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Abstract

The heterogeneous, nonlinear, anisotropic material behavior of biological tissues makes precise 

definition of an accurate constitutive model difficult. One possible solution to this issue would 

be to define microstructural elements and perform fully coupled multiscale simulation. However, 

for complex geometries and loading scenarios, the computational costs of such simulations can 

be prohibitive. Ideally then, we should seek a method that contains microstructural detail, but 

leverages the speed of classical continuum-based finite-element (FE) modeling. In this work, we 

demonstrate the use of the Holzapfel-Gasser-Ogden (HGO) model [1, 2] to fit the behavior of 

microstructural network models. We show that Delaunay microstructural networks can be fit to the 

HGO strain energy function by calculating fiber network strain energy and average fiber stretch 

ratio. We then use the HGO constitutive model in a FE framework to improve the speed of 

our hybrid model, and demonstrate that this method, combined with a material property update 

scheme, can match a full multiscale simulation. This method gives us flexibility in defining 

complex FE simulations that would be impossible, or at least prohibitively time consuming, in 

multiscale simulation, while still accounting for microstructural heterogeneity.
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1. Introduction

Biological soft tissues are complex, hydrated composites, typically simplified as a mixture 

of fibrous proteins (primarily collagen and elastin) and cells [3, 4]. The multi-constituent 

nature of tissues and the dependence on crimped collagen fibers to add structural 

reinforcement makes tissue mechanical behavior inherently nonlinear. The heterogeneous 

distribution of constituents due to the varied mechanical loading environments, and 

the various microstructural requirements of cell populations also tend to make tissues 

anisotropic (Fig. 1). The behavior of these tissues, including dissonant behavior from tissue 

to tissue (e.g. auxetic behaviors in tendon/ligaments [5, 6] compared to the relative rubber-

like behavior of arteries [7–11]), makes defining a consistent constitutive model challenging.

Despite the complexity of tissue microstructure, a number of models have been proposed 

in the continuum framework to define the nonlinear, anisotropic material behavior. By far 

the most common method for defining the nonlinearity of soft tissues is by treating the 

material as having stress developed as an exponential of strain [1, 12–16]. Perhaps the most 

significant, and widely used constitutive model for nonlinear, anisotropic materials is the 

Holzapfel-Gasser-Ogden (HGO) model [1, 2]. The beauty of this model is in its simplicity, 

its broad applicability [17–28], and its adaptability and ability to be extended [20, 29–34]. 

In its most basic form, the model is described by a strain energy density function of a 

neo-Hookean ground substrate with an exponential anisotropic fiber component. The HGO 

model is given by:

W = W m + W f = C1 I1 − 3 + C2/ 2C3 [exp(C3 I4 − 1 2) − 1] Eq. 1

where Wm is the non-fibrillar matrix strain energy density, Wf is the fiber strain energy 

density, C1 is the neo-Hookean material parameter, I1 = CII is the first strain invariant of the 

right Cauchy-Green tensor (CIJ), C2 is the fiber modulus term, C3 is the fiber nonlinearity, 

and I4 = aI
0CIJaJ

0 is the fourth strain invariant of the right Cauchy-Green tensor CIJ and a0 is 

a vector describing the fiber direction.

A critical simplification in the analysis of such tissue behavior is the assumption that 

the deformation of the underlying fiber network is affine [35]. This assumption has been 

used countless times to lead to different soft tissue models based on invariants and/or the 

complete fiber distribution. However, the detailed microstructural behavior of a tissue is not, 

in general, affine [36, 37]. This fact leads to the use of multiscale models where one can 

precisely define the microstructure while still leveraging the advantages of finite-element 

modeling [38–50]. Of course, the necessity of solving many microstructural problems in the 

pursuit of modeling the deformation of a specific tissue leads to a huge computational cost. 

This computational cost is especially exacerbated when one adds in multi-physics such as 

tissue failure, fluid dynamics, or microstructural remodeling [22, 24, 25, 51–63]. Thus, the 
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ideal scenario would be to use the microstructural models when we need the structural and 

mechanical detail, but use a constitutive model (like the HGO) with a finite element solver 

when we need to run large-scale, multi-physics models.

In this work, we propose a hybrid modeling approach in which we fit an HGO model 

to deformations imposed on a microstructural element, then use the HGO constitutive 

model to enhance the speed of the finite element simulation. This technique allows one 

to examine microstructural features when necessary without generating and solving all 

the microstructural problems during the finite element solution. In this way, we enhance 

the flexibility in multiscale modeling by allowing for the use of larger domains with 

heterogeneous material definitions and complex boundary conditions without the need to 

run computationally expensive fully coupled multiscale simulations via a supercomputer.

2. Methods

2.1 Mechanics Mathematical Preliminaries

Kinematic quantities important in the following analysis are given here. The first important 

descriptor is the deformation gradient, F, which maps the deformation from the undeformed 

domain to the deformed domain. Out of the deformation gradient comes the Jacobian, 

J which is given as the determinant of F, and represents the volume change due to 

the deformation. Additional important kinematic variables are the right Cauchy-Green 

tensor C, defined by CIJ = FkIFkJ, and the Green-Lagrange strain tensor E, defined by 

EIJ = 1
2 CIJ − δIJ  where δIJ is the Kronecker delta. In this work, we also use several strain 

invariants. The isotropic first strain invariant, I1 = CII, and the transverse isotropic fourth 

strain invariant, I4 = aI
0CIJaJ

0, dictated by a direction vector, a0. We further define the fourth 

strain invariant as the square of the averaged fiber stretch I4 = HIJCIJ = λf
2 , where HIJ 

is the generalized structure tensor (defined below) and λf is the averaged fiber stretch. A 

number of mechanics quantities are also addressed in the following analysis. The first is the 

concept of stress. The Cauchy stress carries the physical interpretation of force per current 

cross-sectional area and is defined as σ = 2
J F ∂W

∂C FT  where W is the strain energy density 

function for the material. The second Piola-Kirchoff stress is defined S = ∂W
∂E = JF−TσF−1, 

which carries no meaningful physical interpretation, but does represent a useful quantity 

for purposes of calculation due to both force and area being mapped to the reference 

configuration.

2.2 Methodological Principles

Our goal is to convert a discrete fiber network model, which allows a high degree 

of structural fidelity but is computationally intensive, into an HGO model, which is 

computationally much more tractable. Because our goal is computational simplicity, we use 

the simple form of the HGO model shown above in Eq. 1. It is routinely assumed in affine 

models of this type that the constitutive equation can be written in terms of independent 

contributions from a non-fibrous matrix and the fiber network. The non-fibrous matrix is 

often incompressible or includes a volume-dependent term to limit material compressibility. 
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Similarly, in multiscale models [43–45], a separate neo-Hookean matrix is introduced in 

parallel to the network. For the present analysis, it is therefore assumed that the fiber 

network contribution is distinct from the neo-Hookean, incompressible non-fibrillar matrix, 

and the current work focuses on the fiber network contribution only. The fundamental 

challenge to be addressed is to convert a fiber network model into one based on the fiber 

stretch via I4 (i.e. aI
0CIJaJ

0 in a model of the classical HGO form). That is, the problem is to 

determine parameters C2 and C3 such that the model

W f = C2/(2C3 [exp(C3 I4 − 1 2) − 1] Eq. 2

yields a fiber-network strain energy density function Wf that matches the results from the 

network computations. Here we delineate the difference between the square stretch, I4, in a 

given direction a0, and the square stretch in the average fiber direction 〈I4〉 = HIJCIJ. The 

invariant 〈I4〉 is calculated as the double contraction of a generalized structure tensor HIJ 

with the right Cauchy-Green tensor CIJ. The generalized structure tensor HIJ is defined as

HIJ = 1
V ∫

Ω
NI

mNJ
mdV =

∑m = 1
k V mNl

mNJ
m

∑m = 1
k V m Eq. 3

where Nm is the unit vector in the direction of fiber m, and Vm = π(Rm)2Lm is the volume 

of a fiber with radius, Rm and length, Lm. The calculation of the generalized structure tensor 

and its use to calculate 〈I4〉 are based on the underlying assumption that, in general, the 

network behaves affinely. This calculation does not account for different properties of fibers 

such as the tension-compression asymmetry of fiber response, or the different fiber types 

that might occur (e.g., collagen and elastin). There are also differences incurred because the 

fibers are exponential and the deformation in a network is not affine, meaning the apparent 

modulus of any given fiber need not be the same as any other or, in fact, the average 

fiber. There are several ways one could approach this problem, including calculating the 

end-state hij = FiKHKLFjL for the network and mapping it back to the undeformed domain 

with or without those fibers that are in compression. This strategy, however, would rely on 

an accurate representation of the deformation, which is often unknown a priori. A second 

option would be to not calculate the structure tensor from the fiber network, but instead 

treat its components as additional fitting parameters. Doing so, however, would leave the 

underlying structural information we have from the microstructural networks unutilized.

One of the challenges with a structure-tensor-based model is the so-called tension-

compression switch. Fibers are very stiff in tension but buckle and support almost no load 

in compression. If the structure tensor and the resulting calculated 〈I4〉 do not exclude fibers 

in compression, then the model is at risk of overpredicting the stress response, especially if 

the model has been fitted to data from a different strain field. This issue has received much 

discussion (e.g., [30, 64]), and variations have been proposed in which compressed fibers are 

excluded [31, 34]. In the current work, we chose to use a simpler, all-fiber structure tensor. 

As noted earlier, the tension-compression switch is approximated smoothly in the discrete-

fiber model by the exponential fiber constitutive equation; the specific representation of 

the switch has relatively little effect on the overall network mechanics [36]. We refer the 
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reader to the in-depth discussions on structure tensors and tension-compression asymmetry 

in biological tissues given in other works [34, 64, 65].

There are, of course, infinitely many possible deformations, but the fitting problem can be 

reduced conveniently by considering the fiber network strain energy Wf as a function of 

λf = I4 = HIJCIJ, which represents an averaged fiber stretch in the affine, continuous 

model. Although the product HIJCIJ does not have any physical meaning within the context 

of the non-affine discrete fiber model, it is easily calculated and convenient for use in the 

fitting process. Likewise, Wf can be calculated either from computing an average stress in 

the domain [66] and integrating it with respect to its energy conjugate in the continuum 

sense to determine a strain energy, or by summing the total strain energy of all fibers and 

dividing by the domain volume. These two methods are given by

W f = ∫EIJ = 0

EIJ
SIJdEIJ = 1

V ∫
Ω

wmdV ≈ 1
V ∑m = 1

k wmV m Eq. 4.1

where Wf is the total strain energy density of the fiber network, SIJ is the second Piola-

Kirchhoff stress, EIJ is the Green strain, wm is the strain energy density of fiber m, V is the 

domain volume, and Vm is the volume of fiber m. The individual strain energy of a fiber is 

given by

wm = ∫ElJ
m = 0
ElJ

m
SlJ

m dElJ
m Eq. 4.2

The results from a network simulation of any macroscopic deformation can then be 

represented as Wf vs. λf. This method is further summarized in the flowchart in Fig. 2. 

With Wf vs. λf from the network determined, the total-fiber constitutive law can be fit 

to the aggregated network-scale simulation results. Although in principle any total-fiber 

constitutive law could be used, a continuum model in an exponential format that is similar 

to the fiber’s qualitative behavior is an intuitive choice to predict fibers’ overall behavior. 

Therefore, throughout this work we use the expression of Eq. 2 and fit C2 and C3 to the Wf 

vs. λf curve.

2.3 Case Study: Multiple Deformations of a Single Network

To verify the ability of an HGO-type model to reproduce network mechanical response, 

a moderately aligned (H11 = 0.69, H22 = 0.21 and H33 = 0.10) 3D Delaunay network 

was generated using the Delaunay triangulation function, delaunay, in MATLAB (R2019a, 

MathWorks, Natick, MA). This alignment was chosen due to the tendency of collagenous 

tissues to possess a preferred alignment, observed in, for example, ligaments [67, 68]. 

Briefly, randomly generated seed points in the 3D space were used to generate a Delaunay 

tetrahedral network. The seed points represent network nodes, and the edges of the 

tetrahedral regions represent the fibers. After initial generation, the network was subjected to 

artificial stretches to reach the desired alignment. Finally, the aligned network was clipped 

from the stretched network to a unit cube, and the fibers and nodes inside the cube were 
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extracted to form the aligned networks used in these simulations. This process was done 

iteratively, with the number of the seed points adjusted in order to obtain a final volume 

fraction of 0.04 for each network, holding the fiber cross-sectional areas constant. This fiber 

fraction represents a collagenous tissue as in [69, 70]. The fiber volume fraction in a network 

is given by

ϕf = V f

V =
χ∑m = 1

k π Rm 2L * m

χ3V *
Eq. 5

where ϕf is the fiber volume fraction, Vf is the total fiber volume, V is the network volume, 

χ is a scale factor converting from computational length units to real length unit [m], Rm 

is the radius of fiber m, L*m is the length of fiber m in computational space, and V* is the 

network volume in computational space.

The fibers in these networks were then modeled as one-dimensional nonlinear springs 

connected at freely-rotating pin joints (nodes) at two ends. The slender fibers are subjected 

to moderate to large strains and have negligible bending stiffness. The governing equation 

describing the fibers in the network was adapted from [71] and is defined as

f = kA
B (exp[BE] − 1) Eq. 6

where f is the force generated within the fiber, A is the fiber undeformed cross-sectional 

area, k and B are constant and represent fiber stiffness and nonlinearity, respectively, 

and E = 1
2 λm

2 − 1  is the Green strain of the fiber, m, stretched to stretch ratio λm. The 

values for k and B in Eq. 6 and the fiber radius were set to 10 MPa, 2.5, and 100nm, 

respectively, following Dhume et al. [69]. We emphasize that the function in Eq. 6 represents 

a single fiber in the network, where the function itself is chosen so that the force is 

zero at zero strain, with large magnitude forces developed in tension and low magnitude 

forces developed in compression, simulating the tension-compression switch seen in native 

collagen fibers. The solution of the network state given a prescribed deformation was 

calculated using Newton iteration to balance all forces on internal nodes. The overall 

Cauchy stress state for the network was then calculated as

σij = 1
V ∫

Ω
σijdV ≈ 1

V ∑m = 1
k σijmV m = 1

V ∑m = 1
k fi

m

Am njm Amlm

= 1
V ∑m = 1

k fi
mnjmlm

Eq. 7

where σij is the network volume averaged Cauchy stress, V is the network volume, σijm is the 

Cauchy stress of fiber m, Vm is the volume of fiber m, fi
m is the force from fiber m, Am 

is the instantaneous cross-sectional area of fiber m, nm is the fiber normal direction in the 

deformed state, and lm is the current length of fiber m.

The network was subjected to five different deformations: x-direction uniaxial stretch, 

simple shear on the xy- and yz-faces, and equibiaxial stretch in the xy- and xz-plane 
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(Fig. 3a, b). The network underwent a stretch of 1.8 in the x-direction. The stretches for 

other deformations were calculated such that the final λf = HIJCIJ in all deformations 

was equal to the calculated λf for the x-direction uniaxial stretch experiment. These 

deformations were selected because the network of interest has H11 > 0.33, meaning that the 

main fiber direction falls mostly in the x-direction. This approach ensures HIJCIJ > 1, which 

allows for proper fitting of the Wf curves. In this work, the directionality of the networks 

drove the deformations used for the initial HGO fits (i.e. networks aligned in x are subjected 

to x, xy, and/or xz deformations). For each deformation, the boundary nodes were displaced, 

and internal node equilibrium was attained using Newton iteration. In all deformations, the 

boundaries were displaced such that incompressibility was guaranteed on the network’s 

bounding box. For each deformation, the (macroscopic) right Cauchy-Green tensor, Cij, and 

the macroscopic volume-averaged Cauchy stress, σij, were calculated and stress converted to 

Wf vs. λf as described previously (Eq. 4). The Wf vs. λf curves were plotted simultaneously 

for all the generated deformations, and a single constitutive HGO fiber model given in Eq. 2 

was fit to the data using MATLAB (R2019a, MathWorks, Natick, MA) built in constrained 

minimization routine fmincon. An example of the Wf vs. λf curves and the fit are shown in 

Fig. 5.

To show that how fiber realignment can differ in various deformations, the largest eigenvalue 

of the instantaneous orientation tensor at each steps, hij, was calculated and plotted vs. the 

average value of fiber stretch (Fig. 3c, d).

2.4 Alignment Dependence for Delaunay Networks

We evaluated the proposed method by generating HGO model parameters for 750 Delaunay 

networks with a range of alignments. The various deformations described in Fig. 3 were 

imposed on the networks, and Wf vs. λf plots were constructed for each deformation. For 

each network, the Wf vs. λf deformation plots were fit together with the single HGO model 

given in Eq. 2. Contour plots of the material parameters were then created to evaluate the 

material property variation with alignment and assess if the HGO model could be broadly 

applied across Delaunay networks of varying alignment.

2.5 Hybrid Microstructural-Continuum Multiscale Approach

The novelty of this approach is that it removes much of the computational overhead needed 

in fully coupled multiscale approaches. Particularly, the use of the network model to fit a 

continuous material model (HGO) lets us leverage the increased speed in calculating both 

stress and the material (or spatial) elasticity tensor of the continuum material model over 

the micro-network model. Take, for example, a network consisting of Q fibers and R nodes 

where we have Cauchy stress given by Eq. 7 converted to the PK2 stress to calculate the 

material elasticity tensor

CIJMN = ∂SIJ
∂CMN

= ∂
∂CMN

1
V 0

FIm
−1 ∑k = 1

Q fm
klknnk FJn

−1
Eq. 8

where SIJ is the network PK2 stress, and CMN is the right Cauchy-Green tensor, V0 is 

the undeformed network volume, F−1 is the inverse deformation gradient tensor, fk is the 
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fiber force vector, nk is the fiber direction vector, and lf is the fiber current length. If we 

examine these equations, it becomes clear that, at a minimum, we would need to calculate 

the fiber force, f for each fiber, k, and we would need to calculate something akin to the 

fiber elasticity, ∂
∂CMN

(∑k = 1
N fm

k lnk)  for each fiber, k. For each network at each Gauss 

point in each element (i.e. 8 networks per hex element), we would have to calculate both 

of these quantities. That means we would have to run one network simulation per Gauss 

point and make Q calculations for the stress and Q calculations for the elasticity per 

network, if there existed an analytical solution to the elasticity tensor, which, in the case 

of non-affine networks, is not necessarily the case. Additionally, the network solution relies 

on determining the static force balance of internal nodes, which, if solved explicitly, would 

yield another R calculations. However, this solution typically involves implicit solution 

via Newton iteration, resulting in between 5–10 iterations to achieve static equilibrium 

for a well-conditioned network. Thus, in the best case scenario, we would have 2Q+R 
calculations per Gauss point. If we contrast this with the HGO model, which involves one 

stress calculation and one elasticity calculation per Gauss point, we expect a minimum 

decrease in computational cost of Q + 1
2R per network. The overall computation time is 

presented in Table 1.

One can fit the behavior of a network by subjecting it to many potential deformations and 

fitting the total data (as in Case Study 2.3), or one could simply fit one single deformation 

of interest. The former will give a better rough estimate if the actual deformation of the 

material is unknown, while the latter will be more accurate if there is confidence in the 

magnitude and type of deformation the network will undergo. We henceforth refer to the 

initial average fit to many deformations as the HGO fit and to the later fit to a single 

deformation as the refit. Care must be taken when refitting to a single deformation, as not all 

deformations will cause the average stretch to be greater than one. In these cases, the fit will 

not capture the behavior of the network, and an alternative fit should be used. In our model, 

we use two methods for dealing with this issue: 1. If the average stretch never exceeds one, 

we simply make the fiber modulus zero, thereby removing the fiber contribution, and 2. If 

the average stretch does eventually exceed one, but the fit is poor due to the behavior of the 

strain energy curve (i.e., Fig. 4), we attempt to fit only the slope of the strain energy curve 

for which the average stretch is greater than one. This effectively allows us to fit something 

closer to the stress, as the stress is directly related to the slope of the Wf vs. λf curve.

Once the HGO properties are fitted to the network simulations, we can use those material 

inputs in a finite element (FE) framework as shown in Fig. 4a. This allows us to rely on the 

constitutive relation to solve the FE simulation rather than having to use costly microscale 

network simulations. Further, once we have the solution from the FE simulation, we can 

extract the deformation gradient at any point of interest and run the networks to evaluate 

any microstructural quantities such as fiber orientation or fiber stresses. This offers us the 

ability to evaluate discrete quantities in regions of interest, or to pass strains down to the 

microstructure to evaluate fiber remodeling or failure.

In an FE simulation, one often is concerned with an imposed deformation that occurs in a 

series of small steps. In this case, one can choose whether to iterate at a given step until 
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the deformation field and model are consistent, or to adjust the model based on a given 

step and use the updated parameters for the next step. The latter approach introduces some 

error in that the continuum model does not match the microscopic model at the end of the 

step, but it has the considerable efficiency advantage of allowing an update at relatively low 

computational cost. The lagging update errors can also be further mitigated by imposing 

smaller deformation steps where in the limit of an infinitesimally small step the error 

becomes zero. If one only cared about the end state of the deformation, then this method 

would introduce little error, especially if the state or states of interest are iterated to match 

microscopic and macroscopic stress. For this work, we chose the less costly approach of 

allowing the continuum model correction to proceed with the previous step update, and only 

iterate the state of interest, which in our example (2.7) is the final step. This process is 

shown in Fig. 4b.

2.6 Case Study: Single-Network Model Performance for Non-Fitted Deformation

In this study, we compared the fit of the HGO model to an array of deformations and the fit 

of an HGO model to a specific deformation. To do this, we first fit the network to x-uniaxial 

(magnitude 1.25), xy-biaxial, xz-biaxial (magnitude 1.1), xy- shear and xz-shear (magnitude 

0.15). Once the HGO model had been fit, we tested it on a deformation that differed from 

the ones used in fitting the model parameters. Specifically, we modeled an element from 

complex motion of the stretching and three-point bending of a facet capsular ligament as 

in [72]. We imposed the deformation gradient of an element experiencing maximum stretch 

during the simulated experiment:

F =
1.239 0 0.0035

0 1.048 −0.0014
−0.0080 0.102 0.770

Eq. 9

which was dissimilar to the uniaxial, biaxial, and shear deformations used to fit the initial 

HGO model. The deformation was imposed on the discrete network model, and the volume-

averaged Cauchy stress was determined. Concurrently, the Cauchy stress was calculated by 

the HGO model using the parameters fitted to the suite of deformations (given above as 

HGO fit). In addition, in keeping with the refit update strategy discussed above, after the 

simulation was done, we refit the HGO model to Wf vs. λf giving us stress estimates for the 

deformation imposed in Eq. 9.

2.7 Comparison between Network-to-HGO Model and Full Multiscale Model

The goal of the proposed method is to facilitate higher-efficiency multiscale simulations 

based on network structure. To evaluate its potential, we performed a full multiscale 

simulation of a representative L4-L5 facet capsular ligament (FCL) sample during spinal 

flexion (reproducing the model of Zarei et al. [73]). The model boundary conditions are 

defined through application of nodal displacements based on the bone surface from the 

kinematic simulation of Bermel et al. [74]. Additional details of the simulation setup are 

available in [73]. The same micro-networks used in [73] were applied in the network-to-

continuum scheme, and the resulting continuum biomechanics problem was solved using the 

open-source finite-element platform FEBio [75]. Because FEBio does not support the HGO 
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model, the ligament was modeled as a coupled solid mixture of a Mooney-Rivlin (effectively 

reduced to a neo-Hookean) ground matrix with three fiber families, leading to the strain 

energy density function

W = W m + W f Eq. 10A

where W is the total strain energy density. The first term in the total strain energy density is 

the non-fibrillar matrix component of the strain energy density Wm given by

W m = C1 I1 − 3 − 2C1 ln J + λ
2 (ln J)2

Eq. 10B

where C1 is half the second Lamé parameter relating to the neo-Hookean material parameter, 

I1 is the first strain invariant of the right Cauchy-Green tensor, CIJ, J = det (F) is the 

differential volume change of the deformation, and λ is the first Lamé parameter relating 

to the bulk modulus. The tissue was considered as a compressible material with a matrix 

modulus and bulk modulus that matched those used by Zarei et al. [73]. The compressibility 

of the FCL was experimentally observed by Little et al., who suggest that the Poisson’s ratio 

is as low as 0.3 [67]. The second half of the strain energy density is the fiber component of 

the strain energy density Wf given by

W f = C2/ 2C3 ∑p = 1
3 ℎp exp(C3 I4

p − 1 2) − 1 Eq. 10C

where C2 represents the fiber modulus, C3 captures fiber nonlinearity, hp is the weighting 

factor for fiber family p, I4
p = CIJNI

pNJ
p = λp 2

 is the fourth strain invariant of the right 

Cauchy-Green tensor, CIJ, Np is the unit vector pointing in the direction of fiber family p in 

the undeformed state, and λp is the average fiber stretch of fiber family p. The undeformed 

direction vectors Np, were generated directly from the structure tensors HIJ by taking the 

eigenvectors, which, since HIJ is a symmetric positive definite matrix, give three orthogonal 

fiber directions. For the current work, we use these three orthogonal fiber families pointing 

in the principal directions of HIJ and assign the weight hp to each family based on the 

eigenvalues of HIJ corresponding to each eigenvector Np. Fiber material parameters C2 and 

C3 were fit to the Wf vs. λf plots using the method described above. The neo-Hookean 

material parameter, C1, and the bulk modulus parameter, λ, were set to 0.025 MPa and 0.417 

MPa, respectively, to match [73]. The analogous stress for this strain energy function can be 

found in the FEBio manual [76] under compressible materials Fiber with Exponential Power 

Law (4.1.3.8) and Coupled Mooney-Rivlin (4.1.3.17).

Briefly, to generate the finite-element simulation, we imported the L4-L5 FCL geometry 

mesh of hexahedral elements [73], and applied HGO parameters to each individual element 

corresponding to the microstructural networks applied in [73]. To simulate flexion, the 

displacement of the nodes at the entheses (left and right sides of Fig. 4a) were specified 

based on the the L4-L5 motion segment model [74] as further described in [73].

Initially, micro-networks from the full multiscale model were fit to the HGO using multiple 

deformations, as described previously. A FEBio model of the representative FCL sample 
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bending in flexion was then simulated using the initial HGO fit for fiber material parameters 

in Eq. 7. For added accuracy, the deformation gradient tensor for each element in the FEBio 

HGO model was then used to refit the fiber material parameters. For comparison, maximum 

shear stress and maximum shear strain fields were computed for the full multiscale model, 

the FEBio initial HGO model, and the FEBio refit HGO model.

3. Results

3.1 Multiple Deformations of a Single Network

A representative fiber network was chosen for detailed analysis. The network is shown after 

moderate (10% Green strain, Fig. 3a) and extremely large (112% Green strain in Fig. 3b) 

deformations. The deformed network is shown for x-uniaxial, xy- and xz-shear, and xy- and 

xz-biaxial deformations (Fig. 3a and 3b). In this case, the network of interest has H11 = 0.69, 

meaning that the use of x-direction deformations ensures HIJCIJ > 1 which allow us to more 

accurately fit the Wf curves.

The largest eigenvalue of the instantaneous orientation tensor, hij, is plotted versus the 

average value of fiber stretch over the full stretch range (Fig. 3c) and in close-up of the 

small-stretch range (Fig. 3d). The eigenvalues show large variation with deformations which 

is particularly pronounced at low strains. This result shows that the fiber realignment is 

highly deformation-dependent.

The fitting of network behavior to a series of different deformations is shown in Fig. 

5. We see that under relatively large strains, the Wf vs. λf curves become more similar. 

At small to moderate strains, the non-affinity of the deformation can play a significant 

role in the mechanics of the network, causing the plot of Wf vs. λf to become strongly 

deformation-dependent (Fig. 5b). In the case of Fig. 5, for example, a single HGO model 

cannot match the network model for all possible deformations, or even for specific families 

of deformations.

3.2 Alignment Dependence for Delaunay Networks

A total of 750 networks with different orientations ranging from isotropic (H11 = 0.33) to 

strongly aligned (H11 = 0.8) were studied, with the five representative networks (numbers 

1–5) examined in detail in Fig. 6. The network views in Fig. 6a (xy-view) and Fig. 6b 

(xz-view) show markedly different alignments. The orientations of these networks start 

with network 1 being nearly isotropic, network 2 being slightly aligned in the x-direction, 

network 3 being slightly aligned in the z-direction, network 4 being more strongly aligned 

in the x-direction, and network 5 being even more strongly aligned in the x-direction, as 

demonstrated by the numbering in Fig. 6d–f. The Wf vs. λf curves were plotted for each 

network, and an HGO curve was fit to them (Fig. 6c). It is evident from these Wf vs. 

λf plots that the fit of the HGO model becomes more variable for more highly aligned 

fiber networks, especially at large strains. Another particularly interesting aspect of these 

plots is the behavior of network 3. The Wf vs. λf plot would indicate that the direction 

transverse to the alignment direction is actually stiffer than that in the direction of alignment. 

However, this is not the whole story. The fiber stretch values are the double contraction of 
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the orientation tensor and the right Cauchy-Green tensor, so when stretching in directions 

transverse to the primary alignment, much greater magnitudes of stretch are necessary to 

produce the same averaged fiber family stretch. In fact, the magnitude of the xy-biaxial 

stretch in network 3 was 3.33, while the magnitude of the xz-biaxial stretch was only 1.17. 

This effect is further evidence of the non-affine fiber realignment occurring in fiber networks 

that is not well captured by the HGO model. Fig. 6c also shows that the deformations 

corresponding with alignment are similar to what was observed in Fig. 5. For network 1, all 

deformations form a tight cluster of Wf vs. λf curves because the fibers are nearly isotropic. 

Network 2 shows slightly more spread since the primary orientation is more strongly aligned 

in the x-direction, and networks 4 and 5 exhibit even greater spread due to increased 

alignment in the primary x-direction.

Despite the differing Wf vs. λf behavior with different deformations, we still require an 

initial set of parameters for our simulations. We therefore fit a pair of model parameters 

C2 and C3 from Eq. 2 to the Wf vs. λf curves to allow us to readily determine material 

parameters without the need to run any additional simulations. We observed that the 

fitted parameters C2 and C3 were not constant over all networks, but showed considerable 

variation with network alignment. This result indicates that the degree of non-affinity, as 

indicated by the amount of correction necessary to convert the discrete fiber network model 

into an affine model, is dependent on fiber alignment. This result was previously obtained 

by Hatami-Marbini and Picu [37], who found a greater degree of non-affinity in aligned 

networks loaded transverse to the preferred direction of alignment. The importance of this 

result lies in the fact that the constants C2 and C3 depend the fiber network orientation, even 
for networks constructed of identical fibers and even when orientation is included in the 
continuum model via the construct HIJCIJ.

To further explore the observed dependence, contour graphs of the calculated parameters, C2 

and C3, were generated as a function of the alignment in the 1 and 2 directions (H11 and 

H22, respectively) for all networks simulated (Fig. 6d and 6e). The location of networks of 

Fig. 6a and 6b are indicated on the contours with numbers 1–5. The non-smooth appearance 

of the contour lines must derive from other factors that contribute to the network behavior. 

However, H11 and H22 are sufficient to capture the general trend via the quadratic curve fits 

shown in Fig. 6f and 6g. The equations for those fits,

C2 = ∑i = 0
2 ∑j = 0

2 αijH11
i H22

j
Eq. 11A

C3 = ∑i = 0
2 ∑j = 0

2 βijH11
i H22

j
Eq. 11B

allow estimation of C2 and C3 for any Delaunay network of fibers with the underlying 

properties specified above (Eq. 6). The goodness of fit was marginal (R2 = 0.47 for 

C2 and R2 = 0.73 for C3) due to the inherent differences between networks and other 

factors influencing behavior (i.e. even networks with the same alignment have varied 

nodal positions and fiber lengths, which can change the network response to stretch). The 

coefficient values are given in Table 1.
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Large values of C2 and the smallest values of C3 occur when the network is close 

to isotropic (point 1 in Fig. 6d and 6e). If one desires to represent the behavior of 
an isotropic, non-affinely deforming discrete-fiber network with an affine-deformation 
model, the underlying fiber model in the network needs to be stiffer and less nonlinear 
compared to that representing a more strongly aligned network (point 5 in Fig. 6d 
and 6e). As a simple verification, suppose we have the network shown in Fig. 7a 

having HIJ = 2/3 0
0 1/3 . If we stretch in the direction of fibers as shown in Fig. 7b 

where FiJ = 3/2 0
0 2/3  and CIJ = 9/4 0

0 4/9 , we have an estimated average fiber stretch of 

λf = HIJCIJ = 3/2 + 4/27 = 1.284. If we simply compute the average stretch of the three 

fibers we have λ1 = 2/3 and λ2 = λ3 = 3/2 which gives us a mean stretch of λ = 1.222. 

Now if we take the same network and stretch transverse to the direction of alignment as 

shown in Fig. 7c where FiJ = 2/3 0
0 3/2  and CIJ = 4/9 0

0 9/4 , we get an estimated average 

stretch of λf = 8/27 + 3/4 = 1.023. If we then compute the actual stretches by computing 

the equilibrium positions assuming that the fiber forces are linear in strain such that sum of 

vertical forces is zero:

∑fy = 0 = L1/l − 1 − 2 L2/l − 1 cos (θ) Eq. 12

and enforcing the geometric constraints that L2 cos(θ) + L1 = 1.5/2 and 2L2 sin(θ) = 1/1.5, 

we can solve giving L1 = 0.439, L2 = 0.456, and θ = 47.0°. Thus, the stretches are λ1 = 

0.88 and λ2 = λ3 = 0.91 giving an average stretch of λ = 0.900. This example leads us to two 

observations: 1. The estimated stretch transverse to the direction of alignment is far from 

that in the direction of alignment, and 2. The estimated behavior of the stretch transverse to 

the direction of alignment is not representative of the true average, and is, in fact, indicating 

the network is in tension when the true behavior of the network shows all the fibers in 

compression. This simple example drives home the point that the networks estimated using 

the structure tensor, HIJ can be quite different from the real network behavior when the 

network is loaded transverse to its preferred direction of alignment. In this case, the network 

itself is very non-affine and should require a larger correction which is observed in Fig. 

6d–e. Further, this result demonstrates the issue one can encounter when trying to fit the 

network behavior to the HGO model where the network itself develops almost no stress 

(effectively zero since the fibers buckle in compression) despite the fact that the HGO model 

using the structure tensor and calculating 〈I4〉 indicates the fibers should be in tension. This 

results in a fitted HGO fiber stiffness of ~0, which is clearly unphysical in general, but may 

be true for certain deformations. This effect is one that we must account for in our fitting 

method as discussed in Section 2.5 above.

3.3 Case Study: Single-Network Model Performance for Non-Fitted Deformation

A simple validation of the initial HGO fit and refit process is shown in Fig. 8. The 

initial HGO fit of uniaxial, biaxial, and shear deformations produces stresses of a similar 

magnitude as the network simulation under the deformation given in Eq. 9 (Fig. 8a). 

However, the results show large discrepancies in the shape of the curve (Fig. 8a), which 
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are largely corrected in the refit process (Fig. 8b). The study presented indicates the viability 

of fitting an HGO model using the underlying orientation and a generated Wf vs. λf for 

many deformations to give a rough estimate of parameters, while highlighting importance 

of the refit process to producing the proper behavior. Further, this case study demonstrates 

how network mechanics vary significantly from the extrapolated HGO model under different 

deformations.

3.4 Comparison to Full Multiscale Simulations

Maximum shear stress and strain fields are shown for the multiscale model, initial HGO 

model, and refit HGO model (Fig. 9). The maximum shear stress and strain distribution 

of the HGO model compared to the multiscale model are visually similar, and the HGO 

model was able to predict the regions of high shear stress and strain. The initial HGO model 

parameters underpredicted the magnitude of the maximum shear stress and overpredicted the 

max shear strains in these regions, but the accuracy of the tissue’s stress prediction improved 

with a refit of the HGO parameters with each element’s average deformation gradient tensor. 

The refit HGO model more accurately localized regions of high tissue shear stress, at the 

cost of a small increase in the tissue’s strain, when compared to the initial HGO model. 

This observation is supported by the improvement of RMS error of the refit HGO model 

maximum shear stress compared to the initial HGO model. The RMS errors for the initial 

HGO model maximum shear stress and strain are 0.074 MPa, and 3.28%, respectively. The 

RMS errors for the refit HGO model maximum shear stress and strain are 0.062 MPa, and 

4.12%, respectively. Further, the computation time for the entire HGO simulation including 

the final step refit is shown in Table 2. The time to run the HGO simulation is orders of 

magnitude decreased over the full multiscale simulation.

4. Discussion

4.1 Major Findings and Potential Significance

In this work, we developed a hybrid microstructural-continuum multiscale model to 

reproduce the macroscopic constitutive behavior of a structure-based multiscale simulation. 

This paper presents methods to speed up the model construction and full analysis of 

a discrete-fiber multiscale model while accounting for the microstructural details of a 

heterogeneous tissue such as FCL. The proposed work uses the structural parameters 

of discrete fiber networks in a continuous-fiber model such as HGO to decrease the 

computational cost of a full multiscale simulation of a heterogeneous tissue from 2622.69 to 

1.48 CPU-hours as is shown in Table 2.

We found that the macroscopic-scale behavior of a Delaunay network can be reasonably 

described using the HGO model, but the accuracy of the approximation is dependent on 

the degree of alignment of the fiber network, the type of deformation imposed, and the 

magnitude of the deformation. The results of Fig. 5 and Fig. 6c indicate that simulations 

within a certain family of deformation types (uniaxial, biaxial, shear) can be fit with a 

high degree of confidence. The results of Fig. 6c and Fig. 8 suggest that extrapolating 

beyond the fitting range can give an overall rough estimate of behavior, but it is important 

to update the parameters based on the deformation. If the deformation of interest is known 
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(e.g., one knows that the system will be loaded in equibiaxial extension), then one can 

simply fit a model to that deformation and use the model, but the deformation of interest is 

almost never known a priori. Even if the type of deformation or the boundary conditions 

are known, however, the magnitude of the deformation is often unknown, and tissue 

heterogeneity virtually assures that the local deformation is different from the applied 

(global) deformation, so it is essential to have a procedure that can be used to provide a 

good initial guess of the continuum model parameters one needs, as well as a method for 

updating the parameters. This work demonstrates reasonable methods for selection of initial 

parameters via fitting multiple deformations, and a refitting process based on the simulation 

deformation gradient.

In addition, we have described how stronger alignment of Delaunay networks results in 

more dissimilar behavior between deformations in terms of Wf vs. λf curves (Fig. 6c). 

This result, while not unexpected based on previous studies [37], is significant because 

it further emphasizes the importance of the refit process and the challenges of trying 

to use an affine model to describe a material that exhibits non-affine behavior. The 

networks also showed increased nonlinearity and fiber modulus with alignment, which 

further indicates that inherent non-affinity alters the apparent mechanical response of the 

tissue. We further offered a simple verification of this result in the example in Fig. 7, which 

further demonstrates the pitfalls in assuming affine behavior in the modeling of fibrous 

tissues. Particularly, one must be cautious when one starts to probe local phenomena such as 

cell-ECM interactions or tissue failure in affine continuous models.

Taken together, these results indicate that the HGO model itself does not fully capture the 

change in network behavior with the generalized structure tensor, HIJ. One issue with this 

structure tensor is that, to properly capture the behavior of a dispersed fiber population with 

a tension-compression switch, one needs to recalculate the tensor using only the tensile 

fibers. In an ideal case, this would be done for each deformation step (alternative approaches 

are not given here, but are discussed in [34, 64]). Such an approach could help alleviate 

some of these differences observed in the current study, but the cost of performing a 

spherical integration over 3D distributions of fibers might well prove greater than that of 

the simple refit process, especially for multiple fiber families or multiple fiber types. Some 

network models, might be better fit, to a certain extent, by a compressed-fiber-excluding 

macroscopic model, and a more thorough testing regimen achievable via computational 

vs. experimental tests may provide more insight into exactly what behaviors are captured 

or lost by such models. Future in-depth studies of on the translation of a discrete, fiber-

level tension-compression switch to a macroscopic fiber compression exclusion model are 

merited.

As discussed above, we do not account for the fiber tension-compression asymmetry in the 

calculation of HIJ. That is, HIJ is calculated based on all fibers in the initial state. We instead 

capture the fiber tension-compression switch through the fiber constitutive law, which is 

much stiffer in tension than in compression. The tension-compression switch of fibers is 

intrinsic to the microstructural model, so we remove the requirement for fiber exclusion 

from the structure tensor [5, 64]. The HGO parameters C2 and C3, which are fit to the 

results of the microstructural simulations, are thus informed by the tension-compression 

Nikpasand et al. Page 15

J Elast. Author manuscript; available in PMC 2022 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



asymmetry inherent to the model. It may be possible that a better fit of the microstructural 

model could be obtained by an HGO model with a tension-compression switch, but that 

possibility was not explored in the current work.

We further described how a curve-fit of multiple simulations could allow one to select 

continuous model parameters to represent Delaunay networks with arbitrary orientation 

without rerunning simulations (Fig. 6). The construction of such databases of properties for 

networks can further simplify the assessment of material parameters that describe network 

behavior. While the equations show a high degree of variance, construction of a broad 

curve-fit of parameter values can give us a reasonable starting point for a wide range of 

networks. The initial fitting of the network behavior to multiple deformations is the largest 

contribution to the overall time spent on simulation for the HGO FE model (Table 2). Thus, 

if one can select starting parameters based on network orientation and some other metric 

of network construction like network type (Delaunay, Voronoi, etc.), one can greatly reduce 

the time to produce simulations. In fact, this method of reproducing network parameters 

from pre-defined relations rather than having to generate and run the networks could have 

a significant impact on creation and simulation of multiscale tissue models, allowing for 

many hypotheses to be tested quickly with regards to fiber orientations, tissue composition, 

or localized defects. If such a strategy is to be pursued, however, it is imperative that 

the starting parameter values be based on networks similar to the ones being used in the 

simulation.

We describe the application of the microstructural-to-HGO modelling strategy to a finite-

element simulation. This simulation shows similar results to a full multiscale simulation 

(Fig. 9) while reducing the model construction and simulation time by orders of magnitude 

over a full multiscale approach (Table 2). As mentioned previously, this approach, combined 

with estimation of material parameters without generating and simulating networks, could 

enable multiscale simulations without the need for a supercomputing cluster. Eliminating 

the necessity of bridging micro- to mm-scale could also open up opportunities to take 

tissue multiscale approaches up another scale level to organ or full-body kinematics, further 

helping us identify things like the role local FCL defects play in the spine or elucidating the 

role of microstructure in aneurysm mechanics.

4.2 Model Limitations

As with all models, the proposed system has several limitations. First, because the HGO 

model is an imperfect estimator of actual network behavior, there will be intrinsic errors 

even after the proposed refitting procedure. One could perform this analysis with other 

constitutive models that may capture specific behavior differently as compared to the HGO 

model (take for example the Blatz-Ko material for compressible materials like collagen gels 

[77], or any of a number of actively contracting models for vascular tissues such as [78–80]). 

The proposed technique is adaptable to different constitutive models, and could be fit to 

multiple affine models to select the best choice.

As noted above, the HGO model did not fully capture the observed network behavior. We 

observe that a strength of our approach is that the computational experiments are not limited 

by the physical realities of equipment design and sample damage, so one can perform 
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any experiment desired and as many experiments as desired. As a result, any inability of 

the continuum-scale model to capture the micro-scale network model’s behavior will be 

apparent. Whether this effect is a positive or negative feature depends on the perspective of 

the user: it virtually guarantees inconsistency between the micro- and macro-scale models 

in some deformation, but it enables the user to see exactly where and how severe such 

inconsistency is, which could be valuable. For example, one could decide that the inaccuracy 

is in a range of deformations that are not physiologically relevant, or the inconsistency could 

inspire the development of new constitutive models at the continuum scale.

Another limitation of the approach in current form is the restriction to a single, non-evolving 

network. A major advantage of the full multiscale approach is the ability to accommodate 

changes in the network due to, e.g., failure [38, 58, 81] or remodeling [59, 82]. In the case 

of an evolving network, the macroscale parameters would necessarily have to be refit at each 

step. Knowing the deformation state at the previous step could allow for efficient re-fitting, 

but there is much work still to be done to identify the optimal strategy for such problems. 

Similarly, in particular in the case of the arterial wall, multicomponent models are important 

at both the microstructural [38, 58, 60] and macrostructural [83–86] scales, and the best 

strategy to fit a multicomponent, discrete-fiber microstructural model is by no means clear 

and has not been explored in this work.

Lastly, compressing the network in the direction in which most fibers are aligned might 

result in average of fiber stretch (λf) less than one. In this case, some fibers are still stretched 

leading to a rise in the strain energy. The fitting procedure will be unable to capture these 

behaviors, and such artifacts will cause an increase in the stiffness of the model, since the 

slope of Wf vs. λf curve, i.e. stress, will be artificially increased as the fit attempts to match 

the network when average stretch becomes greater than one (i.e. Wf has been increasing 

from the network model since some fibers are in tension, but the overall average λf is 

still less than one, thus the fit must be stiffer than the network in order to minimize the 

distance between the curves). Conversely, as observed in the example given in Fig. 7, it is 

also possible for the average fiber stretch λf to give a value greater than one, while the true 

average is less than one. This would indicate that the fibers themselves have a negligible 

effect on the behavior. While this might be true for a specific deformation, it is, in general, 

not an accurate representation of the material, and thus requires special care to be taken in 

the fitting process. These problems are mostly theoretical, since tissues are almost always 

loaded in the direction that their fibers are aligned, but it is nonetheless important to make 

sure there is a method for dealing with this issue in this framework. We offer one solution in 

this work, but it is by no means the only way to deal with this issue.

5. Conclusions

In this work, we have demonstrated a novel technique for simulating multiscale biological 

tissues. This work focuses on simple microstructures applied to complex finite element 

geometries, but this technique can be expanded for any microstructural model. The 

present method gives us flexibility to perform large-scale simulations while maintaining 

microstructural detail.
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Fig. 1. 
a. Quantitative Polarized Light Imaging (QPLI) of the brachiocephalic artery bifurcation 

showing macro-scale fiber orientation vectors. b. Second Harmonic Generation (SHG) 

imaging of collagen microstructure in the Facet Capsular Ligament (FCL). c. Scanning 

Electron Microscopy (SEM) of the collagen microstructure in the FCL
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Fig. 2. 
Flowchart for converting fiber network model to affine model
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Fig. 3. 
a1–5. Network deformations for x-uniaxial, xy-shear, yz-shear, xz-biaxial, xy-biaxial for 

112% fiber Green strain. b1–5. Network deformations for x-uniaxial, xy-shear, yz-shear, 

xz-biaxial, xy-biaxial for 10% fiber Green strain. c1–5. The largest eigenvalue of the 

instantaneous orientation tensor, hij versus the average value of fiber stretch for 112% fiber 

Green strain. d1–5. The largest eigenvalue of the instantaneous orientation tensor, hij versus 

the average value of fiber stretch for 10% Green strain
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Fig. 4. 
a. Schematic of the hybrid continuum-discrete multiscale approach. b. Flowchart for the 

hybrid continuum-discrete multiscale approach.
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Fig. 5. 
Holzapfel-Gasser-Ogden material property determination from microstructural networks 

under varied deformations for a. 112% Green strain, b. 10% Green strain
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Fig. 6. 
a1–5. xy view of networks 1–5. b1–5 xz view of networks 1–5. c1–5. Wf-λf of networks 

1–5 with alignment, network 1: H11= 0.35 and H11= 0.32, network 2: H11= 0.5 and H11= 

0.32, network 3: H11= 0.36 and H11= 0.12, network 4: H11= 0.66 and H11= 0.18, network 

5: H11= 0.74 and H11= 0.14. d and e. Contour plots of HGO material property, C2 and C3, 

respectively, as a function of alignment in x, H11, and y direction, H22. f and g. Contour 

plots of fitted value of HGO material property, C2 and C3, respectively, to the multivariate 

nonlinear model of Eq. 11
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Fig. 7. 
a. Undeformed network where l1 = l2 = l3 = l = 1/2. b. Network stretched in the direction of 

strongest alignment where L2 = L3 = 3/4 and L1 = 1/3. c. Network stretched transverse to the 

direction of stongest alignment where L2 = L3.

Nikpasand et al. Page 29

J Elast. Author manuscript; available in PMC 2022 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Comparison between HGO model and network simulation under complex deformation for a. 
initial fit and b. refit
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Fig. 9. 
Maximum Shear Stresses and Strains of the multiscale, HGO, and refit HGO models for 

a single representative FCL sample during spinal flexion. The HGO model predicted the 

location of high shear stresses and strains while the refit HGO model improved the accuracy 

of magnitude of the maximum shear stress
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Table 1.

Coefficients for the fit of HGO parameters C2 and C3

ij αij [MPα] βij [−]

00 1.56 ± 0.22 −11.84 ± 4.46

01 −8.30 ± 1.89 94.49 ± 28.61

10 14.10 ± 3.77 70.46 ± 15.98

11 −5.56 ± 0.58 −517.60 ± 97.80

02 33.70 ± 7.63 −106.90 ± 29.40

20 −59.90 ± 16.27 −59.44 ± 13.25

12 5.47 ± 0.79 474.80 ± 69.40

21 −35.90 ± 7.57 396.00 ± 75.60

22 67.25 ± 17.50 0
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Table 2.

Computation Time for Multiscale vs HGO FE model

Multiscale HGO

Task Time [CPU hour]

Initial Simulation and Fit of 900
Networks (× 5 deformations × 20 steps)

NA 1.12

Re-simulation and Refit of 900
Networks (× 1 deformation × 20 steps)

NA 0.34

FE Simulation 2622.69 0.02

Total 2622.69 1.48
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