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Abstract

Mendelian randomization (MR) is a statistical method exploiting genetic

variants as instrumental variables to estimate the causal effect of modifiable

risk factors on an outcome of interest. Despite wide uses of various popular

two‐sample MR methods based on genome‐wide association study summary

level data, however, those methods could suffer from potential power loss

or/and biased inference when the chosen genetic variants are in linkage dis-

equilibrium (LD), and also have relatively large direct effects on the outcome

whose distribution might be heavy‐tailed which is commonly referred to as

the idiosyncratic pleiotropy phenomenon. To resolve those two issues, we

propose a novel Robust Bayesian Mendelian Randomization (RBMR) model

that uses the more robust multivariate generalized t‐distribution to model such

direct effects in a probabilistic model framework which can also incorporate

the LD structure explicitly. The generalized t‐distribution can be represented

as a Gaussian scaled mixture so that our model parameters can be estimated

by the expectation maximization (EM)‐type algorithms. We compute the

standard errors by calibrating the evidence lower bound using the likelihood

ratio test. Through extensive simulation studies, we show that our RBMR has

robust performance compared with other competing methods. We further

apply our RBMR method to two benchmark data sets and find that RBMR has

smaller bias and standard errors. Using our proposed RBMR method, we find

that coronary artery disease is associated with increased risk of critically ill

coronavirus disease 2019. We also develop a user‐friendly R package RBMR

(https://github.com/AnqiWang2021/RBMR) for public use.
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1 | INTRODUCTION

Mendelian randomization (MR) is a useful statistical
method that leverages genetic variants as instrumental
variables (IVs) for assessing the causal effect of a mod-
ifiable risk factor on a health outcome of interest even in
the presence of unmeasured confounding factors
(Ebrahim & Smith, 2008; Evans & Davey Smith, 2015;
Lawlor et al., 2008). Because of the inborn nature of ge-
netic variants, the associations between genetic variants
and phenotypes after adjusting for possible population
stratification will not be confounded by the environ-
mental factors, socioeconomic status and life styles after
birth. Genome‐wide association studies (GWAS) have
identified tens of thousands of common genetic variants
associated with thousands of complex traits and diseases
(MacArthur et al., 2017). Those GWAS summary level
data contain rich information about genotype–phenotype
associations (https://www.ebi.ac.uk/gwas/), and thus
provide us valuable resources for MR studies. Therefore,
we have seen a boost of two‐sample MR method devel-
opments and applications based on GWAS summary
statistics recently due to the increasing availability of
candidate genetic variant IVs for thousands of pheno-
types. (Bowden et al., 2015; Burgess et al., 2013; Pickrell
et al., 2016). In particular, a genetic variant serving as a
valid IV must satisfy the following three core assump-
tions (Lawlor et al., 2008; Martens et al., 2006):

1. Relevance: The genetic variant must be associated
(not necessarily causally) with the exposure;

2. Effective Random Assignment: The genetic variant
must be independent of any (measured or un-
measured) confounders of the exposure‐outcome
relationship;

3. Exclusion Restriction: The genetic variant must affect
the outcome only through the exposure, that is, the
genetic variant must have no direct effect on the
outcome not mediated by the exposure.

When these three core IV assumptions hold, the in-
verse variance weighted (IVW) (Ehret et al., 2011)
method can be simply used to obtain unbiased causal
effect estimate of the exposure on the outcome. However,
among those three core assumptions, only the IV re-
levance assumption can be empirically tested, for ex-
ample, by checking the empirical association strength
between the candidate IV and the exposure using the
GWAS catalog (https://www.ebi.ac.uk/gwas/). The asso-
ciation between the IV and the exposure must be strong
enough (the IV explains a large amount of the variation
of the exposure variable) to ensure unbiased causal effect
estimate. The problem of weak IVs has been studied

previously in the econometric literature (Bound et al.,
1995; Hansen et al., 2008). In MR settings, the method
that uses genetic score by combining multiple weak IVs
together to increase the IV‐exposure association strength
to reduce weak IV bias has also been proposed (Evans
et al., 2013). Unfortunately, the other two IV core as-
sumptions cannot be empirically tested and might be
violated in practice. Violation of the exclusion restriction
assumption can occur when the genetic variant indeed
has a non‐null direct effect on the outcome not mediated
by the exposure, referred to as systematic pleiotropy
(Solovieff et al., 2013; Verbanck et al., 2018; Q. Zhao,
Wang, et al., 2020). However, very often, genetic variants
might have relatively large direct effects whose dis-
tribution exhibits a heavy‐tailed pattern, a phenomenon
referred to as the idiosyncratic pleiotropy in this paper.
For example, there exists idiosyncratic pleiotropy when
estimating the causal effect of low‐density lipoprotein
(LDL) cholesterol on the risk of Alzheimer's disease.
In Section 4, we will describe more details about this real
data example.

To address those possible violations of the IV core
assumptions and potential risk, many efforts have been
made recently. The MR‐Egger regression method in-
troduced an intercept term to capture the presence of
unbalanced systematic pleiotropy under the Instrument
Strength Independent of Direct Effect (InSIDE) as-
sumption (Bowden et al., 2015). However, MR‐Egger
would be biased when there exists idiosyncratic pleio-
tropy. Z. Zhu et al. (2018) proposed the GSMR method
that removes suspected genetic variants with relatively
large direct effects and also takes the LD structure into
account by using the generalized least squares approach.
However, removal of a large number of relatively large
direct effects might lead to efficiency loss. Q. Zhao,
Wang, et al. (2020) proposed MR‐RAPS to improve sta-
tistical power for causal inference and limit the influence
of relatively large direct effects by using the adjusted
profile likelihood and robust loss functions assuming that
those single‐nucleotide polymorphism (SNP) IVs are in-
dependent. However, this independent IV assumption
might not hold in practice because SNPs within proxi-
mity tend to be correlated. Cheng et al. (2020) proposed a
two‐sample MR method named MR‐LDP that built a
Bayesian probabilistic model accounting for systematic
pleiotropy and LD structures among SNP IVs. One
drawback of the MR‐LDP method is that it cannot handle
relatively large direct effects well.

To overcome the limitations of those aforementioned
methods, we propose a more robust method named
“Robust Bayesian Mendelian Randomization (RBMR)”
accounting for LD, systematic and idiosyncratic pleiotropy
simultaneously in a unified framework. Specifically, to
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account for LD, we first estimate the LD correlation ma-
trix of SNP IVs and then explicitly include it in the model
likelihood. To account for idiosyncratic pleiotropy, we
propose to model the direct effects using the more robust
multivariate generalized t‐distribution (Arellano‐Valle &
Bolfarine, 1995; Frahm, 2004) which will be shown to
have improved performance than using the Gaussian
distribution when the idiosyncratic pleiotropy is present.
Moreover, this more robust distribution can be re-
presented as a Gaussian scaled mixture to facilitate model
parameter estimation using the parameter expanded var-
iational Bayesian expectation maximization algorithm
(PX‐VBEM) (Yang et al., 2020) which combines the VB‐
EM (Beal, 2003) and the PX‐EM (Liu et al., 1998) together.
We further calculate the standard error by calibrating the
evidence lower bound (ELBO) according to a nice prop-
erty of the likelihood ratio test (LRT). Both extensive si-
mulation studies in Section 3 and analysis of two real
benchmark data sets in Section 4 show that our proposed
RBMR method outperforms competitors. The real data
analysis results show that coronary artery disease (CAD) is
associated with increased risk of critically ill coronavirus
disease 2019 (COVID‐19) outcomes.

2 | METHODS

2.1 | The linear structural model

Suppose that we have J possibly correlated genetic
variants (e.g., SNPs) G j J, = 1, 2, …,j , the exposure
variable X , the outcome variable Y of interest and
unknown confounding factorsU . Let δX and δY denote
the effects of confounders U on exposure X and out-
come Y respectively. The coefficients γ j J( = 1, 2, …, )j

denote the SNP‐exposure true effects. Suppose that all
the IVs are valid, then the exposure can be represented
as a linear structural function of the SNPs, confounders
and an independent random noise term eX . The out-
come can be represented as a linear structural function
of the exposure, confounders and the independent
random noise term eY . The true effect size of the
exposure on the outcome is denoted as β0 . Then, we
have the following linear structural equation models
(Bowden et al., 2015):

X G γ Uδ e Y β X Uδ e= + + , = + + .
j

J

j j X X Y Y

=1
0

(1)

Let j JΓ ( = 1, 2, …, )j be the true effects of SNPs on
the outcome. With valid IVs, we have

β γΓ = .j j0 (2)

To accommodate possible violations of the exclusion
restriction assumption, we now consider the following
modified linear structural functions (Bowden et al., 2015):




X G γ Uδ e

Y G α β X Uδ e

= + + ,

= + + + ,

j

J

j j X X

j

J

j j Y Y

=1

=1
0

(3)

where the coefficients α j J( = 1, 2, …, )j represent the direct
effects of the SNPs on the outcome. Then we have

β γ αΓ = + .j j j0 (4)

So far, many existing MR methods assign the
Gaussian distribution on each direct effect αj , that
is α σ0 I~ ( , )J0

2 (Cheng et al., 2020; J. Zhao, Ming,

et al., 2020; Q. Zhao, Wang, et al., 2020), where
α α α= [ , …, ]J1

T is a J ‐dimensional vector of direct ef-
fects. However, real genetic data might contain some
relatively large direct effects whose distribution can
be heavy‐tailed, and thus the Gaussian distribution
might not be a good fit. Therefore, we propose to
assign the multivariate generalized t‐distribution on α
(Arellano‐Valle & Bolfarine, 1995; Kotz & Nadarajah,
2004), which is a robust alternative to the Gaussian
distribution (Frahm, 2004).

2.2 | The robust Bayesian MR model

Let  γ σ{ , }j X j J
2

=1, …,j
and  σ{Γ , }j Y j J

2
=1, …,j

be the GWAS

summary statistics for the exposure and the outcome
respectively, where  σ σ{ , }X Y

2 2
j j

are the corresponding esti-

mated standard errors. Many existing MR methods as-
sume that IVs are independent from each other (Bowden
et al., 2015; Ehret et al., 2011; Q. Zhao, Wang, et al.,
2020), and the uncorrelated SNPs can be chosen by using
a tool called LD clumping (Hemani et al., 2016; Purcell
et al., 2007), which might remove many SNP IVs and
thus cause efficiency loss. To include more SNP IVs even
if they are in LD, we need to account for the LD structure
explicitly. To achieve this goal, we use a reference panel
sample to assist with reconstructing LD matrix, such as
the 1000 Genome Project Phase 1 (N = 379) (The 1000
Genomes Project Consortium, 2012). We first apply the
LDetect method to partition the whole genome into Q

blocks (Berisa & Pickrell, 2016) and then estimate the LD

matrix Θ using the estimator Θ k Q( = 1, 2, …, )
k( )

first
proposed by Rothman (2012). Then, the distributions of
γ and Γ are given by

        ( )γ γ Θ σ σ Θ σ γ σ Θ σ, , ~ , ,X X X X X
−1 (5)
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        ( )Θ σ σ Θ σ σ Θ σΓ Γ Γ, , ~ , ,Y Y Y Y Y
−1 (6)

where  σ σ σ= diag([ , …, ])X X XJ1 and σ =diagY  σ σ([ , …, ])Y YJ1

are both diagonal matrices (X. Zhu & Stephens, 2017).
To account for the presence of idiosyncratic

pleiotropy, we propose to model the direct effects
α using the more robust multivariate generalized
t‐distribution (Ala‐Luhtala and Piché, 2016; Arellano‐
Valle & Bolfarine, 1995; Kotz & Nadarajah, 2004)
whose density function is given by

 

∕

∕

∕ ∕

∕



  










 

α

α α

α

t α β
f α J

f α πβ

β

w w α β w

Σ
Σ

Σ

0 Σ

( , , ) =
( + 2)

( )(2 )

1 +
1

2
( )

= ( , ) ( , )d ,

J w w
w

w w
J

w

α J

w w

1 2 2

T −1

−( + 2)w

(7)

where  ∕α w0 Σ( , ) denotes the J ‐dimensional Gaus-
sian distribution with mean 0 and covariance ∕wΣ ,

σΣ I= J0
2 is a J J× diagonal matrix, and  w α β( , )w w is

the Gamma distribution of a univariate positive vari-
able w referred to as a weight variable

 w α β
β

f α
w e( , ) =

( )
,w w

w
α

w

α β w−1 −
w

w w (8)

where f denotes the Gamma function. When α =w

∕β ν= 2w in equation (8), the distribution in Equation (7)
reduces to a multivariate t‐distribution, where ν is the de-
gree of freedom. Gaussian scaled mixture representation
enables the use of EM‐type algorithms for statistical in-
ference, such as the PX‐VBEM (Yang et al., 2020) described
in Section 2.3.

Then we denote the distribution of the latent variable
γ as

γ σ σ0~ ( , ),2 2 (9)

where σ σ I= J
2 2 is a J J× diagonal matrix. By assuming

that γ , α and w are latent variables, the complete data
likelihood can be written as








 

   

   



 

 

 

  ∕




  
( )
( ) ( )

γ α γ σ σ Θ θ h

σ Θ σ γ α σ Θ σ

γ σ Θ σ γ σ Θ σ α

w

β σ

σ w w α β

Γ

Γ 0 I

0 I

Pr( , , , , , , ; , )

= ( + ), ( , )

× , , ( , ).

X Y

Y Y Y Y

X X X X w w

J

J

−1
0

2

−1
0
2

(10)

2.3 | Estimation and inference

The standard expectation‐maximization (EM) algorithm
(Dempster et al., 1977) is a popular choice for finding the
maximum likelihood estimate in the presence of missing
(latent) variables. However, one difficulty for implementing
the EM algorithm is to calculate the marginal likelihood

function which might involve difficult integration with re-
spect to the distributions of the latent variables. In addition,
the original EM algorithm might be slow (Liu et al., 1998).
To address these numerical issues, we utilize a parameter
expanded variational Bayesian expectation‐maximization al-
gorithm, namely, PX‐VBEM (Yang et al., 2020), by replacing
the EM algorithm in VB‐EM (Beal, 2003) with PX‐EM al-
gorithm (Liu et al., 1998) to accelerate the speed of con-
vergence. To start with, for the purpose of applying the PX‐
EM algorithm, the distribution of γ in equation (5) can be
rewritten as follows:

        ( )γ γ Θ σ σ Θ σ γ σ Θ σζ, , ~ , .X X X X X
−1 (11)

We also rewrite the complete data likelihood in equation
(10) as:








 

   

   



 

 

 

  ∕



 

( )
( ) ( )

γ α γ σ σ Θ θ h

σ Θ σ γ α σ Θ σ

γ σ Θ σ γ σ Θ σ

w

β σ

ζ σ w w α β

Γ

Γ 0 I

0 I

Pr( , , , , , , ; , )

= ( + ), ( , )

× , , ( , ),

X Y

Y Y Y Y

X X X X w w

J

J

−1
0

2

−1
0
2

(12)

where the expanded model parameters for RBMR are

θ β σ σ ζ= { , , , }
def

0 0
2 2 . Let γ αq w( , , ) be a variational pos-

terior distribution. The logarithm of the marginal like-
lihood can be decomposed into two parts,



 
 

 












γ σ σ Θ θ h

γ σ σ Θ θ h

q q p

Γ

log Pr( , Γ , , ; , )

= [log Pr( , , , ; , )]

= ( ) + ( ),

X Y

γ α X Yq w( , , )
(13)

where









 

 












 








 






γ γ α σ σ Θ θ h

γ α

γ α

γ α γ σ σ Θ θ h

q
w

q w

q p
q w

p w

Γ

Γ

( ) = log
Pr( , , , , , , ; , )

( , , )
,

( ) = log
( , , )

( , , , , , , ; , )
.

γ α
X Y

γ α
X Y

q w

q w

( , , )

( , , )

(14)

Given that the  q( ) is an evidence lower bound (ELBO)
of the marginal log‐likelihood, the non‐negative
Kullback‐Leibler (KL) divergence q p( ) is equal to
zero if and only if the variational posterior distribution is
equal to the true posterior distribution. Minimizing the
KL divergence is equivalent to maximizing ELBO. Before
calculating the maximization of ELBO, due to the fact
that latent variables are independent of each other, the
decomposition form of the posterior distribution
γ αq w( , , ) is obtained using the mean field assumption

(Blei et al., 2017),

 γ αq w q γ q α q w( , , ) = ( ) ( ) ( ).
j

J

j
j

J

j

=1 =1

(15)
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In the PX‐VB‐E step, the optimal variational posterior
distributions for γ , α and w can be written as










 



( ) ( ) ( )

( )

γ αq μ σ μ σ q μ σ

μ σ

q w α β α β

, = , , ,

= , ,

( , ) = ( , ).͠ ͠͠ ͠

γ γ
j

J

γ γ α α

j

J

α α

w w w w

2

=1

2 2

=1

2

j j j j j j

j j

(16)

The updating equations for the parameters are given
by







 



 



 

≠

≠

≠



 

 















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















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
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Θ Θ
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(17)

where γ E γ[ ] = ( )j q j′

def

′ , α E α[ ] = ( )j j q j j′ ( )
def

′ ( ) and w E w[ ] = ( )q
def

.
In the PX‐VB‐M step, by setting the derivate of the ELBO

to be zero, the model parameters θ can be obtained as:





   

  

    

 


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∕

∕

{ }

{ }
{ }

( )
( )

( )

( ) ( )

{ }

μ σ Θσ μ σ Θσ

σ μ μ σ Θ σ μ

μ μ

μ μ

σ Θσ σ Θσ γ σ μ

β

σ J

σ α Jβ

ζ μ μ

S

Γ

S

S

S

= + Tr

− ,

= + Tr( ) ,

= + Tr( ) ,

= + Tr ,

͠ ͠

γ Y Y γ Y Y γ

Y γ α Y Y γ

γ γ γ

α

γ X X γ X X γ X γ

w α α w

T

0
T −1 −1 −1 −1

−1

T −2 T −1 −1

2 T

0
2 T

T −1 −1 −1 −1
−1

−2

(18)

where μ μ μ= ( , …, )γ γ γ
T

J1
, μ μ μ= ( , …, )α α α

T
J1

, S =diagγ

σ σ([ , …, ])γ γ
2 2

J1
and σ σS = diag([ , …, ])α α α

2 2
J1

. Finally, we
use the updated model parameters θ to construct the
evidence lower bound to check the convergence. Since
we adopt PX‐EM algorithm, the reduction step should
be used to process the obtained parameters. More
technical details can be found in the Supporting
Information.

After obtaining an estimate of the causal effect, we
further calculate the standard error according to the

property of likelihood ratio test (LRT) statistics which
asymptotically follows the χ1

2 under the null hy-
pothesis (Van der Vaart, 2000). We first formulate the
statistical tests to examine the association between
the risk factor and the outcome.

  ≠β β: = 0 : 0,a0 0 0
(19)

the likelihood ratio test (LRT) statistics for the causal
effect is given by









 

 








(

)( )

γ σ σ Θ h θ

γ σ σ Θ h θ

Λ = 2 log Pr( , Γ , , ; , ˆ ) − log Pr

, Γ , , ; , ˆ ,

X Y

X Y

ML

ML

0

(20)

where θ̂
ML

0 and θ̂
ML

are collections of parameter esti-
mates obtained by maximizing the marginal likelihood
under the null hypothesis 0 and under the alternative
hypothesis a . We utilize PX‐VBEM algorithm to max-
imize the ELBO to get the θ and θ0 instead of max-
imizing the marginal likelihood to overcome the
computational intractability. Although PX‐VBEM pro-
duces accurate posterior mean estimates (Blei et al., 2017;
Dai et al., 2017; Yang et al., 2018), it would underestimate
the marginal variance because we use the estimated
posterior distribution from the ELBO to approximate the
marginal likelihood in equation (20) (Wang &
Titterington, 2005). Thus, we calibrate ELBO by plugging
our estimates (θ and θ0 ) from PX‐VBEM into the
equation (20) to construct the test statistics (Yang
et al., 2020):








 

 







γ σ σ Θ h θ

γ σ σ Θ h θ

Λ′ = 2(log Pr( , Γ , , ; , ˆ ) − log Pr

( , Γ , , ; , ˆ )).

X Y

X Y 0

(21)

Then, we can get the well‐calibrated standard error

as   ∕se β β Λ( ) = ′0 0 .

3 | SIMULATION STUDIES

Although our proposed method is based on GWAS
summary level data, we still simulate the individual‐level
data to better mimic real genetic data sets. Specifically,
the data sets are generated according to the following
models:

X γ η ε Y α η εβG U X G U= + + , = + + + ,X X X Y Y YX Y0

(22)

where ∈X n ×1X is the exposure vector, ∈Y n ×1Y is the
outcome vector, ∈GX

n J×X and ∈GY
n J×Y are the

genotype data sets for the exposure X and the outcome
Y , ∈UX

n N×X 0 and ∈UY
n N×Y 0 are matrices for con-

founding variables, nX and nY are the corresponding
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sample sizes of exposure X and outcome Y , J is the
number of genotyped SNPs. The error terms εX and εY
are independent noises generated from  σ0 I( , )ε n

2
X X

and

 σ0 I( , )ε n
2
Y Y

, where the values of σε
2
X
and σε

2
Y
are around

0.8 and 0.4 on average, respectively. In model (22), β0 is
the true causal effect and α represents the direct effect of
the SNPs on the outcome not mediated by the exposure

variable, where α σ~ (0, )j
i i d. .

0
2 , j = 1, 2, …, 500. To si-

mulate the idiosyncratic pleiotropy, we randomly select
5% of IVs so that their direct effect αj s have mean 0 and
standard deviation σ40 0 , where σ = 0.0080

2 .
An external reference panel ∈Gr

n J×r is chosen for
estimating the LD matrix among SNPs, where n = 5000r

is the sample size of the chosen reference panel. We
used the R package MR.LDP to generate the genotype
matricesGX ,GY andGr by mimicking the LD structure in
the CAD‐CAD data set as in Section 4. We fix
n n= = 20000X Y . The number of blocks is set to be 10
and the number of SNPs within each block is 50. Thus, the
total number of SNPs is J = 500. The confounders are
generated as follows:

ϕ ξ

ϕ ξ

U G

U G

= + ,

= + .

X X X

Y Y Y

U

U

X

Y

(23)

Each row of ϕX and ϕY is sampled from  σ0 I( , )ϕ n
2
X X

and  σ0 I( , )ϕ n
2
Y Y

, where σ σ= = 0.01ϕ ϕX Y
, respectively.

We sample each column of ξUX
and ξUY

from a stan-

dard normal distribution, while each row of the
corresponding coefficients ∈ηX

N ×10 and ∈ηY
N ×10

of the confounders is sampled from a multivariate
normal distribution  S0( , )η where the diagonal ele-
ments of ∈Sη

2×2 are 1 and the off‐diagonal elements
are 0.85. The signal magnitude for α is controlled
by the heritability hα due to systematic pleiotropy,

h = = 0.05α
α

Y

G2 var( )

var( )
Y . The signal magnitude for γ is chosen

such that the heritability h = = 0.1γ
γ

Y

β G2 var( )

var( )

X0 . Then we

control the heritability for X at 0.1. The true causal effect
β0 is set to be 1.

We first run single‐variant genetic association
analysis for the exposure and the outcome respectively,
and then we obtain the summary‐level statistics
 γ{ , Γ }j j j=1,2, …, 500 with their corresponding standard errors
 σ σ{ , }X Y j=1,2, …, 500j j

. Then we use the summary‐level data to
conduct MR analyses using the proposed RBMR, MR‐
LDP, MR‐Egger, RAPS, GSMR and IVW methods. As the
prerequisite for MR‐Egger, RAPS and IVWmethods is that
the IVs are independent of each other, we perform LD
pruning by controlling the LD r2 at the threshold 0.05 (Z.
Zhu et al., 2018). We repeat the simulations for 500 times.

We evaluate the type‐I error rates under the null that
β = 00 and evaluate the estimation accuracy of point
estimates under the alternative that β = 10 . Figures 1
and 2 display the point estimates and type‐I error rates
for all the methods. As shown in Figure 2, the proposed
RBMR and MR‐LDP methods control the type‐I errors
at the nominal level 0.05. Although after LD pruning,
genetic variants are independent, however, the com-
peting methods, GSMR, RAPS, MR‐Egger and IVW still
fail to control the type‐I error because of the presence of
idiosyncratic pleiotropy. We found that our method
RBMR and MR‐LDP are more stable than the other four
methods as shown in Figure 1a. But we found that our
method RBMR is more accurate than MR‐LDP in terms
of relative bias, root mean square error (RMSE%) and
coverage probabilities as shown in Figure 1b and
Table 1. We conducted more simulation studies and
obtain essentially the same conclusion. Detailed results
are provided in the Supporting Information.

(a) (b)

FIGURE 1 Comparisons of MR methods affected by the LD and pleiotropy. (a) Boxplot and (b) point estimates and 95% confidence
intervals. LD, linkage disequilibrium; MR, Mendelian randomization
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4 | REAL DATA ANALYSIS

In this section, we analyzed four real data sets to de-
monstrate the performance of our proposed method. The
1000 Genome Project Phase 1 (1KGP) is used as the re-
ference panel to compute the LD matrix (The 1000
Genomes Project Consortium, 2012). We first analyze
two benchmark data sets commonly used for method
comparison purpose, then we will estimate the causal
effect of coronary artery disease (CAD) on the risk of
critically ill COVID‐19 outcomes defined as those who
end up on respiratory support or die from COVID‐19. We
also estimate the causal effect of low‐density lipoprotein
(LDL) cholesterol on the risk of Alzheimer's disease.

The first benchmark data analysis is based on the
summary‐level data sets from two nonoverlapping
GWAS studies for the coronary artery disease (CAD),
usually referred to as the CAD‐CAD data. The true
causal effect should be exactly one. The selection data
set is from the Myocardial Infarction Genetics in the
UK Biobank, the exposure data is from the Coronary
Artery Disease (C4D) Genetics Consortium (Coronary
Artery Disease (C4D) Genetics Consortium, 2011), and
the outcome data is from the transatlantic Coronary
Artery Disease Genome Wide Replication and Meta‐

analysis (CARDIoGRAM) (Schunkert et al., 2011). We
first filter the genetic variants using the selection data
under different association p‐value thresholds (p‐value
≤1 × 10 , 5 × 10 , 1 × 10−4 −4 −3). Then we applied our
proposed RBMR method and the MR‐LDP to all the
selected and possibly correlated SNPs by accounting for
the LD structure explicitly. We applied the GSMR,
IVW, MR‐Egger and MR‐RAPS methods using the in-
dependent SNPs after LD pruning at the LD threshold
0.05. We obtain causal effect point estimates and the
corresponding 95% confidence intervals (CI) as shown
in Figure 3a. We found that our proposed RBMR
method outperforms other methods because it has the
smallest bias and shortest confidence intervals for a
range of p‐value thresholds. Our proposed method
RBMR used all selected SNPs (without LD pruning) in
the selection data set and thus we might obtain more
accurate causal effect estimate. However, other meth-
ods might be biased due to the pruning process, be-
cause the pruning process might filter out the “good”
IVs and keep the “bad” IVs.

To further investigate the performance of our pro-
posed RBMR method, we consider the case that both the
exposure and outcome are body mass index (BMI). We
select SNPs based on previous research (Locke et al.,
2015). The exposure is the BMI for physically active
men and the outcome is the BMI for physically active
women, both are of European ancestry (https://portals.
broadinstitute.org/collaboration/giant/index.php/GIANT_
consortium_data_files#2018_GIANT_and_UK_BioBank_
Meta_Analysis_for_Public_Release). The point estimates
and the corresponding 95% confidence intervals are
shown in Figure 3b. We found that our proposed RBMR
method has smaller bias than other competing methods.
More numerical results are provided in the Supplemen-
tary Materials.

We apply our proposed RBMR method together with
other competing methods to estimate the causal effect of
CAD on the risk of critically ill coronavirus disease 2019

FIGURE 2 Comparisons of the type I error
rates for MR methods affected by the LD and
pleiotropy. LD, linkage disequilibrium; MR,
Mendelian randomization

TABLE 1 Comparisons of the point estimates in the terms of
bias%, RMSE%, and the coverage probabilities

Method β Bias% RMSE% Cover%

RBMR 0.962 −3.837 7.583 94.000

MR‐LDP 0.929 −7.107 8.834 86.000

GSMR (prune) 0.905 −9.549 18.728 5.000

RAPS (prune) 1.210 20.981 155.223 87.000

MR‐Egger (prune) 0.865 −13.484 27.689 86.000

IVW (prune) 0.882 −11.768 19.996 73.000

Abbreviation: RMSE, root mean square error.
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(COVID‐19) defined as those who end up on respiratory
support or die from COVID‐19. Specifically, the selec-
tion data set is the Myocardial Infraction Genetics in the
UK Biobank and the exposure data set is from Coronary
Artery Disease (C4D) Genetics Consortium (2011). The
outcome is obtained from Freeze 5 (January 2021) of the
COVID‐19 Host Genetics Initiative (COVID‐19 HGI)
Genome‐Wide Association Study (COVID‐19 Host
Genetics Initiative, 2020) (https://www.covid19hg.org/
results/). The data combines the genetic data of 49562

patients and two million controls from 46 studies across
19 countries (COVID‐19 Host Genetics Initiative, 2021).
We mainly consider the GWAS data on the 6179 cases
with critical illness due to COVID‐19 and 1483780
controls from the general populations in our analysis.
We use the selection data with p‐value ≤1 × 10−4

threshold to select genetic variants as IVs. As shown in
Figure 4, we found a significant effect of CAD on the
risk of critically ill COVID‐19 using our RBMR method
(β = 0.261, p‐value = 0.008, 95% CI = [0.067, 0.454]),

(a) (b)

FIGURE 3 The results of CAD‐CAD and BMI‐BMI using 1KGP as the reference panel with shrinkage parameter λ = 0.15. The SNPs are
selected at the three thresholds (p‐value ≤1 × 10 , 5 × 10 , 1 × 10−4 −4 −3). (a) point estimates and 95% confidence intervals of CAD‐CAD,
(b) point estimates and 95% confidence intervals of BMI‐BMI. BMI, body mass index; CAD, coronary artery disease; SNP, single‐nucleotide
polymorphism

(a) (b)

FIGURE 4 The results of CAD‐COVID‐19 using 1KGP as the reference panel with shrinkage parameter λ = 0.1. The 220 SNPs are
selected at the threshold (p‐value ≤ 1 × 10−4). Each point of the scatter plot is augmented by the standard errors of Γj on the vertical and
horizontal sides respectively. Dashed lines are the slopes fitted by the six methods. (a) point estimates and 95% confidence intervals,
(b) scatter plot. CAD, coronary artery disease; SNP, single‐nucleotide polymorphism
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MR‐LDP (β = 0.258, p‐value = 0.009, 95% CI = [0.065,

0.452]), GSMR (β = 0.201, p‐value = 0.045, 95% CI =
[0.004, 0.398]), MR‐Egger (β = 0.313, p‐value = 0.036,

95% CI = [0.020, 0.605]) and IVW (β = 0.201,
p‐value = 0.045, 95% CI = [0.005, 0.397]). However,

the result of GSMR (β = 0.268, p‐value = 0.073, 95%
CI = [−0.025, 0.561]) is not significant (p‐value> 0.05).
Our RBMR is more accurate as its confidence interval is
slightly shorter and its p‐value is more significant.

We further apply our proposed RBMR and other com-
peting methods to estimate the causal effect of LDL cho-
lesterol on the risk of Alzheimer's disease. The selection
data set is from Teslovich et al. (2010) with 95454 in-
dividuals, and the exposure data set is from Willer et al.
(2013) with 188577 individuals. The outcome data set is
obtained from the stage 1 meta‐analysis of four GWAS
samples (n=54,612) of the International Genomics of
Alzheimer's Project (Lambert et al., 2013). We select the
SNPs at the p‐value threshold 5 × 10−8. The results are
summarized in Figure 5. We find that the causal effect of

RBMR is β = 0.122 (p‐value=1.156 × 10−3, 95% CI=
[0.048, 0.196]), the estimate of MR‐LDP is β = 0.232
(p‐value=1.242 × 10−3, 95% CI= [0.091, 0.374]) and the

estimate of RAPS is β = 0.152 (p‐value=5.506 × 10−7,
95% CI= [0.093, 0.212]). The estimates of IVW (β = 0.858,
p‐value=6.648 × 10−7, 95% CI= [0.520, 1.196]) and the

MR‐Egger (β = 1.472, p‐value=1.574 × 10−6, 95% CI=
[0.871 2.072]) are much larger than the estimates of RBMR,
MR‐LDP and RAPS. And the estimate of GSMR

(β = 0.033, p‐value= 0.393, 95% CI= [−0.043 0.109]) is
much smaller than the estimates of RBMR, MR‐LDP, and
RAPS. Since there exists obvious idiosyncratic pleiotropy in

this data set, hence the estimates of IVW, MR‐Egger and
GSMR are likely to be biased. Both RAPS and MR‐LDP use
the normal distribution to model the direct effects which
might be violated in the presence of the idiosyncratic
pleiotropy as in this data set, therefore the estimates of
RAPS and MR‐LDP might have upward bias.

5 | DISCUSSION

In this paper, we propose a novel two‐sample robust MR
method RBMR by accounting for the LD structure,
systematic pleiotropy, and idiosyncratic pleiotropy si-
multaneously in a unified framework. Specifically, we
propose to use the more robust multivariate generalized
t‐distribution rather the less robust Gaussian distribu-
tion to model the direct effects of the IV on the outcome
not mediated by the exposure. Moreover, the multi-
variate generalized t‐distribution can be reformulated as
Gaussian scaled mixtures to facilitate the estimation of
the model parameters using the parameter expanded
variational Bayesian expectation‐maximum algorithm
(PX‐VBEM). Through extensive simulations and analy-
sis of two real benchmark data sets, we found that our
method outperforms the other competing methods. We
find that CAD might increase the risk of critically ill
COVID‐19, and higher level of LDL cholesterol might
increase the risk of Alzheimer's disease.

We make the following two major contributions.
First, our method can account for the LD structure ex-
plicitly and thus can include more possibly correlated
SNPs to reduce bias and increase estimation efficiency.
Second, our RBMR method is more robust to the pre-
sence of idiosyncratic pleiotropy. This enhanced robust-
ness can be very helpful in practice as shown by our
simulation studies and real data analysis. One limitation
of our proposed method is that it cannot handle corre-
lated pleiotropy where the direct effect of the IV on the
outcome might be correlated with the IV strength. We
leave it as our future work.
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FIGURE 5 The results of LDL cholesterol on Alzheimer's
disease using 1KGP as the reference panel with shrinkage
parameter λ = 0.15. The 292 SNPs are selected at the threshold
(p‐value≤5 × 10−8). Each point of the scatter plot is augmented by
the standard errors of Γj and γj on the vertical and horizontal sides
respectively. Dashed lines are the slopes fitted by the six methods.
LDL, low‐density lipoprotein; SNP, single‐nucleotide
polymorphism
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