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1  |  INTRODUC TION

Blood vessels in the central nervous system (CNS) have uniquely 
high electrical resistance and low permeability, which creates a very 

selective barrier separating the blood and CNS parenchymal tissue. 
This blood– brain barrier (BBB) protects sensitive neural cells from 
potentially harmful components in the blood (Ballabh et al., 2004; 
Huber et al., 2001) and allows transport of only those metabolites 

Received:	25	February	2022  | Revised:	4	August	2022  | Accepted:	31	August	2022
DOI: 10.1111/acel.13720  

R E S E A R C H  A R T I C L E

Exaggerated hypoxic vascular breakdown in aged brain due to 
reduced microglial vasculo- protection

Sebok K. Halder |   Richard Milner

This is an open access article under the terms of the Creative	Commons	Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
©	2022	The	Authors.	Aging Cell	published	by	Anatomical	Society	and	John	Wiley	&	Sons	Ltd.

San Diego Biomedical Research Institute, 
San	Diego,	California,	USA

Correspondence
Richard Milner, San Diego Biomedical 
Research	Institute,	3525	John	Hopkins	
Court,	Suite	200,	San	Diego,	CA	92121,	
USA.
Email: rmilner@sdbri.org

Funding information
NIA;	NINDS;	NIH	RF1,	Grant/Award	
Number:	NS119477

Abstract
In a recent study of young mice, we showed that chronic mild hypoxia (CMH, 8% 
O2) triggers transient blood– brain barrier (BBB) disruption, and that microglia play an 
important	vasculo-	protective	function	 in	maintaining	BBB	integrity.	As	hypoxia	 is	a	
common component of many age- related diseases, here we extended these studies to 
aged mice and found that hypoxia- induced vascular leak was greatly amplified (5- fold 
to 10- fold) in aged mice, being particularly high in the olfactory bulb and midbrain. 
While	 aged	mice	 showed	no	obvious	difference	 in	 the	 early	 stages	of	 hypoxic	 an-
giogenic remodeling, the compensatory increase in vascularity and vessel maturation 
was significantly delayed. Compared with young brain, microglia in the normoxic aged 
brain were markedly activated, and this was further increased under hypoxic condi-
tions, but paradoxically, this correlated with reduced vasculo- protection. Microglial 
depletion studies showed that microglial still play an important vasculo- protective 
role in aged brain, but interestingly, partial attenuation of microglial activation with 
minocycline resulted in fewer vascular leaks and reduced loss of endothelial tight junc-
tion proteins. Taken together, these findings suggest that increased BBB disruption in 
hypoxic aged mice can be explained both by a delayed vascular remodeling response 
and reduced microglial vasculo- protection. Importantly, they show that overly acti-
vated microglia in the aged brain are less effective at maintaining vascular integrity, 
though this can be improved by reducing microglial activation with minocycline, sug-
gesting therapeutic potential for enhancing BBB integrity in the hypoxia- predisposed 
elderly population.
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(e.g., glucose and amino acids) that CNS tissue specifically needs. The 
basis of the BBB depends on a combination of structures, including 
endothelial adherens and tight junction protein complexes, extra-
cellular matrix (ECM) components of the vascular basal lamina, and 
the influence of neighboring CNS- resident cells including astrocytes 
and pericytes (Daneman et al., 2010;	 del	 Zoppo	 &	Milner,	 2006; 
Roberts et al., 2015). BBB breakdown occurs in many neurological 
conditions, including meningitis, ischemic stroke, multiple sclerosis 
(MS), and CNS tumors (Davies, 2002;	 Gay	 &	 Esiri,	 1991; Roberts 
et al., 2015). Recent studies suggest that BBB integrity also dete-
riorates as part of the normal aging process and in vascular demen-
tia	(Farrall	&	Wardlaw,	2009; Senatorov et al., 2019), also known as 
vascular contributions to cognitive impairment and dementia (VCID), 
which by upsetting the tightly controlled CNS milieu, predisposes 
to neuronal dysfunction and neurodegeneration (Banks et al., 2021; 
Levit et al., 2020).

BBB integrity is also disrupted by low oxygen levels (hypoxia) 
(Bauer et al., 2010; Schoch et al., 2002). In humans, this has been 
well documented in mountaineers who when exposed to decreas-
ing oxygen concentration at higher altitudes, can present with acute 
mountain	 sickness	 (AMS),	 consisting	 of	 confusion	 and	 headaches.	
If left untreated, this can evolve into life- threatening high- altitude 
cerebral	 edema	 (HACE),	which	 necessitates	 immediate	 evacuation	
to	 a	 lower	 altitude,	 where	 the	 patient	 quickly	 recovers	 (Davis	 &	
Hackett, 2017).	When	rodents	are	exposed	to	chronic	mild	hypoxia	
(CMH, typically 8%– 10% O2), cerebral blood vessels mount a strong 
adaptive remodeling response, resulting in 50% increased vessel 
density	over	a	period	of	2–	3 weeks	(LaManna	et	al.,	2004) in order to 
maintain the brain's metabolic demands.

Recently, we demonstrated that CMH promotes transient vas-
cular	 leak	 in	 cerebral	 blood	 vessels	 in	 young	C57BL6/J	mice,	 that	
is associated with aggregation and activation of microglia around 
disrupted	 vessels	 (Halder	&	Milner,	2020). Interestingly, microglial 
depletion profoundly increases hypoxia- induced cerebrovascular 
leak, suggesting an important vasculo- protective role for microglia 
under	 hypoxic	 conditions.	 As	 an	 intact	 BBB	 is	 a	 vital	 prerequisite	
for the maintenance of cerebral health, yet evidence suggests that 
BBB	integrity	declines	with	age	(Farrall	&	Wardlaw,	2009; Senatorov 
et al., 2019), the aim of this study was to examine how these events 
are influenced by aging. This is important because the risk of hy-
poxia is far greater in the aged due to declining pulmonary, cardiac, 

and cerebrovascular function, which could predispose to BBB dis-
ruption, neurodegeneration, and cognitive decline. This concept also 
has strong clinical relevance to the often- severe level of hypoxia re-
ported	in	SARS-	CoV-	2	patients	(Bhatia	&	Mohammed,	2020). Based 
on this, the goal of this study was to address the following questions: 
(i) how does aging affect hypoxia- induced cerebrovascular leak, (ii) 
which regions of the brain are affected, (iii), is the vasculo- protective 
function of microglia affected by age, and (iv) if it is, can manipula-
tion of microglial activation state improve vasculo- protective func-
tion in the aged brain?

2  |  RESULTS

2.1  |  Aged mice show greatly enhanced 
cerebrovascular leak in response to hypoxia

The	extent	of	cerebrovascular	leak	in	young	(8–	10 weeks)	and	aged	
(20 months)	 female	 C57BL6/J	 mice	 was	 compared	 after	 exposure	
to chronic mild hypoxia (CMH, 8% O2)	for	periods	up	to	14 days,	by	
dual- immunofluorescence (dual- IF) of frozen brain sections, using 
CD31 to label endothelial cells and fibrinogen to identify extravas-
cular	leak.	As	shown	in	Figure 1a,b, while no vascular leak occurred 
in young or aged brains under normoxic conditions, CMH triggered 
extravascular leak in a small number of cerebral blood vessels in 
young brains, but in aged brains, this number was greatly increased. 
Interestingly, hypoxia- induced vascular breakdown was so obvious 
in aged brains it was first evident at time of tissue harvesting, when 
cerebral hemorrhage was observed in the olfactory bulb and mid-
brain of hypoxic aged mice, something never seen in brains of hy-
poxic young mice (Figure 1c).

2.2  |  Hypoxia- induced vascular leak in aged 
brain occurs predominantly in the olfactory 
bulb and midbrain

We	next	quantified	the	density	of	vascular	leaks	in	10	different	brain	
regions (Figure 1d). Consistent with our prior study, this showed that 
in young brain, the olfactory bulb (OB) and the medulla oblongata 
(MO) contained the highest number of vascular leaks. In the aged 

F I G U R E  1 Chronic	mild	hypoxia	(CMH)-	induced	vascular	leak	is	much	greater	in	aged	brain.	(a)	Frozen	brain	sections	taken	from	young	
(8–	10 weeks)	or	aged	(20 months)	mice	exposed	to	normoxia	or	7-	day	hypoxia	(8%	O2) were stained for the endothelial marker CD31 
(AlexaFluor-	488)	and	fibrinogen	(Cy-	3).	Images	were	captured	in	the	olfactory	bulb	and	the	midbrain.	Scale	bar	=	200 μm. (b) High power 
image	of	olfactory	bulb	shown	in	A.	Scale	bar	=	50 μm. (c) Comparison of young and aged brains at time of sectioning. Scale bar =	2 mm.	(d)	
Quantification of the number of vascular leaks (fibrinogen- positive)/FOV in different brain regions after 7- day hypoxia. OB, olfactory bulb; 
CX, cerebral cortex; ST, striatum; CC, corpus callosum; HC, hippocampus; TH, thalamus; MB, midbrain; PO, pons; MO, medulla oblongata; 
CB,	cerebellum.	(e,f)	Quantification	of	the	number	of	vascular	leaks	in	the	olfactory	bulb	and	midbrain	after	0-	,	4-	,	7-	,	and	14-	day	hypoxia.	All	
results	are	expressed	as	the	mean ± SEM	(n = 4– 8 mice/group). **p < 0.01,	***p < 0.001	vs.	normoxic	conditions.	Note	that	vascular	leak	was	
much greater in aged brain and that the highest number of vascular leaks occurred in the olfactory bulb and midbrain, peaking after 7- day 
hypoxia but declined by Day 14. (g) Frozen brain sections taken from mice exposed to 7- day hypoxia (8% O2) were dual- labeled for tyrosine 
hydroxylase-	1	(TH-	1)	(AlexaFluor-	488)	and	fibrinogen	(Cy-	3).	Scale	bar	=	200 μm except for high power (HP) image on the right, where scale 
bar =	50 μm. Note that hypoxia- induced vascular leak occurred in the TH- 1+ substantia nigra (SN) and in the surrounding red nucleus.
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brain, the olfactory bulb also contained the highest density of vas-
cular leaks, but the midbrain (MB) also stood out in showing a much 
greater number of leaks than other regions (Figure 1d; p < 0.01).	
Quantification revealed that the number of vascular leaks/field of 
view (FOV) (Figure 1e,f) or the area of vascular leaks/FOV (Figure S1) 
in aged brains was far greater than young brains in all regions 

examined.	At	both	ages,	vascular	 leak	was	highest	between	4	and	
7 days	of	CMH	but	declined	at	the	14-	day	timepoint.	This	makes	the	
important point that even in aged brain, where much greater vascu-
lar leak occurs, cerebral blood vessels still retain an inherent capacity 
to repair and resolve vascular leaks, despite the continued presence 
of	hypoxia.	As	vascular	leak	also	leads	to	proteolytic	degradation	of	
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endothelial tight junction proteins (Boroujerdi et al., 2015; Halder 
&	Milner,	2019), we next examined how this differs between young 
and aged brains. Compared to the young brain, blood vessels in the 
aged brain showed much greater loss of both ZO- 1 and occludin 
(p < 0.01;	Figure	S2).

Closer analysis of the midbrain revealed that vascular leaks were 
detected across a widespread area, including the substantia nigra 
(SN), as detected by tyrosine hydroxylase- 1 (TH- 1)- positive neurons 
(Figure 1g), and in the red nucleus (area outlined in Figure S3a). In the 
olfactory bulb, vascular leaks were distributed both in the NeuN- rich 
gray matter and adjacent white matter (Figure S3b). Vascular leaks 
also occurred in the corpus callosum and cerebral cortex and were 
generally larger in the corpus callosum (white matter) compared to 
the cerebral cortex (gray matter) (Figure S3c). In summary, these 
studies show that CMH provokes much greater vascular leak in the 
aged brain, particularly in the midbrain and olfactory bulb. Based 
on these findings, we focussed our subsequent analysis in these 
regions.

Because the olfactory bulb was the area of brain showing the 
greatest extent of vascular breakdown, we next tested whether the 
sense of smell (olfactory function) was altered in mice exposed to 
hypoxia using the well- established buried food test. This test eval-
uates the ability of mice to locate a food source, in this case a small 
cookie, hidden beneath a layer of bedding. Under normoxic condi-
tions, this revealed that aged mice took twice as long as young mice 
to find the hidden food (p < 0.05;	Figure	S4). Even more striking 
was the finding that mice exposed to 4- day CMH (both young and 
aged) took much longer to find the hidden food (p < 0.001),	 sug-
gesting that olfactory function is markedly compromised following 
hypoxic exposure.

2.3  |  Hypoxia- induced cerebrovascular remodeling 
is delayed in aged mice

Our studies raise the obvious question: why is hypoxia- induced cere-
brovascular leak so much greater in the aged? Is it due to age- related 
changes in the inherent properties of endothelial cells, or alterna-
tively, based on our recent finding of a critical vasculo- protective 
role	of	microglia	(Halder	&	Milner,	2019, 2020), is it the result of de-
clining vasculo- protective microglial function in the aged? To answer 
this question, we first compared CMH- induced vascular remodeling 
responses in the midbrain of young and aged mice, using CD31/Ki67 
dual- IF to quantify endothelial proliferation, a key early step in the 

angiogenic process. This revealed that in the brains of both ages, 
CMH triggered a robust endothelial proliferation response (Figure 2a 
and Figures S5 and S6) which peaked after 4- day CMH, and slowly 
declined at later timepoints (Figure 2c). Interestingly, while there 
was no age- related difference in the endothelial proliferation rate at 
the 4- day timepoint, at later timepoints, aged brains showed a more 
rapid fall- off in endothelial proliferation (Day 7, p < 0.05).

As	the	end-	product	of	CMH-	induced	vascular	remodeling	is	en-
hanced	vascularity	 (LaManna,	Chavez,	&	Pichiule,	2004; LaManna, 
Vendel,	 &	 Farrell,	 1992), we next examined how 14- day CMH in-
fluences blood vessel density in the midbrain. This showed that al-
though CMH induced significant increases in vessel density in the 
midbrain of both young and aged mice, the changes in aged brains 
were significantly attenuated compared to young brains (p < 0.01	at	
Days 4 and 7, p < 0.05	at	Day	14;	Figure 2d). This suggests that while 
the angiogenic response starts off equally fast in young and aged 
brains, the more rapid fall- off in endothelial proliferation in aged 
brains results in delayed vascularization. To seek confirmation of this, 
we	compared	young	and	aged	brains	for	expression	of	MECA-	32,	a	
marker of immature/remodeling cerebral blood vessels (Engelhardt 
et al., 1994; Hallman et al., 1995).	 As	 expected,	 no	MECA-	32	 ex-
pression was detected under normoxic conditions in young or aged 
brains (Figure 2b,e). However, following CMH exposure, aged mice 
showed	a	greatly	increased	number	of	MECA-	32-	positive	blood	ves-
sels compared to young mice at all timepoints examined (p < 0.01,	
Figure 2b,e). In parallel, the expression of the endothelial activation 
marker	vascular	cell	adhesion	molecule	 (VCAM)-	1	was	also	signifi-
cantly higher in aged mice compared to young mice at all hypoxic 
timepoints examined (Figure S7; p < 0.001).	These	data	support	the	
concept that delayed blood vessel maturation in aged mice leads to 
extended times of vascular vulnerability and greater subsequent 
leak. They also imply that the greater hypoxic vulnerability of aged 
cerebral blood vessels is due, at least in part, to intrinsic age- related 
changes in endothelial properties. In our previous studies in young 
mice, we described CMH- induced astrocyte- vascular uncoupling 
as	 shown	 by	 vascular	 loss	 of	 aquaporin-	4	 (AQP4)	 expression,	 the	
marker	of	astrocyte	endfeet	(Halder	&	Milner,	2019, 2020). To exam-
ine	how	aging	impacts	this	uncoupling,	we	performed	CD31/AQP4/
fibrinogen triple- IF and this revealed in both young and aged brain, 
that within regions of extravascular fibrinogen leak, a significant % 
of	blood	vessels	had	lost	AQP4	expression	(Figure	S8). Interestingly, 
while	 there	 was	 a	 greater	 number	 of	 AQP4-	negative	 blood	 ves-
sels within the hypoxic aged brain (not unexpected because of the 
greater number of leaks in aged mice), the % of vessels within leaky 

F I G U R E  2 Evaluation	of	cerebrovascular	remodeling	in	young	and	aged	mice	exposed	to	hypoxia.	(a)	Frozen	brain	sections	(images	
show	midbrain)	taken	from	young	(8–	10 weeks)	or	aged	(20 months)	mice	exposed	to	hypoxia	(8%	O2)	for	4 days	were	stained	for	CD31	
(AlexaFluor-	488)	and	the	proliferation	marker	Ki67	(Cy-	3).	Scale	bar	=	100 μm. High power (HP) images on the right highlight CD31/Ki67 co- 
localization.	(b)	CD31/MECA-	32	dual-	IF	of	frozen	brain	sections	(midbrain	shown)	taken	from	mice	exposed	to	normoxia	or	4-	day	hypoxia.	
Scale bar =	100 μm. (c– e) Quantification of the number of proliferating endothelial cells (CD31+/Ki67+ cells)/FOV (c), number of blood 
vessels/FOV	(d),	and	number	of	MECA-	32+	vessels/FOV	(e)	after	0-	,	4-	,	7-	,	and	14-	day	hypoxia.	Results	are	expressed	as	the	mean ± SEM	
(n = 4– 8 mice/group). *p < 0.05,	**p < 0.01.	Note	that	the	aged	brain	showed	a	faster	drop-	off	of	hypoxia-	induced	endothelial	proliferation,	
attenuation	of	increased	vascularity	response,	and	a	greater	number	of	MECA-	32+ vessels at all time- points.
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areas	 that	 were	 AQP4-	negative	 was	 not	 noticeably	 different	 be-
tween the two age groups.

2.4  |  Microglial activation is enhanced by age and 
CMH, but microglial vasculo- protection declines 
with age

Based on our recent findings that microglia play an impor-
tant vasculo- protective role during hypoxic exposure (Halder 
&	 Milner,	 2019, 2020), an alternative possibility accounting for 
increased age- related vascular leak is that microglial vasculo- 
protection declines with age. In this regard, two points are worth 
considering. First, recent studies have shown that microglia in 
the aged brain are more activated or “primed,” than in the young 
brain	 (Godbout	 et	 al.,	2005;	Mosher	&	Wyss-	Coray,	2014; Streit 
et al., 2004). Second, microglia are historically regarded as a 
“double- edged sword,” performing protective functions at low lev-
els of activation, but contributing to disease pathogenesis when 
more strongly or persistently activated (Carson, 2002; Hanisch 
&	Kettenmann,	2007). To investigate the idea that aged microglia 
may confer less vasculo- protection, we first examined the influ-
ence of age and CMH on microglial activation by performing Mac- 1 
IF.	As	shown	in	Figure 3a, most microglia in young normoxic brains 
displayed the ramified morphology (small cell body with long thin 
processes) typical of resting microglia, and in young mice, CMH had 
no discernible impact on microglial morphology, except for those 
microglia closely associated with vascular leaks, which displayed 
the typical activated morphology (large cell body and short thicker 
process extensions as shown in Figure S9). However, in the aged 
brain, we observed two key differences. First, even under normoxic 
conditions, microglia displayed a much more activated morphol-
ogy. Second, CMH dramatically increased microglial activation in 
all brain areas in aged mice, even where no obvious vascular leak 
had occurred. Quantification of the number of morphologically ac-
tivated microglia confirmed that CMH had little impact on micro-
glial activation in young mice, while in contrast, microglia in aged 
mice were more activated under normoxic conditions (p < 0.001)	
and more strongly activated after CMH (p < 0.001,	 Figure 3c). 
Quantification of Mac- 1 signal per field of view (FOV) confirmed 
that microglia in aged brain were much more activated than in 
young brain (p < 0.01	 under	 normoxic	 conditions	 and	 p < 0.001	
during CMH, Figure 3d). Iba- 1 staining of aged brains under nor-
moxic and hypoxic conditions confirmed similar changes in micro-
glial activation (Figure S10). In addition, while microglia in young 
brain showed very little proliferation (Mac- 1+/Ki67+ dual- positive 
cells) in response to CMH, microglia in aged brain showed a strong 
proliferation response to CMH (as denoted by arrows in Figure 3b 
and quantified in Figure 3e).

In an alternative method, we also analyzed microglial expres-
sion	 of	CD68,	 a	 lysosomal	marker	 of	microglial	 priming	 (Walker	&	
Lue, 2015), specifically in brain areas not showing obvious vascular 

leak, in order to gain insight into how background CD68 levels differ 
with age (Figure 4). This showed that while the number of CD68+ 
cells was relatively low in young normoxic brains and little affected 
by CMH, CD68+ number was much higher in the aged normoxic 
brain (p < 0.001)	and	 increased	yet	again	 in	 the	aged	hypoxic	brain	
(p < 0.001;	see	Figure 4a and quantified in Figure 4c). Quantification 
of total CD68+ signal confirmed these findings (Figure 4d). In our 
recent study of young brain, we demonstrated that fibrinogen- 
positive vascular leaks were almost always associated with marked 
accumulation of microglia displaying the hypertrophic activated 
phenotype	(Halder	&	Milner,	2020). To examine the impact of age, 
we performed CD31/fibrinogen/CD68 triple- IF on young and aged 
brains (Figure 4b). This revealed a marked difference in the way that 
microglia	respond	to	vascular	leak	at	the	different	ages.	Whereas	in	
young brain, the vast majority of fibrinogen+ vascular leaks were 
surrounded by aggregates of CD68+ activated microglia, in the aged 
brain many vascular leaks were not (Figure 4b)	 (83.3 ± 12.7%	 in	
young	midbrain	vs.	37.8 ± 7.4%	in	aged	midbrain,	p < 0.001).	Analysis	
in	the	olfactory	bulb	showed	a	similar	pattern	(95.0 ± 5.1%	in	young	
vs.	48.1 ± 12.5%	in	aged	brain,	p < 0.001).	Consistent	with	these	find-
ings, the number of CD68+ microglial cells per fibrinogen+ area was 
also reduced in the aged brain (5.1 ± 0.42	cells	in	young	vs.	3.15 ± 0.52	
cells in aged brain, p < 0.01,	Figure 4f). This was particularly surprising 
considering that aged brains contain a much higher density of CD68+ 
cells (Figure 4a,c). Together, these data present an interesting para-
dox. On the one hand, they show that microglia in the aged brain are 
much more activated than in young mice, consistent with previous 
reports	 (Godbout	et	al.,	2005;	Mosher	&	Wyss-	Coray,	2014; Streit 
et al., 2004), and they also mount a stronger activation response to 
CMH than young microglia. However, despite this increased level of 
activation, microglia in the aged brain show a strikingly diminished 
ability to aggregate around leaky blood vessels.

2.5  |  Microglial depletion in aged mice results in 
greater hypoxia- induced cerebrovascular leak

Recently, we demonstrated that pharmacological depletion of 
microglia in young mice leads to greater hypoxia- induced cer-
ebrovascular leak, demonstrating that microglia play an important 
vasculo-	protective	role	(Halder	&	Milner,	2020).	As	our	current	data	
show that microglia in aged mice are more activated but paradoxi-
cally, less efficient, at mediating vasculo- protection, this suggests 
that the overly activated microglia in the aged brain may have devi-
ated from vasculo- protective toward a vasculo- destructive pheno-
type. If this is true, then removing microglia should result in less 
vascular leak. To investigate this possibility, we depleted microglia 
from aged mice using chow containing PLX5622, an inhibitor of col-
ony stimulating factor 1 receptor (CSF- 1R), a well- established phar-
macological approach of depleting microglia (Elmore et al., 2018, 
2014), and then examined how microglial depletion impacted 
hypoxia-	induced	 cerebrovascular	 leak.	 As	 shown	 in	 Figure 5a,c, 
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F I G U R E  3 Microglia	in	aged	brain	show	much	greater	activation.	Frozen	brain	sections	taken	from	young	(8–	10 weeks)	or	aged	
(20 months)	mice	exposed	to	normoxia	or	hypoxia	(8%	O2)	for	4 days	were	stained	for	Mac-	1	(AlexaFluor-	488)	(a)	or	Mac-	1	(AlexaFluor-	488)	
and the proliferation marker Ki67 (Cy- 3) (b). Images were captured in the midbrain. Scale bars =	50 μm	(a)	or	100 μm (b). Quantification of the 
number of morphologically activated microglia/FOV (c), total Mac- 1 area/FOV (d) and number of Ki67+/Mac- 1+ cells/FOV (e) after 0- , 4- , 7- , 
and	14-	day	hypoxia.	Results	are	expressed	as	the	mean ± SEM	(n = 4– 6 mice/group). *p < 0.05,	**p < 0.01,	***p < 0.001.	Note	that	microglia	
in the aged brain are morphologically more active, express higher levels of Mac- 1 and show higher rates of proliferation at all time- points. In 
addition, while young microglia show a mute response to hypoxia, those in aged brain exhibit a strong response.
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aged	 mice	 treated	 with	 1200 ppm	 (1200 mg	 drug	 per	 kg	 chow)	
PLX5622	for	21 days	demonstrated	>85% reduction in the number 
of brain microglia compared to untreated mice in all regions exam-
ined, including the midbrain and olfactory bulb (p < 0.001).	Aged	
mice	were	pre-	treated	with	PLX5622	for	21 days,	then	exposed	to	
CMH	for	4 days	with	PLX5622	maintained	throughout,	and	the	im-
pact	 on	CMH-	induced	 vascular	 leak	 then	 examined.	As	 shown	 in	
Figure 5b,d, this revealed that similar to our findings in young brain, 
microglial depletion in the aged brain resulted in an increased num-
ber of hypoxia- induced vascular leaks (increased more than 2- fold, 
p < 0.01)	both	 in	the	olfactory	bulb	and	the	midbrain.	Most	 inter-
estingly, in aged mice treated with PLX5622, even under normoxic 

conditions, we occasionally observed vascular leak in specific brain 
regions such as the corpus callosum (Figure 5e). This implies that 
in these regions of the aged brain, microglial vasculo- protective 
function is required to maintain vascular integrity, even under non- 
challenged conditions. To examine whether hypoxia- induced ex-
travascular fibrinogen leak was also associated with hemorrhage, 
we performed dual- IF for fibrinogen and the platelet marker CD41 
(GPIIb)	as	a	marker	of	blood	 leak	 into	the	brain	parenchyma.	This	
revealed that extravascular fibrinogen leak was often, but not al-
ways, associated with hemorrhage (Figure S11), and notably, micro-
glial depletion with PLX5622 increased the percentage of leaks that 
showed signs of hemorrhage.

F I G U R E  4 Microglia	in	aged	brain	show	higher	levels	of	CD68	expression	but	reduced	aggregation	around	leaky	blood	vessels.	Frozen	
brain sections taken from young and aged mice exposed to normoxia or hypoxia (8% O2)	for	4 days	were	stained	for	CD68	(AlexaFluor-	488)	
(a)	or	CD31	(AlexaFluor-	488),	fibrinogen	(Cy-	5),	CD68	(Cy-	3),	and	DAPI	(blue).	(b).	Images	were	captured	in	the	midbrain.	Scale	
bars =	100 μm. Quantification of the number of CD68+ cells/FOV (c), total CD68 area/FOV (d), number of vascular leaks with aggregation 
of CD68+ cells (e), or number of CD68+ microglial cells per fibrinogen+ area (f) after 0-  or 4- day hypoxia. Results are expressed as the 
mean ± SEM	(n =	5–	6	mice/group).	** p <0.01, ***p < 0.001.	Note	that	microglia	in	aged	brain	express	higher	levels	of	CD68	both	under	
normoxic and hypoxic conditions but show a markedly reduced aggregation around fibrinogen+ vascular leaks.
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2.6  |  Pharmacological attenuation of microglial 
activation reduces the number of CMH- induced 
vascular leaks in aged mice

As	microglial	 depletion	 leads	 to	 greater	 vascular	 leak	 in	 the	 aged	
brain, this demonstrates that microglia in the aged brain still play a 
net vasculo- protective role. However, as aged microglia appear to 
be less effective in their vasculo- protective capacity, this suggests 
that when microglia become too activated in the aged brain, this 
undermines their vasculo- protective function. If this is true, then 
reducing microglial activation should lead to less vascular leak. To 
test this idea, we used minocycline, a well- established method of 

reducing microglial activation (Manso et al., 2018; Zhao et al., 2007). 
Aged	mice	were	exposed	 to	CMH	for	4 days	 in	 the	absence	 (vehi-
cle)	or	presence	of	minocycline	(administered	daily	i.p.	at	50 mg/kg).	
This showed that aged mice treated with minocycline showed sig-
nificantly reduced levels of Mac- 1 (p < 0.001)	and	CD68	(p < 0.001)	
compared to vehicle controls (Figure 6a– d). Minocycline also 
strongly inhibited CMH- induced microglial proliferation in aged mice 
(p < 0.001;	 Figure 6e,f). Most importantly, compared with vehicle 
controls, aged mice treated with minocycline showed significantly 
reduced numbers of CMH- induced vascular leaks in all areas of the 
brain, including the midbrain (p < 0.001,	shown	 in	Figure 6g,h) and 
the olfactory bulb (p < 0.001,	 Figure	 S12). In parallel, minocycline 

F I G U R E  5 Microglial	depletion	in	aged	mice	results	in	greater	CMH-	induced	cerebrovascular	leak.	(a)	Frozen	brain	sections	taken	from	
aged	mice	fed	normal	chow	or	PLX5622-	containing	chow	and	maintained	under	normoxic	conditions	for	21 days	were	stained	for	the	
microglial	marker	Mac-	1	(AlexaFluor-	488)	and	DAPI	(blue).	Scale	bar	=	200 μm. (b) Images of the olfactory bulb and midbrain taken from aged 
mice	fed	normal	chow	or	PLX5622-	containing	chow	for	21 days	before	being	maintained	under	hypoxic	conditions	for	4 days	were	stained	
for	CD31	(AlexaFluor-	488)	and	fibrinogen	(Cy-	3).	Scale	bar	=	200 μm. (c,d) Quantification of microglial depletion after 21- day PLX5622 in 
the olfactory bulb (OB) and midbrain (MB) (c) or the number of vascular leaks/FOV in the olfactory bulb (OB) and midbrain (MB) in aged 
mice	fed	normal	chow	or	PLX5622-	containing	chow	and	maintained	under	hypoxic	conditions	for	4 days	(d).	All	results	are	expressed	as	the	
mean ± SEM	(n = 6– 7 mice/group). **p < 0.01.	***p < 0.001.	Note	that	21-	day	PLX5622	reduced	microglial	density	in	both	brain	regions	to	
less than 15% of untreated controls and that both brain regions in PLX5622- treated mice showed a much higher number of vascular leaks. 
(e) CD31/fibrinogen dual- IF images of the hippocampus (HC)/corpus callosum (CC)/cerebral cortex (CTX) regions taken from control chow 
or PLX5622- treated mice maintained under normoxic control conditions. Scale bar =	100 μm. Note the presence of vascular leaks within the 
corpus callosum of normoxic PLX5622- treated mice but not control mice.
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F I G U R E  6 Minocycline	reduces	microglial	activation	in	the	aged	brain,	resulting	in	less	vascular	leak.	Frozen	brain	sections	from	vehicle	
or	minocycline-	treated	aged	mice	exposed	to	hypoxia	for	4 days	were	stained	for	Mac-	1	(AlexaFluor-	488)	(a),	CD68	(AlexaFluor-	488)	(c),	
Mac-	1	(AlexaFluor-	488)	and	Ki67	(Cy-	3)	(e),	or	CD31	(AlexaFluor-	488)	and	fibrinogen	(Cy-	3)	(g).	Images	were	captured	in	the	midbrain.	Scale	
bars =	100 μm	(a,c,e)	or	200 μm (g). Proliferating microglia are denoted by arrows. Quantification of Mac- 1 area (b), CD68 area (d), number of 
Mac- 1+/Ki67+	cells/FOV	(f),	or	number	of	vascular	leaks	(h).	Results	are	expressed	as	the	mean ± SEM	(n = 8– 12 mice/group). ***p < 0.001.	
Note that minocycline markedly reduced microglial activation markers and proliferation, resulting in fewer vascular leaks.



    |  11 of 15HALDER and MILNER

attenuated the CMH- induced loss of endothelial tight junction pro-
teins ZO- 1 and occludin (denoted by arrows in Figure S13), that is 
typically observed in leaky blood vessels (p < 0.001).	 Interestingly,	
when we treated young mice with the same dose of minocycline, 
this also significantly reduced the number of CMH- induced vascular 
leaks in all areas of the brain, including the midbrain and the olfac-
tory bulb (Figure S14). Taken together, these results demonstrate 
that minocycline attenuates hypoxia- induced cerebrovascular leak, 
both in aged and young mice.

3  |  DISCUSSION

These studies demonstrate that hypoxia- induced cerebrovascular 
leak is greatly amplified (5- fold to 10- fold) in aged mice due to a 
combination of delayed vascular remodeling and reduced microglial 
vasculo- protection. Furthermore, while overly activated microglia in 
the aged brain are less effective at promoting vascular integrity, this 
protective function can be partially restored by reducing microglial 
activation with minocycline, suggesting therapeutic potential for the 
hypoxia- predisposed elderly population.

3.1  |  Hypoxia- induced vascular leak is greatly 
enhanced in the aged brain

The findings presented here are consistent with previous stud-
ies demonstrating age- associated decline in BBB integrity (Farrall 
&	Wardlaw,	2009; Senatorov et al., 2019).	While	this	 is	not	totally	
surprising considering general age- related functional decline in all 
systems, what is surprising is the magnitude of these changes. For 
instance, in the two regions showing the greatest extent of hypoxia- 
induced vascular leak, the olfactory bulb and the midbrain, the num-
ber of vascular leaks in aged mice is 5- fold to 10- fold that seen in 
young mice, and this difference is observed in almost all other re-
gions. Interestingly, in brain regions showing very few leaks in young 
mice, such as the cerebral cortex, striatum, and thalamus, this ratio 
becomes even greater than 10- fold, demonstrating that in the aged 
brain, hypoxia has an even greater detrimental impact on cogni-
tive regions not affected in young mice. Because relative hypoxia is 
common to many medical conditions, including sleep apnea, asthma 
(both of which can occur early in life), as well as COPD and age- 
related cardiac and cerebrovascular insufficiency, many of which are 
established risk factors for cognitive decline (Leng et al., 2017; Russ 
et al., 2020; Yaffe et al., 2011; Yohannes et al., 2017), these findings 
have major clinical implications for a large fraction of the population.

3.2  |  Regional vulnerability

A	significant	finding	from	this	study	was	that	two	specific	brain	re-
gions showed high susceptibility to hypoxia- induced vascular leaks: 
the olfactory bulb and the midbrain. This raises two important 

questions: (i) why are these regions leakier than others, and (ii) does 
this have any clinical implications? Interestingly, previous studies 
have highlighted the olfactory bulb as a hotspot of vascular break-
down, both under hypoxic conditions and in animal models of viral 
and malarial infection (Hoffmann et al., 2016;	Winkler	et	al.,	2015; 
Zhao et al., 2014). In one of these studies, it was suggested that the 
trabeculated small capillaries of the olfactory bulb are uniquely sen-
sitive to breakdown (Zhao et al., 2014).	Another	reason	could	be	that	
because the olfactory bulb is one of the most dynamically plastic 
areas of the adult brain, with the ability to generate new neurons via 
the	 rostral	migratory	 stream	 throughout	 life	 (Wilson	et	 al.,	2004), 
this is accompanied by an equally high level of vascular plasticity. 
In support of this idea, we showed recently that the olfactory bulb 
shows the highest rate of vascular remodeling in response to hy-
poxia	(Halder	&	Milner,	2020). Interestingly, we found that increased 
vulnerability to hypoxia- induced vascular breakdown in the olfac-
tory bulb correlated with marked impairment of olfactory func-
tion, demonstrating that vascular leak has important implications 
for brain function. This regional vulnerability may also hold clinical 
relevance because several studies have suggested that loss of smell 
(anosmia) may be an important early predictor of cognitive decline 
and	dementia	(Adams	et	al.,	2018;	Growdon	et	al.,	2015).	Aside	from	
the olfactory bulb, the number of vascular leaks in the midbrain was 
also	very	striking.	While	some	leaks	occurred	within	the	substantia	
nigra (SN), many were also more widespread in the midbrain, with 
the	red	nucleus	(RN)	particularly	affected.	As	both	the	SN	and	RN	
structures are involved with motor control and coordination, this 
raises the possibility that hypoxic insults may predispose to the 
pathogenesis of movement disorders, including Parkinson's disease.

3.3  |  Delayed vascular remodeling in the aged

Our studies demonstrate that although aged mice are still capable 
of launching a vascular remodeling response to CMH, this is mark-
edly delayed compared to young mice. Indeed, the endothelial pro-
liferation response in aged brain diminished at a much faster rate and 
this was accompanied by a delay in vessel maturation, indicated by 
extended	MECA-	32	expression,	thus	predisposing	to	longer	periods	
of vascular vulnerability and greater leak. This concept is supported 
by our recent work showing that transgenic mice lacking endothelial 
expression of the angiogenic integrin α5β1 (α5- EC- KO) show greater 
vascular leak in a neuroinflammatory model (Kant et al., 2019). These 
observations are also in keeping with previous studies describing 
loss	of	angiogenic	potential	with	age	 (Benderro	&	LaManna,	2011; 
Black et al., 1989). In particular, Benderro et al described delayed 
hypoxia- induced angiogenesis in the aged mouse cortex, which they 
attributed to age- related attenuation of HIF- 1α	 and	VEGF	expres-
sion	levels	(Benderro	&	LaManna,	2011).	Alternatively,	the	extended	
MECA-	32	expression	 in	aged	mice	might	be	because	 less	efficient	
angiogenesis fails to correct tissue hypoxia as it does in young 
animals; thus, the vessels remain leaky for longer. It is important 
to acknowledge that despite the delay in vessel maturation and 
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subsequent enhanced vascular leak in aged mice, in the long term, 
remodeling blood vessels in the hypoxic aged brain retain the inher-
ent ability to repair any disruptions, as illustrated by the reduced 
number of vascular leaks remaining after 14- day CMH compared to 
earlier timepoints. However, in the face of continued and increas-
ingly severe episodes of hypoxia in aged patients that accumulate 
over many years, it seems likely that these protective mechanisms 
may eventually be overwhelmed.

3.4  |  Microglial vasculo- protection declines 
with age

Building on our recent findings that in young mice, microglia play an 
important	vasculo-	protective	role	 in	response	to	hypoxia	(Halder	&	
Milner, 2019, 2020), we wondered if microglia in the aged brain may 
be less activated by hypoxia. In fact, we saw the opposite was true 
because under normoxic conditions, microglia in the aged brain ex-
pressed higher levels of activation markers and looked morphologi-
cally more activated compared to those in young brain, and unlike the 
young brain, in the aged brain, hypoxia enhanced microglial activation 
status. Together, these data present an interesting paradox; despite 
microglia in the aged brain being much more activated than in young 
mice, they show a strikingly diminished ability to aggregate around 
leaky blood vessels. Based on these findings, we wondered if microglia 
in the aged brain had switched from playing a vasculo- protective role 
to more of a vasculo- destructive one, but this idea was disproved by 
our finding that microglial depletion in aged brain exacerbated vascu-
lar leak, confirming that microglia in the aged brain still play an overall 
vasculo- protective role. However, there remained the possibility that 
as higher microglial activation state correlated with worse vascular 
leak in aged mice, attenuating microglial activation to a level seen in 
young mice, might improve the vasculo- protective function of aged 
microglia. To this end, recent studies have employed a reprogram-
ming strategy whereby all aged microglia are removed by PLX5622, 
to be replaced by endogenous microglia having a “younger” pheno-
type (Elmore et al., 2018; O'Neil et al., 2018). In one particular study, 
with obvious implications for our work, this approach was shown to 
reverse age- related cognitive decline (Elmore et al., 2018). Here, we 
took a more direct approach by using minocycline, a well- established 
method of attenuating microglial activation (Manso et al., 2018; 
Zhao et al., 2007). This demonstrated that in aged mice, minocycline 
strongly reduced microglial activation responses, correlating with sig-
nificantly fewer hypoxia- induced vascular leaks, as well as diminished 
loss of tight junction protein expression. Based on these data, we pro-
pose a model (Figure 7) in which microglial vasculo- protective func-
tion	displays	a	biphasic	relationship	with	activation	state.	According	
to this model, microglia in young normoxic mice (green arrow) are 
resting but upon hypoxic- induced vascular leak, they become more 
activated and display enhanced vasculo- protective function. In con-
trast, microglia in aged normoxic mice (red arrow) occupy a higher 
baseline activation state, so that when stimulated by hypoxia, they 
become overly activated and less vasculo- protective. The effect of 

minocycline in aged mice is consistent with this model because mino-
cycline attenuation of microglial activation left- shifted microglia back 
into the protective range. Intriguingly, as minocycline also reduced 
hypoxia- induced vascular leak in young mice, this suggests that even 
in young mice, there is a “sweet point” at which microglia confer maxi-
mal vasculo- protection, and that microglial activation over and above 
this point is detrimental to the vasculo- protective process. The out-
standing question now becomes: why are overly activated microglia 
less effective at vasculo- protection? One possibility, based on the bi-
phasic relationship that exists between the strength of cell adhesion 
and speed of migration (DiMilla et al., 1993; Palecek et al., 1997), is 
that highly activated microglia in the aged brain are more strongly 
attached to the surrounding substrates by way of increased expres-
sion of cell adhesion molecules including integrins (Kloss et al., 2001; 
Milner	&	Campbell,	2003), and are thus less free to migrate at optimal 
speed	to	disrupted	blood	vessels.	A	second	possibility	is	that	because	
in aged brain, the leak of fibrinogen and other chemoattractants is 
far more extensive and diffuse, this may greatly reduce the chem-
oattractant gradient, resulting in flattened microglial aggregation re-
sponses. Third, it is also possible that overly activated microglia could 
release pro- inflammatory soluble factors such as cytokines or matrix 
metalloproteinases (MMPs) that negatively impact vascular integrity 
(Boroujerdi et al., 2015; Rosenberg, 2002). In future studies, we plan 
to address some of these possibilities.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Animals

The studies described were reviewed and approved by the Explora 
Biolabs	Institutional	Animal	Care	and	Use	Committee	at	San	Diego	
Biomedical	Research	Institute	(SDBRI).	Wild-	type	female	C57BL6/J	

F I G U R E  7 Model	proposing	a	biphasic	relationship	between	
microglial	activation	vasculo-	protective	function.	According	to	
this model, microglia in young normoxic mice (green arrow) are 
resting but upon hypoxic- induced vascular leak, they become 
more activated and display enhanced vasculo- protective function. 
In contrast, microglia in aged normoxic mice (red arrow) occupy 
a higher baseline activation state, so that when stimulated by 
hypoxia, they become overly activated and less vasculo- protective.
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mice	 obtained	 from	 Jackson	 Laboratories	 were	maintained	 under	
pathogen- free conditions in the closed breeding colony of SDBRI.

4.2  |  Chronic Hypoxia Model

Female	 C57BL6/J	 mice,	 8–	10 weeks	 (young)	 and	 20 months	
(aged), were housed 4 to a cage, and placed into a hypoxic cham-
ber (Biospherix) maintained at 8% O2	 for	 periods	 up	 to	 14 days.	
Littermate control mice were kept in the same room under similar 
conditions except that they were kept at ambient sea- level oxygen 
levels (normoxia, approximately 21% O2 at sea- level) for the duration 
of the experiment. Every few days, the chamber was briefly opened 
for cage cleaning and food and water replacement as needed.

4.3  |  Buried food test

Olfactory function was evaluated using the well- established buried 
food test, which evaluates the ability of mice to locate a food source 
hidden	beneath	a	layer	of	bedding,	as	previously	described	(Yang	&	
Crawley, 2009). The purpose of this test is to measure an animal's 
ability to smell odors and use these cues to forage and find hidden 
food. The protocol involves a 3- day process involving odor familiari-
zation and tasting the food source on Day 1, overnight fasting on Day 
2, and testing on Day 3. On test day, mice were allowed to acclimatize 
for 5 min to a clean cage containing 3 cm think bedding. The mouse 
was	 temporarily	 removed	while	 a	 Teddy	 Graham	 cookie	 (Nabisco)	
was buried beneath 1 cm of bedding in a random corner of the cage. 
The mouse was then reintroduced into the cage, and the time taken 
for the mouse to find the buried cookie was measured in seconds up 
to	a	maximum	of	10	min	(with	600 s	as	the	maximum	score).

4.4  |  Elimination of microglia

PLX5622 was provided by Plexxikon under Material Transfer 
Agreement	 and	 formulated	 in	AIN-	76A	 standard	 chow	by	Research	
Diets	at	a	dose	of	1200 p.p.m.	(1200 mg	PLX5622	in	1	kg	chow).	In	mi-
croglial depletion experiments, aged mice were fed a PLX5622 diet for 
21 days	prior	to	being	placed	in	the	hypoxic	chamber	to	deplete	micro-
glia before they were exposed to hypoxic conditions. Once in the hy-
poxic chamber, these mice were then maintained on the PLX5622 diet 
for	4 days.	Consistent	with	the	findings	of	others,	in	these	studies	we	
found no obvious behavioral alterations, weight loss or signs of illness 
in	mice	fed	a	PLX5622	diet	for	3 weeks	(Elmore	et	al.,	2018, 2014).

4.5  |  Attenuation of microglial activation

To evaluate the impact of attenuated microglial activation, aged mice 
exposed	to	CMH	for	4 days	received	daily	intraperitoneal	(i.p.)	injec-
tions	of	minocycline	(50 mg/kg;	Sigma-	Aldrich)	or	vehicle	(PBS).

4.6  |  Immunohistochemistry and antibodies

Immunohistochemistry was performed on 10 μm frozen sections 
of cold phosphate buffer saline (PBS) perfused tissues as described 
previously (Boroujerdi et al., 2015). For Iba- 1 staining, following 
PBS perfusion, brains were fixed in 4% paraformaldehyde for 24 hrs 
then immersed in 25% sucrose for 24 hrs before sections cut. Rat 
monoclonal antibodies from BD Pharmingen reactive for the follow-
ing antigens were used in this study: CD31 (clone MEC13.3; 1:500), 
CD41	 (clone	 MWReg30:	 1:100),	 MECA-	32	 (1:100),	 Mac-	1	 (clone	
M1/70;	 1:50),	 CD68	 (clone	 FA-	11;	 1:2000),	 and	 VCAM-	1	 (clone	
429;	1:100).	The	hamster	anti-	CD31	(clone	2H8;	1:500)	and	rabbit	
anti- NeuN (clone EPR12763; 1:2000) monoclonals were obtained 
from	Abcam	and	mouse	monoclonal	anti-	TH-	1	(clone	LNC1;	1:300)	
from Millipore- Sigma. Rabbit antibodies reactive for the following 
proteins were also used: Ki67 (1:4000 from Novus Biologicals), fi-
brinogen	 (1:1500	 from	Millipore),	 AQP4	 (1:10,000	 from	 Alomone	
Labs),	 Iba-	1	 (1:1000	 from	DAKO),	 and	 occludin	 and	 ZO-	1	 (1:1500	
from Invitrogen). The sheep anti- fibrinogen antibody (1:3000) was 
obtained from Bio- Rad and the goat anti- CD206 antibody (1:500) 
from	R&D.	Secondary	antibodies	used	 (all	at	1:500)	 included	Cy3-	
conjugated anti- rabbit, anti- rat, anti- goat and anti- mouse and Cy5- 
conjugated	 anti-	rabbit	 from	 Jackson	 Immunoresearch,	 and	 Alexa	
Fluor 488- conjugated anti- rat, anti- hamster, anti- sheep, anti- goat, 
and anti- rabbit from Invitrogen.

4.7  |  Image analysis

Images were taken using a 5×, 10×, or 20× objective on a Zeiss 
Imager M1.m fluorescent microscope. For each antigen in all analy-
ses, images of at least three randomly selected areas were taken at 
10× or 20× magnification per tissue section and three sections per 
brain analyzed to calculate the mean for each animal (n = 4– 12 mice 
per group). For each antigen in each experiment, exposure time was 
set to convey the maximum amount of information without saturat-
ing the image and was maintained constant for each antigen across 
the different experimental groups. The number of vascular leaks or 
MECA-	32+	or	VCAM-	1+ vessels per field of view (FOV) was quanti-
fied by capturing images and performing manual counts of the num-
ber	 of	 vessels	 showing	 extravascular	 leaked	 fibrinogen,	MECA-	32	
or	 VCAM-	1,	 respectively.	 The	 number	 of	 activated	 microglia	 was	
quantified by performing manual counts of the number of CD68+ 
cells or by morphological criteria of Mac- 1 or Iba- 1 staining (large 
cell body and short process extensions) per FOV. Total number of 
Mac- 1+ microglia were quantified by performing manual counts. 
Total Mac- 1, Iba- 1, or CD68+ area fluorescent signal per FOV was 
measured	and	analyzed	using	NIH	Image	J	software.	Endothelial	and	
microglial proliferation was quantified by counting the number of 
CD31/Ki67 or Mac- 1/Ki67 dual- positive cells per FOV, respectively. 
The	number	of	vessels	lacking	expression	of	AQP4	or	the	tight	junc-
tion proteins ZO- 1 and occludin, or the number of fibrinogen+ leaky 
vessels showing CD68+ microglial accumulation or CD41+ platelets 
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was quantified by capturing images and performing manual counts. 
Each experiment was performed with 4– 12 different animals per 
condition,	and	the	results	expressed	as	the	mean ± SEM.	Statistical	
significance was assessed using one- way analysis of variance (anova) 
followed by Tukey's multiple comparison post hoc test, in which 
p < 0.05	was	defined	as	statistically	significant.
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