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A Deep Intronic, Pathogenic Variant in DNAH11
Causes Primary Ciliary Dyskinesia

To the Editor:

Primary ciliary dyskinesia (PCD, OMIM#244400) is a rare
respiratory disease resulting in chronic oto-sino-pulmonary disease,
bronchiectasis, infertility, and organ laterality defects. Classically

investigated through ciliary ultrastructural analysis on transmission
electron microscopy (TEM), immunofluorescent (IF) staining of
ciliary proteins, and genetic testing, PCD is difficult to diagnose as
these investigations may be inconclusive, though low nasal nitric
oxide (nNO)may bolster diagnostic suspicion of PCD (1, 2). Next
generation sequencing and whole exome sequencing technologies
have expanded the genetic basis for PCD to.50 different genes,
mostly with autosomal recessive trait (3, 4). Current genetic testing
fails to diagnose 20–30% of probable PCD cases (5), but the
diagnostic contribution from genetic analysis of noncoding (intronic)
regions has not been extensively evaluated in PCD.

DNAH11 (dynein axonemal heavy chain 11, OMIM#603339) is
a common PCD-related gene, encoding an outer dynein arm protein.
Yet, TEM inDNAH11-associated cases is normal with intact dynein
arms (6).DNAH11 is difficult to detect on IF testing, often leaving
low nNO as the sole diagnostic clue (3, 7). In one cohort, 25% of
unsolved PCD cases with normal TEM harbored monoallelic,
pathogenic variants inDNAH11, without a second disease-causing
DNAH11 variant (6). The recent report of a deep intronic, disease-
causing variant inDNAH11 at c.6547–963G.A (8) led us to
test for this variant in our probable PCD population.

Recruited under the auspices of Genetic Disorders ofMucociliary
Clearance Consortium (GDMCC), we investigated 22 unrelated cases
with clinical PCD (compatible phenotype and low nNOwhen available),
but non-informative TEM and non-diagnostic genetic testing, with only
1 pathogenic/likely pathogenic variant identified inDNAH11
(NM_001277115.1). These cases underwent targeted screening for the
recently identifiedDNAH11 deep intronic variant c.6547–963G.A (8),
while further whole genome sequencing was not performed.

Human study protocols were approved by site Institutional
Review Boards. Polymerase chain reaction on genomic DNA
was performed at 60�C annealing temperature using a described
protocol (9). TheM13-tagged gene-specific primers 59-M13-
AGAGGATGGCAGTATATGGAAC-39 (forward) and 59-M13-
TAGAGACCAGGGAGGTTGCT-39 (reverse) were used for
amplification followed by direct Sanger sequencing using M13
primers or by restriction-enzyme (BPU10I fromNew England
Biolabs) digestion per the manufacturer’s instructions, following
product visualization by 2% agarose gel electrophoresis. The resulting
amplicon (729-bp) upon restriction digestion is expected to abrogate
the BPU10I site in the presence of a c.6547–963G.A heterozygous
variant yielding 4 fragments (621-bp, 360-bp, 261-bp, and 108-bp)
versus 3 fragments (360-bp, 261-bp, and 108-bp) for the wild-type.

The c.6547–963G.A deep intronic variant was identified in one
French-Canadian adolescent female also harboring a canonical splice-
donor site variant c.57781 1G.A (p.splice), previously found on
clinical multigene testing (plus one pathogenicCFTR variant, with
negative sweat chloride testing). Parental segregation revealed the
proband’s father andmother were carriers of c.57781 1G.A
(p.splice) and c.6547–963G.A variants, respectively (Figure 1). This
patient had classic PCD symptoms, including neonatal respiratory
distress, year-round wet cough and nasal congestion from birth, and
recurrent bronchitis, sinusitis, and otitis but lacked bronchiectasis or
laterality defects on computed tomography at 14 years old. Nasal nitric
oxide values were low at 19 nL/min on two occasions, and spirometry
showed a forced expiratory volume in 1 second at 104% predicted.

Previously, we demonstrated aberrant splicing by transcript
analysis of the c.57781 1G.A variant, confirming its pathogenicity
by causing an out-of-frame deletion of exons 32 to 35, predicted to lead
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Figure 1. Segregation and location of pathogenic variants in DNAH11 (dynein axonemal heavy chain 11), ciliary ultrastructure, and computed
tomography of the chest for proband #3712. (A) Clinical multigene panel by Blueprint Genetics (https://blueprintgenetics.com/tests/panels/
nephrology/primaryciliary-dyskinesia-panel/) using next generation sequencing was performed for proband (#3712). A canonical splice site
variant c.5778 1 1G.A (p.splice) in intron 33 (IVS33) (https://www.ncbi.nlm.nih.gov/snp/rs72657333) was identified in DNAH11 (NM_
001277115.1). Upon targeted testing, a deep intronic variant c.6547–963G.A (p.splice) in intron 39 (IVS39) (https://www.ncbi.nlm.nih.gov/snp/
rs764374746) was identified in the proband. Segregation analysis using Sanger sequencing as well as restriction digestion with BPU10I
(restriction-enzyme) from an unaffected father (#3713) and mother (#3714) revealed both variants were inherited in trans, consistent with
autosomal recessive trait. Males and females are designated by square and circles, respectively. Filled symbol with an arrow shows proband
with primary ciliary dyskinesia (PCD) and symbols with a dot within shows carrier status. (B) Targeted screening for the deep intron 39 variant
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to premature translation termination (p.Val1821Thrfs*8) (6). Aberrant
transcript on lymphoblastoid cells has been reported in an ‘online
supplement’ for the c.6547–963G.A variant, causing activation of a
cryptic exon of 38-bp within intron 39 (chr7:21,746,318- 21,746,355)
(8). The out-of-frame inclusion of the cryptic exon is predicted to cause
premature translation termination (p.Ile2183Lysfs*15) (8). The
c.6547–963G.A variant is rare and absent from gnomAD, ClinVar,
HGMD and other samples in the 100,000 Genomes Project (8).

We report a confirmed case of PCDwith a deep intronic,
pathogenic variant in a common PCD-related gene,DNAH11. This
variant was recently reported in one case as likely pathogenic per
American College ofMedical Genetics guidelines (10) based on its
rarity in public variant databases, inheritance in transwith another
loss-of-function variant, prediction of being deleterious by in-silico
method, and transcript analysis (8). Of note, the previously reported
intronic variant appeared in trans with a different exonic variant than
we report here. In that report, authors identified the non-coding,
seemingly pathogenic variant using computational methods and the
SpliceAI package (splicing prediction program) that directed follow on
transcript analysis, showing this approach to be a superior strategy for
discovery and the initial pathogenicity classification of non-coding
splice site variants. Despite this advancement, accurate interpretation
of genetic variants remains challenging with available guidelines (10)
and becomes evenmore challenging when dealing with non-coding
variants. Inclusion of our additional case further supports the
pathogenic nature of this variant and suggests other probable PCD
cases with monoallelic, disease-causing variants are ideal candidates for
whole genome sequencing and computational analysis to investigate
“second hits” in non-coding regions of their suspected PCD gene.

Some PCD patients with splice site variants manifest milder
disease phenotypes (11, 12). Our case is congruent with this concept,
showing excellent lung function and lack of bronchiectasis in
adolescence. However, PCD severity from non-coding variants has not
been described, and it is unclear if the mild phenotype here is driven by
the deep intronic splice variant or in combination with the perhaps
‘leaky’ canonical splice-donor site variant. Further characterization of
these variants at the protein and cellular levels are warranted to explore
basic processes and interactions whichmay shed light on the milder
phenotype observed in our patient with this intronic variant.

A similar disease-causing, deep intronic variant has been
reported in the CCDC39 gene (13). DNAH11 and CCDC39 are
two common PCD-related genes and account for 6–9% and
4–9% of PCD cases, respectively (3). These are larger genes, with
82 exons in DNAH11 and 20 exons in CCDC39. The larger sizes
increase the likelihood of harboring disease-causing, exonic
variants. One can postulate a similar increase in disease-causing,
intronic variants. Following this logic, other large PCD genes,
including DNAH5, DNAI1, HYDIN, and CCDC40 are ideal

candidates for further intronic investigations. To our knowledge,
no other deep intronic, disease-causing variants have been
reported in PCD, a genetically heterogeneous disease, where
20–30% of patients have inconclusive genetic testing.
Exploration of noncoding regions will be key to establishing
genetic diagnoses in other unsolved PCD cases.�
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