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Abstract

Background

Predicting patient’s Length of Stay (LOS) before total joint replacement (TJR) surgery is vital

for hospitals to optimally manage costs and resources. Many hospitals including in rural

areas use publicly available models such as National Surgical Quality Improvement Pro-

gram (NSQIP) calculator which, unfortunately, performs suboptimally when predicting LOS

for TJR procedures.

Objective

The objective of this research was to develop a Machine Learning (ML) model to predict

LOS for TJR procedures performed at a Perioperative Surgical Home implemented rural

community hospital for better accuracy and interpretation than the NSQIP calculator.

Methods

A total of 158 TJR patients were collected and analyzed from a rural community hospital

located in Montana. A random forest (RF) model was used to predict patient’s LOS. For

interpretation, permuted feature importance and partial dependence plot methods were

used to identify the important variables and their relationship with the LOS.

Results

The root mean square error for the RF model (0.7) was lower than the NSQIP calculator

(1.21). The five most important variables for predicting LOS were BMI, Duke Activity Status-

Index, diabetes, patient’s household income, and patient’s age.

Conclusion

This pilot study is the first of its kind to develop an ML model to predict LOS for TJR proce-

dures that were performed at a small-scale rural community hospital. This pilot study
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contributes an approach for rural hospitals, making them more independent by developing

their own predictions instead of relying on public models.

Introduction

With increasing rates of Total Joint Procedures (TJR) in the United States (US), predicting

length of stay (LOS) is vital for hospitals to control costs, manage resources, and prevent post-

operative complications [1–3]. LOS is the period between the time when the patient is admit-

ted after the surgery to the time when the patient is discharged from the hospital. A longer

LOS has been shown to negatively affect the quality of care and patient satisfaction [4, 5]. Spe-

cifically, patients with longer LOS drastically increases surgical expenses due to the high aver-

age inpatient costs at hospitals, which is $2,000 to $3,000 per day [6–8]. Moreover, past studies

have demonstrated that patients with longer LOS have higher chances of experiencing poor

postoperative surgical outcomes such as readmission and discharge to nursing or rehabilita-

tion facility [9, 10].

To better manage surgical costs, allocate resources, and improve patient satisfaction,

researchers have identified factors responsible for longer LOS using various analytic tools,

including statistical and machine learning (ML) models [2, 11–13]. However, limited work has

been done to predict LOS at community hospitals located in rural areas. It is more challenging

to predict patients’ LOS in rural than urban areas because community hospitals located in

rural areas often lack adequate resources–such as data, staff, and expertise–needed to develop

an accurate predictive model [14]. Instead, many hospitals use publicly available models that

were developed to quantify patient risk before surgery [15].

One such available model is the National Surgical Quality Improvement Program (NSQIP)

risk calculator. The NSQIP risk calculator is widely used by hospitals to predict risks for TJR

procedures performed on knees, hips, and shoulders [15]. At a single hospital or institution,

the NSQIP risk calculator can be useful for surgeons to assess patient risk, but it has been

found to be suboptimal when predicting LOS for TJR procedures [8, 15, 16]. Interpretability is

also a concern for the NSQIP risk calculator. In NSQIP, the risk factors are not quantified (i.e.,

it does not let the clinicians know which risk factor is most associated with a particular out-

come). NSQIP’s lack of factors quantification demonstrates that this predictive tool may not

be suitable for evidence-based decision-making patient optimization in PSH care models. Pre-

dicting LOS has become more vital for orthopedic clinicians since recently the Center for

Medicare and Medicaid services (CMS) removed knee and hip arthroplasty from the inpatient

list [17, 18]. Knowing the risk factors and which patient will stay longer in the hospital after

surgery are pertinent metrics for clinicians, administrators, and payers to correctly evaluate

resource utilization, cost, and severity of illness [19].

Recent research has explored a promising application of ML for predicting surgical out-

comes [20]. ML is a part of Artificial Intelligence (AI) which uses algorithms to recognize pat-

terns in data to make predictions [21]. In the past decade, the application of ML in healthcare

increased drastically due to wider usage of Electronic Medical Record (EMR) systems, which

enabled the generation of ‘big data’ [22–25]. Big data has motivated many researchers and cli-

nicians to apply ML and predict various health outcomes to improve patient treatment and

quality of care [26, 27]. Proportionally, the role of ML surged in the orthopedic field as well

[20, 28, 29]. For example, Ramkumar et al. [30] developed an ML using a naïve Bayesian

model to forecast LOS and payments for total hip arthroplasty (THA). The authors used it as a
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classification problem by grouping the inpatient payments to<$12000, $12100-$24000, and

>$24000, and LOS to 1–2, 3–5, and 6+days. The ML model was found valid, reliable, and

accurate in its predictions with AUC of 0.87 and 0.71 for LOS and payment respectively. Simi-

larly, Li et al. [13] developed an ML model which accurately predicted the LOS for total knee

arthroplasty (TKA) procedure with an AUC greater than 0.73. Gabriel et al. [31] predicted

LOS using ML methods to determine patients who do not require prolonged LOS. The devel-

oped model was reliable with AUC of more than 0.7 and helped hospital administrators to

plan resources to avoid both overcrowding and underutilization of TJR patients. Relatedly,

Han et al. [32] predicted LOS for knee patients in China and identified that Random Forest

model predicted more accurately than other ML models with AUC of 0.7. Aazad et al. [33] uti-

lized various ML methods to predict the duration of surgery and LOS which significantly con-

tributed to an increase in surgical cost. The study found that PyTorch MLP performed better

among other ML models with least Mean Square Error of 0.89 and 0.69 for duration of surgery

and LOS, respectively. Klemt et al. [34] used three ML methods to predict LOS for knee revi-

sion patients. The authors observed all three ML models performed well with AUC more than

0.8 and decision curve analysis with P-value <0.01. In addition, the authors identified that

patients’ age, Charles comorbidity index, and body mass index, were strong predictors for pre-

dicting LOS. The above examples are some of the recent studies that used ML methods to pre-

dict LOS for TJR procedures. Several studies were also performed in predicting TJR outcomes

including surgical site infection, readmission, discharge disposition, and other adverse events

[20, 35].

Yet, limited research has been performed with ML in rural hospitals. In addition, to the

authors’ knowledge, no research has been performed in predicting surgical outcomes at a rural

hospital that adopted newly emerging coordinated surgical system in orthopedics—the Periop-

erative Surgical Home (PSH) [14]. The PSH model of care was created by the leaders within

the American Society of Anesthesiologists (ASA) to improve surgical outcomes and patient

experience [36–38]. Therefore, this research focuses on developing an ML model to predict

LOS for TJR procedures performed at a PSH-implemented community hospital. Despite the

challenges associated with limited availability of data, this study expects that the developed ML

model will perform better in accuracy and interpretation than the NSQIP risk calculator.

Methods

Data collection and preprocessing

A rural community hospital formed an integrated PSH outpatient clinic in November 2018.

The hospital was an 83-bed, licensed level-III trauma center primarily serving three rural

counties, but often sees patients from more than 10 surrounding rural counties which span

9,000 square miles and approximately 136,000 residents. The PSH outpatient clinic was affili-

ated with the hospital began seeing patients preoperatively for TJR including hip, knee, and

shoulder replacements. A written consent was obtained from the patients before their partici-

pation in this study. The consent was documented and attached to patient’s EMR for reference.

The study had no patients who are younger than 18. The scope of this pilot study focused on

elective procedures and excluded any revisions. A total of 158 TJR patients were analyzed ret-

rospectively after visiting the PSH clinic during preoperative surgical assessment from August

to December 2020. All preoperative surgical assessments were performed within 30 days

before surgery.

A total of 28 independent variables were collected for each patient, which included 20

NSQIP preoperative characteristics and eight additional variables. The NSQIP characteristics

were collected and entered manually into the risk calculator to determine NSQIP-predicted
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LOS [39]. Additional variables were extracted from the Electrical Medical Record (EMR) such

as the Duke Activity Status Index (DASI) [40], living status (whether the patient was living

alone or with family), patient’s household income, postoperative nausea and vomiting score

(PONV) [41], depression (whether the patient was depressed at the time of the assessment),

preoperative preparation period (the number of days between assessment and surgery), dis-

tance traveled by the patient (in miles, from their residence to the hospital), and patient pri-

mary insurance type (private or public payer). These additional variables were included in the

analysis as they were found to be closely associated with risk for poor surgical outcomes in past

studies [3, 37, 42–45]. After patient’s discharge from the hospital, the actual LOS was extracted

from the EMR.

Eleven NSQIP categorical variables were excluded as there were no cases observed in those

categories: steroid use, ascites, systemic sepsis, ventilator-dependent, emergency case, dissemi-

nation of cancer, congestive heart failure, chronic obstructive pulmonary disease, dyspnea,

dialysis, and acute renal failure. After exclusion, a total of 17 variables were considered in the

analysis (Table 1). The variable distance traveled by the patient was produced by calculating

the mileage between their zipcode and the hospital on Google Maps [46]. There were no miss-

ing values for the independent variables except for patient’s household income. Thirty-six

patients (23%) out of 158 declined to provide their household income to clinicians during the

assessment. These missing values were imputed using the median income of the patient’s zip-

code [47]. The 2019 US Census Bureau database was used to input the zipcode median income

obtained from Montana Demographics by Cubits [48]. Additionally, the independent variables

that were classified as ordinal were ranked accordingly for use in the correlation analysis

(Table 1).

Table 1. Variable description.

Variables Type Description

Response

Variable

Length of Stay (LOS) Continuous Length of stay post surgery in hours

NSQIP Variables

[39]

Procedure Categorical Total Knee (TKA), Total Hip (THA), Total Shoulder (TSA) Arthroplasty

Age Continuous Patient age in years

Sex Dichotomous Gender: Male, Female

Functional Status Ordinal Fully Independent (1), Partially independent (2), Fully dependent (3)

ASA Class Ordinal Healthy patient (1), Mild systemic disease (2), Severe systemic disease (3), Severe

disease with constant threat to life (4)

Diabetes Dichotomous No (1), Yes (2)

Hypertension Dichotomous No (1), Yes (2)

Current Smoker within 1 year Dichotomous No (1), Yes (2)

BMI Continuous Body Mass Index in Kg/m2

Additional

variables

Duke Activity Status Index [40] Continuous Functional capacity scaled from 2.74 (low functional activity) to 9.89 (high

functional activity) in METs

Living Status [45] Dichotomous Patient’s primary household status—lives alone, living with another

Patient’s Household Income [42] Ordinal Patient’s household income level: <$49K (1), $50-99k (2), $100+k (3)

Postoperative Nausea and Vomiting

Score (PONV) [41]

Ordinal To estimate nausea after surgery due to anesthesia, scaled 0 (low chances of nausea)

to 4 (high chances of nausea)

Depression [3] Dichotomous Depression at the time of preoperative assessment: No (1), Yes (2)

Preoperative Engagement Period [49] Discrete

-Ordinal

Difference in time period (in days)

Patient Insurance Type [50] Dichotomous Patient’s payer—Public, Private type

Distance Travelled by the patient [44] Continuous Distance traveled by the patient from their resident to the hospital (in miles)

https://doi.org/10.1371/journal.pone.0277479.t001
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Feature selection

Feature selection was performed to identify the most important features, i.e., independent vari-

ables to train a novel ML model, improve accuracy, and reduce computation time [51]. This

pilot study used Spearman’s rank correlation filter method [52] and Boruta wrapper method

[53] to identify the important independent variables to predict LOS.

Spearman’s rank correlation. Correlation analysis was performed to identify highly cor-

related variables (correlation value close to 1 or -1). Independent variables that are highly cor-

related with one another can act as redundant in the analysis as they do not improve the model

performance but increase the model complexity and computation time [54]. The database in

this pilot study consisted of both continuous and ordinal variables and Spearman’s rank

method was used to perform correlation analysis [52]. No highly correlated (correlation more

than 0.7) independent variables were observed (Fig 1). Similarly, there were no highly corre-

lated independent variables with dependent variable, LOS. The remaining feature selection

was refined using the wrapper method.

Boruta feature selection method. Boruta feature selection is a wrapper method that uti-

lizes the random forest algorithm to rank variable importance [53]. The Boruta uses shadow

variables that are obtained by shuffling the original values across objects [53, 55]. The Boruta

ranks variable importance using shadow variables as a reference. Any variable that showed

higher importance than shadow variables is considered important [53]. The Boruta is known

to have comparable, if not superior, ability in independent variable selection than other avail-

able feature selection methods [56].

This study simulated Boruta for 100 runs to eliminate random errors in the results. The

independent variables that were found important and statistically significant in the binomial

distribution (P-value < 0.01) were selected for the prediction modeling. The variables that

were found important were Insurance Type, Patient’s Household Income, DASI, BMI, Func-

tional Status, Diabetes, Living Status, and Age (Fig 2). The rest of the independent variables

were found not important. This study considered the important and excluded the non-impor-

tant variables from the ML analysis.

Fig 1. Correlation plot.

https://doi.org/10.1371/journal.pone.0277479.g001
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Model selection

The study found no strong linear correlations between dependent and independent variables

indicating that the dependent variable and independent variables were non-linearly related.

To identify non-linear patterns, Random Forest (RF) method was used. RF is an ensemble

learning where the output of multiple decision trees is combined to deliver the final outcome

or prediction [57]. Past studies also have exhibited the effectiveness of RF in predicting surgical

outcomes with limited data, similar to this study [58, 59]. Compared to RF, other commonly

known ML methods such as Neural Networks, Boosted Trees, and Support Vector Machines

have more tuning parameters and often require more data to train [60–62]. Due to the very

small sample size and RF being one of the most familiar ML methods in predicting orthopedic

surgical outcomes [20], this preliminary study used only RF to predict patient LOS after TJR

procedures performed at a community hospital. Other ML methods will be considered in the

future upon more data availability (n> 2,000).

Data splitting and tuning the parameter

The data was split into training (80%, n = 127) and testing (20%, n = 31) (Table 2). The data

splitting and tuning were performed using the CARET package in R software [62].

The RF has two main tuning parameters, which are the number of trees in the forest (ntree)

and the number of variables randomly sampled as candidates at each split (mtry). One thou-

sand trees (ntree) were used in the forest, as recommended by past researchers [57, 62]. Having

more trees in the RF does not affect the performance of the prediction negatively, but it can

increase computation time [63]. The study expects no significant increase in computation

time by using 1000 trees as compared to fewer trees (100 to 500 trees) because there were only

127 data points in the analysis. Leave One Out Cross Validation (LOOCV) was used to find

the optimal number of variables available for splitting at each tree node–mtry [64] (Fig 3). The

study chose LOOCV as it was more appropriate to use in smaller datasets [62, 65].

Model validation

The NSQIP predicted LOS in days, segmented into half-day intervals. For appropriate compar-

ison, the actual LOS and RF-predicted LOS, which were in hours, were converted to days.

Fig 2. Independent variable selection using Boruta [53].

https://doi.org/10.1371/journal.pone.0277479.g002
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Conversion was performed in 12 hour-intervals, such that LOS less than or equal to 12 hours

was considered 0.5 days, LOS less than or equal to 24 hours was considered 1 day, and LOS

less than and equal to 36 hours was considered 1.5 days, and so on. The study was a regression

problem as the response variable LOS was numeric and continuous. Therefore, the Root Mean

Square Error (RMSE) was used as the cost function to validate the model’s prediction perfor-

mance i.e., the lower the RMSE value, the better the model is performing [66]. Pearson’s corre-

lation was also performed to determine the linear relationship between predicted LOS and

actual LOS i.e., high correlation demonstrates better model performance. This pilot study

expects the developed RF model to have a lower RMSE and higher correlation than NSQIP.

Model interpretation

RF is an ensemble ML model that aggregates many independent decision trees to make a pre-

diction. Though it greatly helps the accuracy of the prediction, the model acts as a black

box and the interpretation is complex. In RF, each tree has a different structure as they are

built based on the subset of predictors or independent variables that were randomly selected

[57]. To understand and explain each tree in the forest is complex and nearly impossible,

which makes the interpretability of a RF model difficult. However, past researchers have been

able to interpret ML models (such as RF) substantially, if not completely, using different

model-agnostic approaches [67, 68]. In ML, unlike model-specific methods, model-agnostic

methods can be applied to any ML model for interpretation. This makes the model agnostic

approaches more flexible and reliable than model-specific when interpreting different ML

models [67]. This pilot study applied two widely used model-agnostic methods; permutation

feature importance and partial dependence plots for interpreting and explicating the relation-

ship of the variables in the RF model [69].

Permutation Feature Importance. Permutation Feature Importance (PFI) method mea-

sures importance by calculating the increase in prediction error after permuting the indepen-

dent variable [70]. In other words, the independent variable in the data set is randomly

permuted which degrades the relationship between that independent variable and the response

variable. The importance of a variable is measured based on the difference in cost function

before and after the variable is permuted [67]. The PFI approach uses randomness in the

Table 2. Baseline of training and test sample.

Variables Train data (n = 127) Mean (SD) [Min, Max] or N (%) Test Data (n = 31) Mean (SD) [Min, Max] or N (%)

Length of Stay (LOS) 41 (29) [3, 195] 36 (16.5) [5, 77.9]

Age 68.6 (9.63) [43, 91] 70.7 (7.43) [54, 84]

Functional Status

Independent 128 (98%) 31 (100%)

Diabetes

Yes 13 (10%) 2 (6%)

BMI 30.7 (7.25) [17, 58] 29.9 (4.28) [20, 40]

Duke Activity Score Index (DASI) 7.5 (1.67) [4.4, 9.89] 7.29 (1.5) [4.64, 9.89]

Living Status

Alone 26 (20%) 9 (29%)

Patient’s Household Income

<40K 50 (39%) 14 (45%)

50-99k 56 (44%) 12 (39%)

Patient Insurance Type

Private 34 (27%) 5 (16%)

https://doi.org/10.1371/journal.pone.0277479.t002

PLOS ONE Machine learning in rural surgical care

PLOS ONE | https://doi.org/10.1371/journal.pone.0277479 November 10, 2022 7 / 18

https://doi.org/10.1371/journal.pone.0277479.t002
https://doi.org/10.1371/journal.pone.0277479


procedure to evaluate the importance. Thus, this study simulated this method for 100 times to

minimize random errors and ranked the important variables based on the average value. The

PFI algorithm used in this study adapted from [67, 71]:

Let j be the total number of independent variables

Let X be the independent variable

Let E be the baseline RMSE value for the trained model

Let F be a two-dimensional matrix of RMSE values after a feature is permuted in the training

data

1. For k = 1, 2, 3, . . ..100: (for simulating 100 times)

a. For i = 1, 2, 3, . . .‥j:

i. Permute the values of variable Xi in the training data.

ii. Recompute the RMSE value on the permuted data–Fki.

2. For i = 1, 2, 3, . . .‥j:

a. Compute average importance for each variable, Impi = 1

100

X100

k¼1
ðE � FkiÞ

3. Sort the average importance (Impi) by descending order.

Partial Dependence Plot. The Partial Dependence Plot (PDP) is an another agnostic

method that helps to understand the marginal effect of a variable on the predicted outcome of

an ML model [72]. The PDP shows the relationship between a response variable and an inde-

pendent variable whether they are linear, monotonic, or complex [67]. This demonstrates how

the response variable changes as the value of an independent variable while considering the

average effect of all the other independent variables in the model [69]. The biggest disadvan-

tage of PDP is that it is effective when the variables are not correlated. However, this study had

Fig 3. Leave One Out Cross Validation.

https://doi.org/10.1371/journal.pone.0277479.g003
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no strong correlation between any independent variables. Therefore, the PDP approach was

more ideal method as they were easy to implement and more importantly, simple to interpret.

In Eq 1, fS was the partial function which was estimated by calculating the average value in the

training data. The xS was the independent variable that was being plotted in the PDP where S

� (1, 2,. . .j). The xðiÞC were the rest of the independent variables in the training data where C

was complement of S. The variable n was the total number of data points in the training data

which was 127. [67]

fSðxSÞ ¼
1

n

Xn

i¼1
f ðxS; x

ðiÞ
C Þ ð1Þ

All data handling, visualizations, statistical analysis, ML modeling and interpretations were

performed using R (V 4.0.3, Vienna, Austria). The data were recorded and secured in an

encrypted database and were accessed only by the authors and the clinicians. The research

study was conducted at a single rural community hospital and was approved by Montana State

University Institute Review Board (approval number–BM050819 (EX))

Results

Model performance

The mtry with the lowest RMSE value was found at 2. The RMSE of RF for the train data

(n = 127) and test data (n = 31) were 0.71 and 0.61, respectively. The RMSE of RF for the

whole data (n = 158) was 0.7, which was lower than NSQIP which was 1.21 (Fig 4). The Pear-

son’s correlation between predicted and actual for NSQIP and RF were 0.22 and 0.82 (Fig 5).

Compared to NSQIP, the RF model had lower RMSE and higher Pearson’s correlation, mak-

ing it a better model for predicting patient LOS after the TJR procedure.

Fig 4. Comparison of NSQIP and Random Forest (RF).

https://doi.org/10.1371/journal.pone.0277479.g004
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Model interpretation

The PFI ranked independent variables based on their contributions to an accurate estimation

of LOS using the RF training model. For example, BMI contributes most towards accurate pre-

diction of LOS such that, if the values in BMI were randomly permuted, there will be an

increase in overall RMSE by 5.1 (Fig 6). Similarly, the variables diabetes, DASI, living status,

household income, ASA class, age, insurance type, and functional status were ranked most

important to least important based on their average increase in RMSE after permutation (Fig

6). The PDP plots show the relationship between independent variables and the response vari-

able (LOS) (Fig 7). More detailed explanation on their relationship is delineated in the discus-

sion section of this paper.

Discussion

The pilot study developed an ML model to predict LOS for TJR procedures that were per-

formed at a small-scale community hospital (bed size less than 100) located in a rural area. The

developed model predicted LOS (RMSE = 0.7) more accurately than the NSQIP risk calculator

(RMSE = 1.21). The NSQIP was developed using a cohort of 1.4 million patient data, which

were taken from 393 health institutions in the US [39]. Sixty-nine percent of the cohort were

collected from a teaching or academic affiliation and 43% of the cohort were collected from

large hospitals (i.e., bed size more than 500) [39, 73]. The inaccuracy in patient risk assessment

is due to the vast differences between NSQIP cohort and the population (collected from a sin-

gle hospital) on which NSQIP is used [15]. For instance, the TJR patients collected from a

rural community hospital may be vastly different from the NSQIP cohort that was used to

build the risk calculator. Moreover, the NSQIP includes insufficient numbers of orthopedic

data i.e., only 12% of orthopedic patient data contribute to the analysis [73]. These factors con-

tribute to the NSQIP’s suboptimal performance when predicting LOS for TJR procedures

Fig 5. Pearson’s correlation for NSQIP and random forest.

https://doi.org/10.1371/journal.pone.0277479.g005
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especially those performed at a community hospital. Another difficulty to why NSQIP poorly

predicted LOS was the adoption of the PSH system [36]. Past studies have demonstrated that

the implementation of PSH has led to a reduction in hospital LOS for TJR procedures [36, 74,

75]. Thus, similar to another study, it was observed that the NSQIP predicted LOS much

Fig 6. Variable importance using Permuted Feature Importance (PFI) method.

https://doi.org/10.1371/journal.pone.0277479.g006

Fig 7. Partial Dependence Plot of independent variables against Length of Stay (LOS).

https://doi.org/10.1371/journal.pone.0277479.g007
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higher than the actual LOS for TJR procedures performed at the PSH implemented commu-

nity hospital [8].

To the authors’ knowledge, this pilot study is the first of its kind to develop an ML model

that exceeds NSQIP risk calculator in predicting a TJR surgical outcome at a community hos-

pital and the first to predict rural patients only. The developed ML model also provides a

clearer interpretation compared to the NSQIP risk calculator. The model agnostic methods,

PFI and PDP plots, revealed important independent variables and their relationship with LOS.

The PFI model agnostic method ranked independent variables that most contributed toward

accurate prediction of LOS (Fig 5). Through this, clinicians can prioritize those factors they

should address first and design a suitable intervention in the preoperative phase to optimize

patients, given the severity of the condition, surgery timing, and comorbidities.

The PDP model agnostic method illustrated the relationship between the independent vari-

ables and the response variable (Fig 7). The PDP for BMI indicated that patients with higher

BMI (specially more than 40 Kg/m2) were more likely to stay longer at the hospital after the

surgery compared to patients with lower BMI [76, 77]. For DASI, the LOS was found decreas-

ing with an increase in DASI score. DASI assesses patient’s heart condition and functional

capacity using likert scale questionnaires on daily activities, personal care, and recreation [40].

Patients with a higher DASI score represent they are healthier and more active. Thus, in this

study, it was reasonable to observe that patients with lower DASI scores (especially less than 5

METs) had longer LOS compared to patients with higher DASI scores. The PDP for diabetes

showed that on average, patients with diabetes had 14 hours longer LOS compared to the

patients with no diabetes [78]. The income levels in the PDP plot of household income

revealed that patients with lower household income were more likely to have longer LOS than

patients with higher household income (100k+). Patients with lower household income

(<40K) often delay their pre-operative treatments or even postpone their surgical procedures

due to their financial barriers and cost of undergoing TJR procedures. These delays increase

the complications at the time of surgery requiring a longer LOS to stabilize them before dis-

charge [42].

Concerning age, like most studies, it was observed that the LOS was higher with an increase

in age [11, 79, 80]. The PDP plot for insurance type showed that on average, patients who had

public insurance as their payer had six hours longer LOS than patients who had private insur-

ance. The public insurance payers in this study were Medicare and Medicaid. Compared to

private insurance patients, Medicare patients are older (aged more than 65) with increased

chances of having one or two medical complications [42]. The Medicaid patients are US citi-

zens or legal permanent residents who are mostly from a low-income background with certain

disabilities, behavioral health problems, or other complications [81]. Therefore, patients with

public insurance are often more medically complicated which results in them staying longer at

the hospital [42].

For living status, patients who were living alone, on average stayed three hours longer than

patients who were living with someone (spouse, friends, or family). This was because a major-

ity of the patients who lived alone had lower social support causing mental health problems

(such as loneliness and sadness) which influenced them to stay longer at the hospital after sur-

gery [45]. Another reason was most patients who lived alone had to rely on the hospital to

arrange for a ride before discharge. This often takes longer than patients who get picked up by

their family or friends during the discharge. Finally, for functional status, despite the limited

sample size in the partially dependent category (less than 3%, Table 2), it was observed that on

average, partially dependent patients had 17 hours longer LOS than fully independent patients.

Akin to many studies, variables BMI [76, 77, 82], age [11, 79, 80, 83, 84], and insurance type

[42, 83, 84] were found as important predictors in this study well. Conversely, unlike many
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studies, the variable DASI was used in this study and was found as an important predictor of

LOS. The researchers have used DASI as a preoperative assessment metric to evaluate postop-

erative risks, especially in colorectal surgeries [85, 86]. To the authors’ knowledge, the DASI

has not been used in the past TJR studies to predict or measure its association with LOS. It was

also observed that the ASA had no relationship in predicting LOS in this study which in con-

trast, had a significant effect on LOS in other TJR studies [2, 76, 82]. Along with the ASA,

other clinical variables such as smoking, depression, and hypertension that were found impor-

tant in other studies did not contribute to predicting LOS in this study [11, 84]. Instead, demo-

graphic variables household income and living status were found more important. This could

be due to the implementation of the PSH system which included preoperative assessment and

patient education, that helped clinicians to optimize patients with higher ASA, smoking, and

hypertension complications [37, 87]. Differences in demographics and factors related to rural

Montana location could be another reason for finding demographic variables household

income, living status more important than clinical variables ASA, smoking, and hypertension,

for predicting LOS.

The need for prediction such as ML is ever more necessary in rural healthcare systems as

they do not receive the same attention as urban areas [14]. This research addresses that gap by

introducing ML at a rural community hospital and making the community hospital more

independent instead of relying on publicly available models/methods. This pilot study is also

unique by using global agnostic methods at the rural community hospital for interpretation

instead of using traditional interpretable prediction models such as general linear models and

decision tree [67]. Future research built from this pilot study should focus on predicting other

surgical outcomes such as discharge disposition and 90-days readmission rate [4]. Also, with

Medicare’s recent removal of TJR surgeries from the inpatient list, future research from this

pilot study should focus on developing a LOS prediction model to determine “inpatient” vs

“outpatient” status for TJRs performed at rural hospitals [12].

Limitations in this pilot study include using only the RF model for prediction. Further

research is on the way to applying different ML models such as Neural Networks, Boosted

Trees, and Support Vector Machine (SVM) to discover how well they perform on these surgi-

cal data sets compared to RF. Second, the study used only a five-month duration (from August

2020 to December 2020) data with a very small sample size for the ML modeling. Yearly data

with a high sample size (n> 1000) could have accounted for a better prediction, validation,

and more robust interpretation. Third, the study was retrospective which may contain data

collection biases that could alter the results and key findings [88]. Fourth, the testing data con-

tained only 31 patients. More testing and validation data is required to confirm the developed

model’s validity. Finally, this study was performed at a community hospital located in a micro-

statistical area (with a population size less than 50,000). The results from this pilot study may

not be generalizable to more rural places (e.g., with a population of less than 10,000).

Conclusion

Delivering quality surgical care to TJR patients is a challenge to many US hospitals located in

rural areas. Predicting LOS in surgery is an important factor as it helps rural hospitals deliver

quality surgical service, ensure patient safety, and plan for resources such as inpatient beds.

This research explored how a publicly available model (NSQIP) was not an ideal model to pre-

dict LOS after a TJR procedure performed at PSH implemented community hospital. Instead,

a customized machine learning model–random forest–delivered more accurate LOS predic-

tions despite the limited data available in rural surgical systems. Further, the random forest

model also provided a better interpretation by ranking the important independent variables
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and illustrating its relationship against LOS. The pilot study is first of its kind to use ML at

PSH incorporated rural surgical system to predict patient LOS. Results from this pilot study

will contribute to helping rural surgical care by reducing LOS while improving patient

satisfaction.
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