) run, by updating ρact.15,37,38 After the WFT-in-
DFT calculation, the correction to the ground state DFT
energy of the total system can be calculated as

E E Ecorr WFT
act

DFT
act= (10)

where EWFT
act and EDFT

act are the WFT and DFT ground state
energies, respectively, of the embedded active subsystem,
obtained self-consistently in the presence of the embedding
potential. The corrected energy of the total system is then
given as

E E E E( )WFT in DFT
tot

DFT
tot

WFT
act

DFT
act= + (11)

where EDFT
tot is the low-level DFT energy of the total system. In

principle, the doubly counted term ∫ vembρWFT/DFT
act dr,

corresponding to the energy of interaction with the environ-
ment, should be subtracted from the energies EWFT/DFT

act . This is
because EDFT

tot already contains the interaction energy between
the subsystems at the DFT level. Some strategies to deal with
the double counting have been discussed in ref 6. In this work,
the embedding potential is used only as a fixed additional one-
electron potential in the Hamiltonian of the active subsystem
to obtain EWFT

act and EDFT
act , and the explicit contribution due to

the embedding potential ∫ vembρWFT/DFT
act dr is simply excluded

from this quantity. Therefore, the influence of the environment
is accounted for only implicitly during the optimization of HF
reference orbitals.
This is in contrast to the exact FDET energy functional (eq

6 of ref 28), as here (i) the total DFT energy of the system is
being corrected by the E E( )WFT

act
DFT
act term, (ii) there is an

implicit assumption that the ρact from WFT is the same as ρact

from DFT calculation; therefore, the energy contribution due
t o t h e e m b e d d i n g p o t e n t i a l c a n c e l s o u t

v r( ) d 0emb WFT
act

DFT
act = .

The calculation of excitation energies using WFT-in-DFT
can be done using response-based39 approaches or as the
difference of the excited state energies17 of the embedded
active subsystem. The latter approach is employed in this work.
The polarization effects are neglected while calculating the
WFT-in-DFT excitation energies of the active subsystem. That
is, the excitations are assumed to be localized to the embedded
active subsystem and the environment remains unperturbed
(ρenv unchanged). This means that most of the parts of the
ground and excited state embedding potentials would be very
similar; however, not exactly due to the additional dependence

on ρact. This dependence on ρact can be circumvented by using
the linearized FDET approach for excited states.40,41 This has
an added functionality of ensuring the orthogonality of
embedded wavefunctions for each state.

Finally, it should be noted that even though the projection
operator-based embedding potential allows us to perform exact
DFT-in-DFT embedding, its use in WFT-in-DFT calculations
may not always be computationally advantageous as it requires
a supermolecular basis for a good representation of the
embedding potential. Therefore, some works consider the
possibility of using basis set reduction techniques,42,43 absolute
localization scheme,18 dual basis approach,44 or truncation of
virtual space45 to address this issue. The approximate KEDF-
based embedding potentials, however, can be used for WFT-
in-DFT embedding straightforwardly (even with a mono-
molecular basis) without any additional steps and have been
successfully employed for a number of applications, for
example, correction to DFT adsorption energies of CO on
Pd(111)15 and excitation energies of CO on Pd(111),38 as well
as solvated molecules.16,17,46

2.5. Extension to Real Time−Time-Dependent Den-
sity Functional Embedding Theory. RT-TDDFT involves
solving the single-particle time-dependent KS equations
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where veffKS[ρ](r,t) is the time-dependent effective KS potential
that depends on the time-dependent electron density ρ(r,t). In
implementations based on Gaussian BFs, the elements of the
time-dependent single particle reduced density matrix D(t) can
be evaluated as

D t C t C t( ) ( ) ( )
m

N

m m
1

MO

= *
= (13)

where NMO is the number of molecular orbitals (MO) and
Cν(μ)m(t) are the elements of the MO coefficient matrix C(t).
The KS MOs are given as

t C tr r( , ) ( ) ( )m

N

m
1

bf

=
= (14)

where Nbf is the number of BFs (atomic orbitals) μ(r). The
time evolution of the density matrix in the orthonormal basis is
given by the Liouville−von Neumann (LvN) equation

i
t

t
t t

D
F D

( )
( ), ( ) ,= [ ]

(15)

where F(t) is the time-dependent KS matrix in the MO basis.
The density matrix D(t) is propagated in time by numerically
integrating the LvN equation using a plethora of methods47

that ensure the idempotency of D(t). In this work, the Magnus
expansion is used which is quite popular for its performance
and stability. For further details on the RT-TDDFT
implementation used in this work, the readers are referred to
our previous work.48

Coupling of DFT-in-DFT embedding with RT-TDDFT,
hereafter referred to as real time−time dependent density
functional embedding theory (RT-TDDFET), is quite
straightforward. To propagate the electron density of the
active subsystem embedded in an environment, the single-
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particle time-dependent KS equations (eq 12) need to be
swapped with the KSCED equations (eq 1)
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which include the embedding potential vemb due to the
environment. The propagation procedure remains the same.
Note, vemb is a functional of both ρact and ρenv (eqs 2 and 4)

which are themselves dependent on time. Hence, as ρact(r,t)
evolves in time, it would affect ρenv(r,t), which in turn would
also be needed to be evolved for a fully coupled RT-TDDFET.
Consequently, for each time-step two RT-TDDFET calcu-
lations would need to be performed. This is also known as
coupled FDE-TDDFT.
2.6. Implementation Considerations. The Coulomb

contribution to the embedding potential (eqs 2 and 4) is
evaluated efficiently using a combination of density fitting and
continuous fast multipole method as described in ref 49.
Furthermore, the KEDF and XC terms are calculated using the
linear scaling hierarchical integration scheme.50 The imple-
mentation also takes advantage of linear scaling direct space
periodic DFT code for embedding calculations involving
periodic systems.49 The LibXC library is used for access to a
large number of the exchange−correlation functionals and
KEDFs.51

For WFT-in-DFT calculations, the modification is made
only to the reference HF Hamiltonian (Fock matrix). This
allows easy coupling with practically all the existing WFT
methods in TURBOMOLE such as second-order approximate
coupled-cluster singles and doubles (CC2), CCSD with
perturbative triples CCSD(T), Møller−Plesset (MP2), and
so forth. The embedding potential is calculated only once
using DFT-based densities for ρact and ρenv and kept fixed
during the HF and WFT run similar to the linearization
strategy proposed in ref 52. Additionally, in order to avoid
complications of using a different embedding potential for
ground and excited state, which requires vemb to be updated
with the excited ρact, the ground state vemb is used for excited
state WFT-in-DFT calculation as well.40,41 This is denoted as
“route A” in ref 17. The excitation energy can then be
approximated using

E E EWFT
act

e
act

WFT
act

g
act[ ] [ ] (17)

where EWFT
act

g(e)
act[ ] are the WFT ground (excited) state

energies evaluated in the presence of the ground state vemb,
however, do not contain the corresponding contribution
∫ vembρg(e)

act dr explicitly. The above equation is taken from
ref 17 (eq 16) and follows from eq 15 of the same work by
assuming that ρe

act ≈ ρg
act. Please note that the non-linear

embedding potential never appears in the explicit evaluation of
the energies in eq 17. Such a procedure, where the
environmental polarization is neglected, has been also denoted
as state-independent embedding (no differential polarization)
in ref 17, although implicit polarization may occur when using
a supermolecular basis.53 Alternatively, the ground-state
polarization of the environment may be performed by
employing the FaT procedure discussed previously. This is
in contrast to the state-specific17 and response theory39-based
approaches where the response of the environment can be

accounted for. Such an approximation is valid when the non-
additive kinetic and XC potentials of the ground and excited
states are not much different. This approximation has been
known to reproduce the experimental energies of local
excitations of acetone-in-water,16 CO adsorbed on
Pd(111),15,38 and embedded MgO clusters21 with reasonable
accuracy and is discussed in detail in ref 17.

For RT-TDDFET, ideally both ρact(r,t) and ρenv(r,t) should
be evolved in time to obtain the same results as a
supermolecular calculation. In our implementation however,
the environment density is kept fixed to its ground state value
ρenv(r,t0), that is, the environment does not react to the
excitations in the active region. This leads to savings in
computation time with little to no loss of accuracy as long as
there is no coupling between the excitations of the subsystems,
that is, the excitations are localized to the active part and do
not respond to the excitations of the other subsystem.
Furthermore, it is also possible to use a frozen ground state
embedding potential for RT-TDDFET, where even the active
subsystem density is fixed to its ground state value, resulting in
further cost-savings.

In the following, the exact strategies for constructing the
embedding potential, based on the approximate KEDFs and
the level-shift projection operator are discussed.
2.6.1. Method 1 (KEDF). This is essentially the classic FDE

strategy of constructing the embedding potential. The isolated
environment density ρenv is determined using DFT. This
density is then plugged into the KEDF-based embedding
potential vemb (eq 2), and the active subsystem density ρemb

act is
relaxed in the presence of this embedding potential. Because
the embedding potential is also a functional of the active
subsystem density, it is updated at each SCF iteration during
the active subsystem DFT run. It is also possible to perform
FaT by interchanging the active and environment subsystems,
resulting in a converged embedding potential. The embedding
potential so constructed can thereafter be used for correlated
WFT or RT-TDDFET calculation on the active subsystem.
The implementation supports both mono- and super-
molecular basis calculations.
2.6.2. Method 2 (KEDF). The second strategy is inspired by

the long-existing implementations of Carter and co-work-
ers.15,38 Here, the total system density ρtot and the isolated
active subsystem density ρiso

act are determined using a low level
method such as DFT with LDA functional. Then, an
approximation for the environment density env is calculated
as env tot

iso
act= . The KEDF-based embedding potential

vemb (eq 2) is then calculated by using the fixed env and ρiso
act as

environment and active subsystem densities, respectively. This
means that vemb remains constant during the active subsystem
embedding run. Updating the vemb with the embedded active
subsystem density ρemb

act during the DFT-in-DFT embedding
run resulted in convergence issues as also reported in refs 15
and 20.

Please note that while in ref 15, only the nadd KEDF term
(eq 3) was kept fixed to avoid the convergence issue, here the
entire embedding potential is frozen during the embedding
calculation.

Although this method can be used to perform molecule-in-
molecule embedding, it is especially effective for molecule-in-
periodic embedding due to the fact that the KS matrix for
periodic DFT is computed entirely in direct space using
Gaussian BFs.
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In our implementation, after the total periodic system DFT
run, the total Coulomb Jtot, exchange−correlation Xtot, and
kinetic Ttot potential matrices (in the basis of active
subsystem), corresponding to the central unit cell, are saved
on the disk. These are defined as

J
r r

r r
r

( ) ( )
dtot

tot
n
tot

=
| | (18)

X
E

v
tot xc

tot

tot= [ ]

(19)

T
T

v
tot s

tot

tot= [ ]
(20)

where μ and ν are the BFs of the active subsystem
corresponding to the central unit cell, while ρtot and ρn

tot are
the total periodic electron and nuclear charge density,
respectively. Analogously, after the isolated active subsystem
DFT run, the corresponding matrices Jact, Xact, and Tact are
calculated and subtracted from their total system counterparts
to form the embedding potential. This is very practical because
all the required matrices are already calculated during the
regular DFT run except the KEDF-based kinetic potentials.
Both monomolecular and supermolecular basis calculations are
supported via method 2; however, it is incompatible with the
FaT procedure. It is worthwhile to note that the approximation
for environment density ( )env , used here, can be negative,
which violates the requirement of ρenv to be a non-negative
function as mentioned in Section 2.1. Therefore, the results are
expected to contain additional error.
2.6.3. Method 3 (Projection Operator). The third strategy is

nearly the same as method 1, except that the need for the
approximate KEDFs is circumvented by using a level-shift
projection operator described in Section 2.2. In addition to the
molecule-in-molecule embedding, it can also be used to
perform periodic-in-periodic embedding. The isolated molec-
ular (periodic) environment density and density matrix are
determined using DFT and the embedding potential is
constructed for the active molecular (periodic) subsystem
using eq 4 (8). In our implementation, the FaT procedure is
used to obtain exact results as proposed by Chulhai and
Jensen.8 Only supermolecular basis is supported for periodic-
in-periodic embedding calculations. The periodic-in-periodic
embedding implementation is similar to the one reported in ref
19, with one major difference, that all the contributions to the
embedding potential (eq 8) are calculated in direct space
except the non-local projection operator. This allows for a
much more efficient k-point sampling. Direct inversion of
iterative subspace was employed to accelerate the slow
convergence for periodic calculations.

3. COMPUTATIONAL DETAILS
In this section, the computational details of the various systems
studied in this work are presented. All the calculations in this
work are performed using TURBOMOLE unless stated
otherwise.
3.1. H2−H10. The calculations on the H2−H10 system utilize

the def2-TZVPP basis set and the Weigend (universal)
auxiliary basis set for density fitting.54,55 The DFT and
embedding potential calculations are performed using the

Slater exchange functional and the Perdew−Wang correlation
functional (LibXC codes: x = 1, c = 12).56,57 The LC94 KEDF
is used for the calculation of the non-additive kinetic potential
in vemb (method 2) which is derived from the Perdew−Wang
(PW91) exchange functional58 (therefore also denoted as
PW91K) with parameters adapted for the kinetic energy by
Lembarki and Chermette (LC94)59 and investigated in the
context of FDE by Wesolowski et al.60 The corresponding
LibXC code is 521. The periodic γ-point CCSD(T)
calculations are performed with PySCF.61 The python script
used is provided in the Supporting Information.
3.2. Solvated Molecules: Acetone, Acrolein, and

Methylenecyclopropene. The CC262,63 and CC2-in-DFT
calculations on the solvated molecules are performed using the
cc-pVDZ basis sets64 and the corresponding auxiliary basis
sets65 for the resolution of identity (RI) approximation. For
CC2-in-DFT, the solvated molecules are considered as the
active subsystem and the water molecules are considered as the
environment subsystem. The exchange−correlation functional
is approximated using the Perdew−Burke−Ernzerhof (PBE)
parametrization of the GGA.66,67 For the calculation of the
embedding potentials using methods 1 and 2, the LC94 KEDF
was employed.59

3.3. Adenine−Thymine. The DFT, CC2, and CC2-in-
DFT calculations on adenine−thymine base pair were
performed using the cc-pVDZ basis set and the corresponding
auxiliary basis sets.64 The embedding potential calculations
made use of the PBE exchange−correlation functional, and
LC94 KEDF.59,66,67

3.4. Periodic Systems: Polyethylene, Neoprene, and
Diamond. The basis sets and the k-mesh sizes used for the
periodic calculations are shown in Table 3. Supersystem bases
were used for both the subsystems. The PBE exchange−
correlation functional (LibXC codes: x = 101, c = 130) was
used. The embedding potential was calculated using method 3
with five FaT cycles.
3.5. LiH. For the calculations on LiH, the def2-TZVPPD

basis set along with the Weigend (universal) auxiliary basis was
employed.54,55 For the exchange−correlation functional, a
combination of Slater exchange (LibXC code: 1) and Vosko−
Wilk−Nusair expression V (VWN5) correlation (LibXC code:
7) was used.56,68 For RT-TDDFT and RT-TDDFET, the
propagation time was 700 au (≈17 fs) with a time step of 0.1
au. For RT-TDDFET with method 1, the LDA Thomas−
Fermi KEDF (LibXC code: 50) was used.69 Five FaT cycles
were used to determine the ground state subsystem densities
for both methods 1 and 3.
3.6. Benzene−Fulvene. The calculations on the ben-

zene−fulvene dimer are performed using the def2-TZVPPD
basis and the Weigend (universal) auxiliary basis at the PBE
level (LibXC codes: x = 101, c = 130).54,55,66,67 The LC94
KEDF (LibXC code: 521) was employed for embedding
potentials calculated using method 1.59 The propagation time
was set to 1000 au, with a time step of 0.1 au for RT-TDDFT
and RT-TDDFET calculations.

4. RESULTS AND DISCUSSION
4.1. WFT-in-DFT: Ground States. The applicability of

molecule-in-periodic embedding is tested for ground state
properties such as adsorption energies. As the test system, an
H2 molecule interacting with an H10 periodic 1D chain is
considered. The structures are provided in the Supporting
Information. To perform the embedding calculations, the H2
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molecule as well as the two central H atoms of the H10 chain
are considered as the active subsystem and treated using the
explicitly correlated CCSD(T) method. The rest of the H
atoms are treated at the LDA-DFT level. This system has also
been studied by Carter and co-workers previously; however,
there are some subtle and obvious differences in our
approach.6 The main difference being that, in contrast to a
unique embedding potential used in their study, an
approximate KEDF-based embedding potential is employed
here, which is calculated using method 2 described in Section
2.6.2. Moreover, here, the adsorption energies are calculated
instead of binding energies, and the LDA-DFT and WFT-in-
DFT results are compared with periodic γ-point CCSD(T)
calculations. It should be noted that unlike DFT calculations,
the adsorption energies are not the same as the binding
energies for CCSD(T) calculations as shown in Supporting
Information, Figure S1. Therefore, a molecule-in-periodic
embedding scheme is needed to correctly model the
adsorption energy.
Figure 1 shows the adsorption energies of the H2 molecule

calculated for various separation distances from the H10 chain

using molecule-in-periodic embedding, periodic γ-point DFT,
and periodic γ-point CCSD(T) methods. The DFT and
CCSD(T) adsorption energies are calculated using the
following formula

E E E

E

ads
DFT/CCSD(T)

H H (periodic)
DFT/CCSD(T)

H (isolated)
DFT/CCSD(T)

H (periodic)
DFT/CCSD(T)

2 10 2

10

=

(21)

As expected, DFT overbinds the H2 molecule and predicts
too short equilibrium distances. The periodic DFT calculation
gives an adsorption energy of around −53.18 meV at the
equilibrium separation of 2.29 Å. CCSD(T) predicts a very
weak adsorption energy of −3.27 meV and a higher
equilibrium distance of 2.89 Å. The CCSD(T)-in-DFT
adsorption energies are calculated by correcting the DFT
adsorption energies in the same way the total DFT energies
were corrected in eq 11 (Section 2.4)

E E E E( )ads
CCSD(T) in DFT

ads
DFT

ads(emb)
CCSD(T)

ads(emb)
DFT= + (22)

where

E E E Eads(emb)
CCSD(T)

H (emb)
CCSD(T)

H (isolated)
CCSD(T)

H (emb)
CCSD(T)

4 2 2
= (23)

and

E E E Eads(emb)
DFT

H (emb)
DFT

H (isolated)
DFT

H (emb)
DFT

4 2 2
= (24)

EH (emb)
DFT

4
and EH (emb)

CCSD(T)
4

are the DFT and CCSD(T) energies of
the embedded active subsystem (H2 and two central atoms of
the H10 chain) in the presence of the embedding potential
(method 2), but without the ∫ vembρDFT/CCSD(T)

act dr term.
Similarly, to calculate EH (emb)

DFT
2

and EH (emb)
CCSD(T)

2
, an embedding

calculation is performed for the two central atoms of the H10
chain. CCSD(T)-in-DFT gives an adsorption energy of −4.37
meV at an equilibrium distance of 2.78 Å. From Figure 1, it is
observed that CCSD(T)-in-DFT is able to correct the LDA
adsorption energies quite significantly reproducing the CCSD-
(T) results with negligible errors and significantly reduced
computational cost.
4.2. WFT-in-DFT: Excited States. In order to illustrate the

validity and applicability of the implementation, CC2-in-DFT
excited state calculations are performed to study: (1)
solvatochromic shifts in small molecules and (2) hydrogen-
bonding-induced shifts in the adenine−thymine nucleic acid
base pair.
4.2.1. Solvatochromic Shifts. Water solvent-induced shifts

in the first excitation energies of acetone, acrolein, and
methylenecyclopropene (MCP) are studied using the
structures shown in Figure 2a−c, with 20, 19, and 17 water

molecules, respectively (see the Supporting Information for
atomic coordinates). It has previously been shown that WFT-
in-DFT excited state calculations provide a very reasonable
description of solvent (water)-induced shifts in the chosen
molecules.17 Therefore, these systems were used to validate the
implementation. Only the embedding potentials employing
non-additive KEDFS are considered because they work well

Figure 1. Adsorption energies of H2 on the H10 periodic chain at
various separation distances calculated using periodic CCSD(T),
LDA-DFT, and CCSD(T)-in-DFT.

Figure 2. Structures of (a) acetone in water, (b) acrolein in water, (c)
methylenecyclopropene in water, and (d) adenine−thymine base pair
used for CC2-in-DFT excited state calculations. Gray: C, red: O,
white: H, and green: N. Visualizations created using CrysX-3D
Viewer.70
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without a supermolecular basis for weakly interacting systems.
This allows a significant reduction in the computational cost.
In Table 1, the lowest excitation energies of the super-

molecular CC2 calculation are compared with CC2-in-DFT
calculations using method 1, with and without the FaT
procedure, as well as with the method 2. Method 1, without
FaT, fares the best with a maximum absolute error of just 0.03
eV with respect to the supermolecular CC2 calculation,
probably due to beneficial error-cancellation. Method 2
performs the worst among all the methods, with the maximum
absolute error of 0.62 eV, which is expected due to its
simplistic nature. Applying the FaT procedure to calculate a
self-consistent embedding potential, results in slightly inferior
performance than without FaT. The results are in agreement
with the similar studies performed in refs 17 and 71. The
magnitude of error with method 1 is similar to the one
reported by Zech et al.,71 although they used a supermolecular
basis. The good performance of embedding potential
calculated via method 1 is quite encouraging and also serves
as a validation of the implementation. It should be noted that
such a WFT-in-DFT approach dramatically reduced the
computational requirements. As an example, consider the
case of acetone-in-water, where the total number of BFs is 466,
out of which, only 86 are for acetone. Therefore, only 86 BFs
(<20% of total) were required to perform the CC2-in-DFT
calculations.
4.2.2. Adenine−Thymine Base Pair. The performance of

the embedding potentials calculated using methods 1 and 2 is
examined for the CC2-in-DFT excitation energies of the
adenine−thymine base pair. The structure was taken from ref
10 and is visualized in Figure 2d. This system has been studied
before in the context of FDE-TDDFT.10,72

The first six excitation energies of the total system calculated
using various methods are reported in Table 2. Comparing the
CC2 supermolecular results with the excitation energies of the
isolated adenine and isolated thymine molecules, it is clear that
the difference is not trivial. Furthermore, CC2 calculation on
the isolated adenine molecule predicts the first π → π*
transition of adenine to be of higher energy (5.56 eV) than the
n → π* transition (5.38 eV). This ordering is reversed in the
CC2 supermolecular calculation. All the CC2-in-DFT
calculations using different embedding potentials were able
to reproduce this behavior very well. Similar to the case of
solvated molecules, CC2-in-DFT with vemb calculated using
method 1 performs the best for most of the excitations, with a

maximum absolute error of only 0.05 eV. Method 1 with FaT
gives very similar results to method 1 without FaT, with a few
errors being slightly larger. FaT procedure results in self-
consistent subsystem densities, and the converged vemb thus
generated is supposed to be more accurate in theory. However,
this is only valid for DFT-in-DFT embedding. The perform-
ance of WFT-in-DFT embedding is also dependent on the
ability of DFT to accurately describe the ground state of the
system. The slightly inferior performance of vemb obtained
using method 1 with FaT suggests that the DFT description of
the ground state of the system is not entirely accurate.
Additionally, it has also been suggested that the variational
relaxation of the environment density is problematic because,
in addition to the meaningful electronic polarization, it is also
an artifact of the error in the approximation used for the non-
additive KEDF. This results in artificial charge redistribution or
a wrong polarization of the active and environment subsystems
(see discussion in refs 2831, and 53). The maximum absolute
error, however, is smaller at just 0.04 eV. Once again, method 2
gives the largest errors with respect to the reference
supermolecular CC2 calculation.
4.3. Exact Periodic-in-Periodic Embedding. To illus-

trate and validate the working of the periodic-in-periodic
embedding, the total energies of periodic systems using regular
DFT and periodic-in-periodic embedding using the level-shift
projection operator (method 3) have been calculated. Three
periodic systems are considered. Neoprene (1D), polyethylene
(1D), and diamond (3D). The structures are shown in Figure
3. The atomic positions as well as the lattice parameters are
taken from ref 19 and also provided in the Supporting

Table 1. First Excitation Energies (eV) of the Solvated Molecules from Supermolecular CC2 and CC2-in-DFT Using
Embedding Potentials Constructed via Methods 1 and 2

system CC2 isolated CC2 supermolecular CC2-in-DFTmethod 1 CC2-in-DFTmethod 1 FaT CC2-in-DFTmethod 2

acetone + water 4.49 4.81 4.78 4.88 5.32
acrolein + water 3.71 4.10 4.10 4.20 4.72
MCP + water 4.61 5.15 5.12 5.26 5.18

Table 2. Calculated First Six Excitation Energies (eV) of the Adenine−Thymine Base Pair

transition CC2 isolated CC2 supermolecular CC2-in-DFTmethod 1 CC2-in-DFTmethod 1FaT CC2-in-DFTmethod 2

thymine n → π* 5.20 5.34 5.34 5.38 5.51
adenine π → π* 5.56 5.52 5.55 5.54 5.55
adenine n → π* 5.38 5.58 5.56 5.60 5.60
thymine π → π* 5.74 5.65 5.70 5.69 5.73
adenine π → π* 5.79 5.74 5.76 5.76 5.78
adenine n → π* 6.01 6.13 6.14 6.17 6.24

Figure 3. Structures of the periodic systems used for exact periodic-
in-periodic embedding. Gray: C, white: H, and green: N. Subsystem I:
labeled and transparent atoms; Subsystem II: opaque atoms.
Visualizations using CrysX-3D Viewer.70

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00380
J. Chem. Theory Comput. 2022, 18, 6892−6904

6899

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00380/suppl_file/ct2c00380_si_001.zip
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00380?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00380?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00380?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00380?fig=fig3&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00380?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Information. The labeled and transparent atoms are treated as
one subsystem and the remaining as the other subsystem.
Table 3 shows the reference DFT energies of the total

periodic system as well as the errors obtained with DFT-in-
DFT embedding (method 3) for the different systems
considered. The errors are of the order of μHa, implying
numerically exact embedding. A similar accuracy was also
achieved in ref 19. This implementation does not offer any
computational savings due to the need of a supersystem basis
for exact results. However, this periodic-in-periodic embedding
implementation can be extended to perform exact molecule-in-
periodic embedding via projection operator (method 3) and
serves as a stepping stone for that. An interesting use-case
could be to study two different periodic structures stacked over
each other, with each requiring a different exchange−
correlation functional.
4.4. RT-TDDFT Coupled with DFT-Based Embedding.

The implementation of RT-TDDFT coupled with DFT-in-
DFT embedding (RT-TDDFET) is tested for systems with
coupled and uncoupled excitations.
4.4.1. LiH. First, the LiH molecule with the closed shell Li+

and H− subsystems at a separation of 2 Å is examined. It has
been shown previously by Chulhai and Jensen11 that the
excitation energies of Li+ are greater than 48 eV at the LDA
level and therefore uncoupled to the H− excitations. This is
also illustrated in Figure 4, where the RT-TDDFT absorption

spectra of LiH, H−, and Li+ have been plotted. In their study,
they were able to recover exact excitation energies using LR-
TDDFT coupled with projection operator based embedding
(our method 3). In this work, RT-TDDFET spectra of both
the subsystems are calculated and their superposition is
compared with the regular RT-TDDFT spectrum of the total
system. Embedding potentials calculated via methods 1 and 3
are considered. Furthermore, the influence of monomolecular
and supermolecular basis is examined. For an uncoupled
system such as LiH, the absorption spectrum corresponding to
method 3 (with FaT and supermolecular basis) is expected to
reproduce the regular RT-TDDFT absorption spectrum
exactly even though the environment density is kept frozen

to the ground state density. Therefore, this would also serve as
a validation of the implementation.

Figure 5a,c shows the absorption spectra calculated with
methods 1 and 3, respectively, with monomolecular bases for
the subsystems. Both the methods show large errors in the

Table 3. Calculation Details (k-Mesh Size and Basis Set) as Well as the Total DFT Ground State Energies (a.u.) and Periodic-
in-Periodic Embedding Errors of Periodic Systems

system k-mesh size basis set EDFT ΔE = Eemb − EDFT

polyethylene 1D 32 × 1 × 1 def2-SVP −78.4571146 2.0 × 10−6

neoprene 1D 10 × 1 × 1 def2-SVP −614.9723856 1.2 × 10−6

diamond 3D 10 × 10 × 10 def2-SVP −304.3591154 2.1 × 10−6

Figure 4. RT-TDDFT absorption spectra of LiH as well as isolated
H− and Li+.

Figure 5. Comparison of the RT-TDDFET absorption spectra of the
LiH molecule calculated using various embedding techniques with the
reference RT-TDDFT absorption spectrum: (a) method 1 (mono-
molecular basis), (b) method 1 (supermolecular basis), (c) method 3
(monomolecular basis), and (d) method 3 (supermolecular basis).
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absorption spectra, with method 3 being the worst with no
qualitative similarity to the reference spectrum. This is
expected as the level-shift projection operator is not meant
for use with monomolecular basis. The supermolecular basis
results are shown in Figure 5b,d. Spectra from both the
methods show significant improvement over their mono-
molecular basis counterparts. Method 3 reproduces the
reference spectrum exactly. This shows that, while KEDF-
based embedding may be able to predict a few excitation
energy shifts reasonably, a proper description of the entire
absorption spectrum requires a projection operator + super-
molecular basis treatment. It should be noted here that
although the environment-density was frozen in the embed-
ding potential, the active subsystem density was updated at
each time-step. Therefore, the embedding potential was not
independent of time. However, it was also checked that for the
case of LiH, the absorption spectra were quite similar, even
with a frozen embedding potential (see Figure S2 of the
Supporting Information). Please note, a comparison of the
binding energies with and without embedding has also been
provided in Table S4 of the Supporting Information.
4.4.2. Benzene−Fulvene Dimer. Next, the system of

strongly coupled chromophores: benzene and fulvene at a
separation of 4 Å is considered. A detailed analysis of this
system in the context of RT-TDDFT and FDE has been
performed in ref 12 using Quantum ESPRESSO.14 However,
in that work, the authors used a plane-wave basis and only the
KEDF-based embedding potential, corresponding to our
method 1. Here, the effect of supermolecular or mono-
molecular basis as well as the type of embedding potential used
is investigated. Furthermore, the effect of updating the
embedding potential during the time evolution is also
considered.
Figure 6a shows the comparison of RT-TDDFET absorption

spectra, obtained using method 1 (without FaT), employing a
monomolecular basis and keeping vemb frozen in time, with the
isolated and total RT-TDDFT spectra. Clearly, the RT-
TDDFET spectrum is nowhere close to the reference total
spectrum, where the peak corresponding to benzene is
significantly suppressed. In fact, unlike the LiH case, method
1 produces a spectrum that is very similar to the spectra of
isolated subsystems, indicating no effect of embedding.
Therefore, to model the excitations in a better manner, a
supermolecular basis treatment is required. In Figure 6b, the
RT-TDDFET absorption spectra for methods 1 and 3,
calculated using supermolecular basis and a frozen vemb are
reported. Note that five FaT cycles were used to calculate the
ground state starting densities of the subsystems. The spectrum
corresponding to method 1 shows slight improvement over its
monomolecular counterpart by suppressing the benzene peak
slightly further. This spectrum is similar to the one obtained in
ref 12 using a plane-wave basis, which is equivalent to using a
supermolecular basis. The RT-TDDFET spectrum correspond-
ing to method 3 shows remarkable similarity to the reference
total spectrum.
Thus far, the embedding potential was kept frozen during

the RT-TDDFET procedure. That is, only the ground state
densities were used for the active and environment subsystems
in the formula of vemb. Figure 6c shows the results when the
active subsystem density, in the expression of vemb, is allowed
to be updated with time, as in the LiH case. There is no
notable difference in the RT-TDDFET (method 1) spectrum;
however, RT-TDDFET (method 3) does benefit from this

added flexibility and matches the reference total RT-TDDFT
absorption spectrum even more, reproducing almost all the
qualitative features. Unlike the LiH case with uncoupled
excitations, it is not possible to reproduce the reference RT-
TDDFT spectrum completely even with method 3 and
updating embedding potential. This is because the environ-
ment density is still not evolved in time, and hence does not
react to the excitations of the active subsystem. However,
reasonable accuracy is achieved nonetheless because the
chromophores are 4 Å apart. Therefore, the improvement
gained from updating embedding potential may or may not
justify the added computational cost of updating embedding
potential and must be decided on a case-by-case basis. For a
more detailed analysis of the effect of updating the embedding
potential, the readers are referred to ref 13.

5. SUMMARY AND CONCLUSIONS
An efficient implementation of DFT-based embedding for
molecules and periodic systems using Gaussian-type orbitals as
BFs is described. The implementation is flexible and supports
various flavors of embedding: molecule-in-molecule, molecule-

Figure 6. Comparison of the RT-TDDFET absorption spectra of
benzene−fulvene dimer calculated using various embedding techni-
ques with the reference RT-TDDFT absorption spectrum: (a)
method 1 (monomolecular basis + frozen vemb) along with the
isolated RT-TDDFT absorption spectra of benzene and fulvene, (b)
methods 1 and 3 (supermolecular basis + frozen vemb), and (c)
methods 1 and 3 (supermolecular basis + updating vemb).
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in-periodic, and periodic-in-periodic. Embedding potentials
based on KEDFs and projection operator are implemented.
Furthermore, the implementation is coupled with a variety of
quantum chemistry methods such as CCSD(T), CC2, RT-
TDDFT, and so forth.
Consistent with previous studies, it is showed that KEDF-

based WFT-in-DFT calculations with monomolecular basis
offer a significantly improved description of ground15,38 and
excited17,53,71 state properties over DFT at only a fraction of
the computational cost. Furthermore, a real-space implemen-
tation of exact periodic-in-periodic embedding using projection
operator, supermolecular basis, and FaT procedure is reported.
While this does not lead to any computational advantage yet, it
can be improved in the future by employing basis set
truncation techniques or using a smaller basis for the
environment. Lastly, a detailed analysis of RT-TDDFT
coupled with DFT-in-DFT embedding is presented, describing
the influence of supermolecular basis, as well as the time
dependence of the embedding potential. For systems with
uncoupled excitations, RT-TDDFET with projection operator-
based embedding potential and supermolecular basis is able to
reproduce the reference RT-TDDFT spectrum exactly, even
though the environment density is kept frozen. Additionally, it
offers reasonable accuracy for coupled chromophores as well.
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