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Developing and validating 
a machine learning prognostic 
model for alerting to imminent 
deterioration of hospitalized 
patients with COVID‑19
Yuri Kogan1*, Ari Robinson1, Edward Itelman2, Yeonatan Bar‑Nur3, Daniel Jorge Jakobson3,4, 
Gad Segal2 & Zvia Agur1

Our study was aimed at developing and validating a new approach, embodied in a machine learning-
based model, for sequentially monitoring hospitalized COVID-19 patients and directing professional 
attention to patients whose deterioration is imminent. Model development employed real-world 
patient data (598 prediction events for 210 patients), internal validation (315 prediction events for 97 
patients), and external validation (1373 prediction events for 307 patients). Results show significant 
divergence in longitudinal values of eight routinely collected blood parameters appearing several days 
before deterioration. Our model uses these signals to predict the personal likelihood of transition 
from non-severe to severe status within well-specified short time windows. Internal validation of 
the model’s prediction accuracy showed ROC AUC of 0.8 and 0.79 for prediction scopes of 48 or 96 h, 
respectively; external validation showed ROC AUC of 0.7 and 0.73 for the same prediction scopes. 
Results indicate the feasibility of predicting the forthcoming deterioration of non-severe COVID-19 
patients by eight routinely collected blood parameters, including neutrophil, lymphocyte, monocyte, 
and platelets counts, neutrophil-to-lymphocyte ratio, CRP, LDH, and D-dimer. A prospective clinical 
study and an impact assessment will allow implementation of this model in the clinic to improve care, 
streamline resources and ease hospital burden by timely focusing the medical attention on potentially 
deteriorating patients.

Over the past two years, many countries have witnessed their healthcare systems being overwhelmed by patients 
infected with the SARS-CoV-2 virus, which causes the pandemic known as COVID-19. The heavy hospital load 
during the pandemic carries multiple risks for patients and causes serious concern worldwide1–3. In Israel, the 
in-hospital mortality rate of patients with COVID-19 significantly increased during a moderately heavy patient 
load; excess mortality is associated with rapid escalation in the number of hospitalized patients carrying the 
disease3. Similar results were obtained in hospitals in the USA4, Greece5, and other countries.

The recent outbreaks of the fast-spreading variant, B.1.1.529 (Omicron), and related subsequent variants, 
caused an additional hospital burden, as these variants debilitated large proportions of healthcare workers and 
caused critical staffing shortages in hospitals. It is not unlikely that such outbreaks will be witnessed in future 
waves of COVID-19 worldwide. One way to increase the quality of care and attain better clinical outcomes in 
these circumstances is to focus the healthcare professionals’ attention on patients having a high risk of imminent 
deterioration while easing the tight surveillance of other mild and moderate patients.

Aiming to tackle the problem of overburdened healthcare systems under a high COVID-19 caseload, we 
developed a prediction model, purported to be employed consecutively throughout the patient’s stay in the hos-
pital, alerting the physicians when anticipating deterioration within two or four days. The model uses the power 
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of machine learning (ML) to extract evolving deterioration signals from routine, longitudinally collected blood 
tests and processes them for computing the likelihood of the patient’s deterioration within the next 48 or 96 h.

Most prognostic models for COVID-19 aim to provide an early-stage triage and are applied only once for a 
patient6,7, thus limiting their applicability8–10. In contrast, our model is aimed at consecutively monitoring hos-
pitalized patients, as of the third day after admission, predicting the risk of deterioration during a narrow time 
window. The patients’ dataset, selected for the development and the testing work, included this target population 
(see inclusion criteria in the “Methods” section).

The electronic health records (EHRs) of the patients in our target population were selected from all patients 
treated at Sheba Medical Center, Israel (to be denoted Sheba), from March 2020 to August 2021 (a total of 803 
patients; see Table 1). The Sheba dataset included blood test results, and daily patient statuses, evaluated by the 
physicians, based upon internationally accepted guidelines11, with local adaptations by the Israeli Ministry of 
Health12 (see details in “Methods”). This dataset was divided into two subsets: one for the training of the model 
and one for its internal validation. External validation was made using a clinical dataset of COVID-19 patients 
staying at Barzilai University Medical Center, Israel (to be denoted Barzilai), during the same period (Table 1).

Results
Divergence of blood parameters before deterioration.  Eight hundred and three patients from Sheba 
were selected for the initial comparison of the longitudinal blood parameter values, using our inclusion criteria 
set 1 (see “Methods”); 208 of these 803 patients have deteriorated and 595 have not. Significant divergence in 
blood parameters between non-severe and severe patients was found in the week preceding the deterioration of 
the latter (see “Methods” for the definition of non-severe and severe patients). This was so for C-reactive protein 
(CRP), Lactate dehydrogenase (LDH), neutrophil count, and the ratio of neutrophil to lymphocyte counts (NLR; 
Fig. 1). Additional blood parameters demonstrated similar but somewhat less significant, divergence (lympho-
cytes, monocytes, platelets, D-dimer; see Supplementary Information, Fig. S1).

Figure 1.   Longitudinal measurements of blood parameters in mild and moderate patients who would 
deteriorate and in those who would not deteriorate. Patients with COVID-19, collected in Sheba Medical 
Center, were aligned to t = 0 by the day of their first deterioration from a mild or moderate status to a severe 
status (red), or by the end of follow-up for patients who did not deteriorate (green). Summary boxplots, 
show 25th, 50th, and 75th percentiles of pooled daily (a) CRP values of 581 continually non-severe and 207 
potentially severe patients, (b) LDH values of 591 non-severe and 206 severe patients, (c) absolute neutrophil 
counts of 595 non-severe and 208 severe patients, (d) NLR values of 595 non-severe and 208 severe patients. 
Locally Weighted Scatterplot Smoothing (lowess), with 95% confidence intervals are shown in continuous lines 
and light bands around them. Asterisks represent the level of significance of the differences between the daily 
status groups, determined by the p-values of the Kruskall-Wallis test, *< 0.05, **< 0.01, ***< 0.001. The test for 
difference was applied to the values collected at each day, separately (e.g., test whether the values between − 24 h 
and 0 are different, test whether the values between − 48 and − 24 h are different, etc.).
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Inspecting Fig. 1 and Fig. S1, one sees that the values of blood parameters in non-deteriorating patients 
remained roughly stable throughout hospitalization. A similar stability is manifested for the early values of blood 
parameters in the deteriorating patients until about one week before deterioration, after which they change 
significantly. This observation led us to hypothesize that the changing dynamics of blood parameters, which 
begins several days before breakdown, can be used as a signal heralding the individual patient’s deterioration. 
Based on these results, we further hypothesized that one could develop a model based on a combination of the 
longitudinal measurements of the above parameters, to predict deterioration of currently non-severe patients 
before it becomes clinically apparent. These hypotheses were tested, as is described below.

Figure 2.   Selection of the ML model. The model performance was estimated by Leave-one-patient-out cross-
validation (LOpO CV) on the training set of the Sheba Medical Center cohort, comparing of the ROC AUC of 
5 different ML models. Each dot stands for (1) a specific ML model, as marked on the abscissa, (2) a specific 
prediction scope (48 h or 96 h), and (3) a specific choice of the set of dynamic features. The density and location 
of the cloud, formed by the aggregation of dots for each ML model indicate the model robustness and accuracy.

Figure 3.   Internal validation results. Model accuracy, measured on the internal validation dataset from Sheba 
Medical Center, as shown in ROC curves, for prediction scopes of (a) 48 h and (b) 96 h.
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Model training.  The dataset collected at Sheba and selected to represent the target population for our 
model, according to the inclusion criteria set 2, comprised 913 prediction time points (denoted events) in 307 
patients for the prediction scope (window) of 96 h, and 813 events of 275 patients for the prediction scope of 
48 h. After the training/testing split, the training sets included 210 and 199 patients, with 598 and 563 events, 
and the testing sets included 97 and 76 patients, with 315 and 250 events for the prediction scopes of 96 h and 
48 h, respectively. The entire training procedure was carried out on the training sets, and the testing sets were 
kept aside for internal validation.

During the training, the robustness of the performance of different ML models was examined across various 
sets of dynamic features, tuning grids, and weights assigned to the non-severe and severe outcomes. Figure 2 dis-
plays the results, showing the models’ performance, measured by ROC AUC, as evaluated by Leave One Patient 
Out Cross Validation (LOpO CV) on the training set for the two prediction scopes (48 h or 96 h). For each 
model the location and spread of the dots indicate the prediction accuracy and the robustness, respectively. In 
Fig. 2, one can see that the XGBoost model provides favorable and robust results, as compared to other models. 
A reduction of different input blood parameters, from eight to six or to four, was also attempted, resulting in a 
significant decrease in accuracy (see Supplementary Information, Fig. S2).

Internal validation by an independent testing subset of the Sheba cohort.  The prediction capac-
ity of the chosen XGBoost model was evaluated on the internal validation sets of Sheba patients. The resulting 
ROC curves had AUC of 0.8 (95% CI 0.75–0.86) and 0.79 (95% CI 0.74–0.83) for predicting deterioration within 
48 or 96 h, respectively (Fig. 3a,b). Applying this model with the classification threshold tuned for the objective 
of maximal specificity, constrained by at least 60% sensitivity, results in a specificity of 60.9% (95% CI 57.6–64%) 
and 73% (95% CI 70.3–75.8%) and sensitivity of 85% (95% CI 77–93.5%) and 61.8% (95% CI 53.1–70.1%), for 
the prediction scopes of 48 and 96 h, respectively. Applying the model with the threshold of 0.5 resulted in a 
specificity of 91.7% (95% CI 89.9–93.5%) and 90.7% (95% CI 89–92.5%), and sensitivity of 50% (95% CI 38.1–
61.3%), and 47.1% (95% CI 38.1–55.4%), for the prediction windows of 48 h and 96 h, respectively.

Validation by a cohort from a different hospital.  For the external model validation, the EHRs of 279 
patients (1328 events) were used, selected by our inclusion criteria set 3, from the Barzilai cohort (see “Meth-
ods”). Model application, starting 2 days after hospital admission, with its threshold tuned to a target of maximal 
specificity with at least 60% sensitivity, resulted in ROC AUC of 0.7 (95% CI 0.67–0.73) and 0.72 (95% CI 0.69–
0.75), specificity of 64.7% (95% CI 63.3–65.9%) and 65.3% (95% CI 64.1–66.7%), and sensitivity of 60.3% (95% 
CI 53.3–66.8%) and 65.9% (95% CI 60.8–71.5%), for the prediction scope of 48 and 96 h, respectively (Fig. 4a,b).

Discussion
Due to the high pathogenicity of the SARS-CoV-2, B.1.1.529 variant (Omicron), its recent outbreak ramped 
up wildly, creating an excessive demand on hospital beds and equipment, and low staffing levels, as front-line 
workers were infected with this contagious variant. As outbreaks of new variants in the future can lead to similar 
crises, our aim was to develop a prediction model as the basis of a clinical alert tool intended to ease the pressure 
in hospitals due to increased numbers of patients requiring care and dwindling resources.

Figure 4.   External validation results. Model accuracy, measured on the external validation dataset from Barzilai 
University Medical Center, as shown in the ROC curves, for prediction scopes of (a) 48 h and (b) 96 h.
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Our target population includes all non-severe patients with COVID-19, hospitalized for a sufficiently long 
time (at least 48 h) and having routinely collected daily records of blood tests. The model is aimed to identify 
patients who approach deterioration by following up non-severe patients from the third hospitalization day 
until deterioration or discharge. By predicting upcoming deterioration, the model will enable the physicians to 
optimally time the decision about a more targeted treatment for this patient, e.g., by corticosteroids13–17. With the 
ongoing patient stratification this model is expected to offer, it may also serve for streamlining resource allocation 
in times of stress, especially when efficacious yet costly anti-viral medications become available.

Good model performance was demonstrated on the internal validation dataset from Sheba, and moderate 
performance was demonstrated on the external validation dataset from a different hospital (Barzilai) located in 
another region of the country. One would expect a lower prediction accuracy in the Barzilai cohort than in the 
Sheba cohort, as is usually the case when validating a predictor on data from a different source and given the 
differences between the two hospitals in how deterioration could be evaluated retrospectively. Yet, the moderately 
good accuracy in predicting deterioration events, which were differently evaluated in the two cohorts, pinpoints 
the model resilience, and substantiates its further development and examination in other patient populations. 
The performance is equally good on patients harboring a variety of SARS-CoV-2, as attested by the similarity 
of the prediction accuracy across different periods of the pandemic until August 2021. The prediction accuracy 
of a potential deterioration within 48 h is comparable to that of deterioration within 96 h, and it remains for the 
physician to decide on the more clinically useful prediction scope.

The model’s specificity and sensitivity guarantee that most of the deterioration events will be flagged as such 
during the four preceding days, whereas most of the no deterioration events will not be flagged as deterioration 
in the 4 former days. A different choice of classification threshold was also considered, to ascertain the model’s 
specificity rather than its sensitivity. Setting the model’s sensitivity threshold value to 0.5, a high specificity was 
obtained, assuring that almost all events of no clinical deterioration will not be signaled as potential deterioration. 
However, this comes at the cost of relatively low sensitivity to really deteriorating patients (Table S1).

Hond et al.18 systematically review published guidelines for developing, evaluating, and implementing arti-
ficial intelligence-based prediction models in healthcare. They provide an exhaustive list of aspects and issues 
to address during the six developmental phases of prognostic models. The present article reports the first three 
phases of the process (data preparation, model development, and model validation). While meeting most of 
their recommendations for these phases, which pertain to the present context, some challenges and limitations 
remain, as is detailed below.

In our work, the inclusion criteria applied for selecting patients from the database were only those derived 
from the definition of the target population for which the model is purported, including the requirement for 
routine blood test results. Note that the model can work when some of the measurements are missing, due to 
imputation methods. Our derivation and validation datasets did not make multiple uses of the same data, nor 
did they include inappropriate data sources. During the training, the performance of five ML models was com-
pared across plural setups of precisely defined dynamic features. Model tuning, feature selection, and the final 
model selection were performed by cross-validation (CV) on the training set, and the final model was validated 
internally and externally. Overestimation of the model accuracy can occur due to potential correlations between 
the data points of the same patient. This was prevented by grouping events by patient in the training/testing 
split. It is our belief that our attentiveness in model development and validation prevented most of the pitfalls 
identified in previous prediction models.

The main limitation of our work pertains to the derivation of the data from two clinical centers in the same 
country, collected over a relatively short period. This limitation may create a representation bias, due to differ-
ences in the targeted patient populations and in the pertinent clinical practices in different parts of the world. 
Note also that there is an inherent outcome imbalance due to the unique nature of our prediction task: multiple 
non-deterioration events, but only one deterioration event, at the most, can be associated with each patient. This 
was mitigated by including different class weighting schemes in tuning the hyper-parameters, but this imbalance 
still affects the classification metrics. We suggest adapting the metrics for evaluating model performance when 
monitoring the patients consecutively to anticipate a critical clinical event. It is also required to address the 
feasibility, practicality, and benefit in integration of the model in the clinical workflow by a prospective clinical 
trial, yet to be performed.

The work presented here describes one of the first COVID-19 prediction models that may enable daily evalu-
ation of the patient’s deterioration likelihood. This is achieved by a unique approach to the analysis of dynamic 
changes in the standard blood test data, using trends in changes in blood counts or biochemical parameters as 
features in the ML analysis. The model, requiring a daily input of only eight, routinely collected, blood param-
eters, enables prediction of deterioration within the coming 48 or 96 h, when an effective change in treatment can 
be made sufficiently early to arrest the decline. Noy et al.19 developed a comparable model predicting patients’ 
deterioration in the next 7–30 h, as evaluated by the modified NEWS2 score and using an hourly input of an 
extensive panel of demographic and clinical parameters. Note that the pragmatism motivating our choice of a 
minimal set of input parameters is traded off by the somewhat reduced accuracy of our model, as compared to 
Noy et al.19.

Previous studies use blood parameter values and age, or gender, to predict severity or death in patients with 
COVID-19. Shang and colleagues20 suggest that NLR, CRP, and platelets, evaluated upon hospital admission, can 
effectively be used to predict disease severity. Another study reports a striking distinction in all early measure-
ments of neutrophils, lymphocytes, high-sensitivity CRP, and LDH, between patients who eventually suffered fatal 
outcomes and those who survived21. In contrast, our work shows that it is only a few days before deterioration, 
that routine blood parameters of potentially severe patients, namely, CRP, LDH, neutrophils, lymphocytes, NLR, 
monocytes, platelets, and D-dimer, diverge from those of persistently mild or moderate patients.
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Numerous prognostic models have been developed for COVID-19, using both traditional statistics and ML. 
Blood parameters, like ferritin22, troponin, and myoglobin23–26, demographic parameters, including Charlson 
comorbidity index score27, age and gender28,29, chest CT images30, routine chest X-rays31, age-related dementia32, 
cardiac auscultation33 and other factors are suggested to predict severity or death in patients with COVID-19. 
However, all these studies were aimed at a single-time assessment of patients’ prognosis, close to admission. 
Note, that grave pitfalls were identified in most of the published prediction models9,10.

The work presented here differs from other prognostic models in its primary goal that, necessarily, limits the 
repertoire of potential predictors used by the model. Since this work aimed to create a supportive tool for the 
physicians, which would signal an imminent deterioration of hospitalized patients with COVID-19, the tool 
must be practical and applicable in hospitals worldwide.

The practicality prerequisite has guided our objective to limit the number of input predictors in the final 
model to the minimal number that can jointly yield accurate predictions. Therefore, all the routinely evaluated 
blood parameters were tested, but those that, even though they may have correlated with disease progression, 
did not significantly contribute to the prediction accuracy of the model, were excluded from the input predictor 
list. Other predictors, suggested in the literature to correlate with disease severity, are not measured routinely in 
many COVID-19 wards. For example, in Sheba or Barzilai datasets, ferritin, myoglobin and troponin are only 
sporadically measured and other suggested predictors, including age, sex and comorbidities, are not reported at 
all. These parameters were not included in the study, a priori.

Moreover, for daily evaluation of the patient’s prognosis, the potential predictors, whose values "feed" the 
model, must be dynamic within a time scale of days/weeks and be measured sufficiently frequently. For example, 
the age of the patients—negligibly changing during hospitalization—cannot be strongly informative for the 
question, “will the patient deteriorate in the coming 48/96 h?" All these prerequisites determined our decision 
to study only clinical parameters that are evaluated and registered daily or at least three times weekly in all or 
most hospitalized patients with COVID-19.

Employing only eight routinely evaluated blood parameters, it was shown that one can predict imminent 
patient deterioration already after two days following admission to the hospital when at least two blood samples 
are available. Yet, to render our model applicable in the clinic, it must be completed by an observatory prospective 
clinical study. Such a study will check if the model is sufficiently accurate to capture the timing of patient deterio-
ration, if its implementation in the clinical setting is possible, and if focusing care on patients, having high-risk for 
imminent deterioration, can aid in alleviating the burden of excessive hospital load of patients with COVID-19.

We foresee a vital role for dynamic prediction models as a potential adaptive, prognostic tool for physicians 
and administrators alike. Such models can be also used in ambulatory care under remote medicine and frequent 
blood tests. Since the severity of the disease inflicted by future SARS-CoV-2 variants is expected to still depend 
upon the activation of the patient’s immune system and since our model relies mainly on immune-related vari-
ables, it will likely also be effective for future SARS-CoV-2 variants.

Methods
Clinical data.  The study was reviewed and approved by the Sheba Medical Center Institutional Review Board 
(IRB)-Helsinki Committee (7953-20-SMC), and by the Barzilai University Medical Center IRB (BRZ-0003-21) 
and conformed to the principles outlined in the declaration of Helsinki. All methodologies were performed 
according to the relevant guidelines and regulations, and patient data were anonymized. The Sheba Medical 
Center IRB-Helsinki Committee and the Barzilai University IRB/Ethics (Helsinki) Committee approved the 
waiver of informed consent. Out of all the EHRs of the patients hospitalized in all wards of Sheba and Barzilai 
between March 2020 and August 2021, those who met our inclusion criteria were extracted (see subsection 
below). From the anonymized EHRs, the longitudinal measurements of eight blood parameters, namely, the 
whole blood counts in a microliter of lymphocytes, neutrophils, monocytes, and platelets, the NLR, and the 
serum concentrations or activity of CRP, LDH, D-Dimer, were collected. The longitudinal clinical status evalua-
tions (Sheba), and the dates of commencing steroid therapy and mechanical ventilation (Barzilai) were extracted 
for daily evaluation of the patient’s status.

Inclusion criteria.  Three sets of inclusion criteria, adjusted for the analysis and the structure of the datasets, 
were employed:

Inclusion criteria set 1: For the initial comparison of the longitudinal values of blood parameters between the 
non-deteriorating and deteriorating patients, the patients from Sheba were included if they (1) had an initial 
non-severe status evaluation, (2) had at least two days follow-up before becoming severe (deterioration) or 
discharge from hospital without deterioration, and (3) had at least one blood test record in the two weeks 
preceding the end of the follow-up.
Inclusion criteria set 2: For the development and internal validation of the model, the patients from Sheba 
were included if they (1) had an initial non-severe status evaluation, (2) had at least two days of follow-up, 
with records of the clinical status, (3) did not deteriorate in the first two days of their follow-up, and (4) had 
at least two blood tests taken more than 12 h apart over the 12 days preceding one prediction event, or more. 
Patients who had died with no record of deterioration were excluded.
Inclusion criteria set 3: For the external validation, the patients from Barzilai were included if they (1) had 
records of at least two days of follow-up before one of the deterioration-defining events has occurred, i.e., 
steroid therapy and mechanical ventilation (see below), (2) had at least two blood test records more than 12 h 
apart, over the 12 days preceding at least one prediction event time. Patients who had died with no record of 
the deterioration-defining events were excluded.
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Data processing.  In the EHRs of the Sheba cohort, the clinical status evaluation was available, based upon 
internationally accepted guidelines, as described above. This evaluation, on a five-level scale, was defined as 
follows. Asymptomatic Infection: individuals who test positive for SARS-CoV-2 using a nucleic acid amplifica-
tion test, but who have no relevant symptoms; Mild Illness: individuals who have any signs and symptoms of 
COVID-19 (e.g., fever, cough, sore throat, etc.) but without shortness of breath or abnormal chest imaging; 
Moderate Illness: individuals who show evidence of lower respiratory disease, still having an oxygen saturation 
(SpO2) ≥ 94% on room air; Severe Illness: individuals who have SpO2 < 94%, breaths/min ≥ 30, or lung infiltrates 
greater than 50%; and Critical Illness: patients with respiratory failure, septic shock, or multiple organ dysfunc-
tion. All the evaluations of the patients in the dataset were symptomatic, ranging from mild to critical. These data 
were converted into a binary representation, with the two better levels (mild and moderate) labeled as non-severe 
and the two worse levels as severe. In the Barzilai cohort, no clinical status evaluations were available. The records 
of the medical procedures were extracted for evaluating the time of the patient’s deterioration (see below).

Construction of training and validation datasets.  Two alternative prediction tasks were considered 
for developing the dynamic predictive models. One task was to predict whether a currently non-severe patient 
will deteriorate (i.e., become severe) in the next two days (48 h). The other task was to predict whether the non-
severe patient will deteriorate in the next four days (96 h). Accordingly, two prediction scopes were defined, one 
spanning the next 48 h and the other spanning the time interval of the next 96 h. The shorter scope covers the 
typical time of the subsequent status evaluation, and the longer one covers the next three status evaluations. A 
3-h margin was added to both prediction scopes, to allow the inclusion of borderline cases.

A follow-up period was defined for each patient, from the first evaluation as non-severe until either deterio-
ration (first evaluation as severe) or the last non-severe status evaluation if the patient did not deteriorate. For 
each patient, a sequence of events at which one could make the predictions was defined. For each event, the 
related dynamic features were computed from the blood parameter values, measured over the 12 days preceding 
this event, to serve as an input for the model. The outcome was defined based on the clinical status evaluation 
in the prediction scope of the event. The prediction events for the Sheba cohort were timed to every clinical 
status evaluation as non-severe during the follow-up. For each prediction event in the Sheba cohort dataset, the 
outcome was defined as equal to 1 or 0, according to whether the patient became severe within its prediction 
scope (i.e., during 48 or 96 h after the event). Events with no status evaluations within the prediction scope were 
omitted. The two resulting datasets (one for each prediction scope) were randomly split into 70% training and 
30% testing, ensuring that all the events of the same patient are either entirely in training or in the testing subset 
to prevent information leakage.

For the Barzilai cohort, the prediction events were timed at 8 pm on each hospitalization day, starting 48 h 
after the admission. Since the Barzilai cohort records did not include the clinical statuses of the patients, the 
patient’s deterioration time was evaluated as the first initiation of mechanical ventilation or the first application 
time of steroids (Dexamethasone, Florinef, Hydrocortisone, Prednisone, Medrol, or Dexa-cortisone). The pre-
diction events of this cohort were collected into two datasets, which differed only in the prediction scope used 
for outcome definition (48 h or 96 h). The event’s outcome was defined by the patient’s deterioration within its 
prediction scope (1) or else (0).

Dynamic features and imputation of missing data.  Dynamic features that captured each blood 
parameter’s change over time were created in all the datasets. These features were constructed separately for each 
of the eight blood parameters and were used as an input for the prediction model, at each event. The dynamic 
features, constructed at each prediction event independently, comprised linear slopes of interpolated values over 
past time intervals of various durations and the average value of the parameter over the last 48 h. Missing aver-
age values were imputed by the median, separately for each blood parameter. Missing slope values for all blood 
parameters, except D-dimer, were imputed by the slope values from the larger intervals of the same parameter 
on the same event. Missing slopes for D-dimer were imputed using iterative imputation via the IterativeImputer 
function in Python. Events with entirely missing dynamic features of at least one parameter were excluded.

Model training and validation.  Five ML models were trained, including XGBoost, RandomForest, Light 
Generalized Boosting Machine, Support Vector Classifier, and regularized Logistic Regression, using the scikit-
learn module v0.24.2 in Python 3.7. Each model was trained on the training sets (from the Sheba cohort) by 
an exhaustive search over a grid of meta-parameters, using the GridSearchCV function, with five-fold patient-
grouped CV, with an objective of maximizing ROC AUC (see details in Supplementary Information, Table S1). 
The selection of the dynamic features was also altered during the training, using four, five, or seven of the slopes 
for each blood parameter, computed over various time intervals preceding the event. Different class weighting 
schemes were considered, including enforcing balanced weights. For every setup, defined by the choice of the 
model, the class weights, and the included dynamic features, the meta-parameters of the model were selected, 
which yielded the maximal ROC AUC. Then, the performance of all the selected models in all the setups was 
re-evaluated by the LOpO CV on the training set.

The dynamic features in the final model included slopes over the last two and seven days, and past intervals of 
days 4–2, 6–3, and 8–4 before the event. To calibrate the model’s classification performance to a higher sensitivity 
level, the classification threshold of the final model was further tuned by fivefold CV on the training set for the 
objective of maximal specificity while maintaining sensitivity larger than 60%. The final model was tested on 
the internal and the external validation subsets (Table 1), constructing ROC curves, and evaluating ROC AUC, 
sensitivity, and specificity, with the tuned threshold values and a threshold of 0.5. All the above analysis, was 
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performed separately for the time scopes of 48 h and 96 h, obtaining separate models and accuracy evaluations 
for the two time scopes.

Ethics declaration.  The Institutional Review Board of the Sheba Medical Center approved the study; Hel-
sinki Committee approval Sheba Medical Center number—20-7953 and Barzilai Medical Center approval num-
ber 0003-21.

TRIPOD guidance.  The study was conveyed under transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis (TRIPOD) guidance34.

Data availability
No data repository is available for this study. Requests for the complete de-identified patient dataset addressed 
to the corresponding author will need to be reviewed by the Data Protection Officer of Sheba Medical Center 
and Barzilai University Medical Center. The authors made the appropriate materials available to the editorial 
staff during the review process to verify the results.
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