Skip to main content
. 2022 Sep 16;12:15600. doi: 10.1038/s41598-022-19278-2

Table 6.

Evaluation metrics of our proposed model using Reinhard normalization

Folds Confusion matrices Performance evaluation
Predict Actual Ben. Ins. Inv. Nor. Prec. Rec. F1 Test Accuracy (%) Kappa
Fold 1 Benign 43 4 1 2 1.00 0.86 0.92 50 96.44 0.945
In situ 0 49 1 0 0.89 0.98 0.93 50
Invasive 0 1 225 4 0.98 0.98 0.98 230
Normal 0 1 2 117 0.95 0.97 0.96 120
Fold 2 Benign 46 2 0 2 0.98 0.92 0.95 50 96.88 0.952
In situ 1 49 0 0 0.89 0.98 0.93 50
Invasive 0 3 223 4 1.00 0.97 0.98 230
Normal 0 1 1 118 0.95 0.98 0.97 120
Fold 3 Benign 47 2 1 0 0.98 0.94 0.96 50 96.44 0.944
In situ 1 48 1 0 0.92 0.96 0.94 50
Invasive 0 1 226 3 0.97 0.98 0.97 230
Normal 0 1 6 113 0.97 0.94 0.96 120
Fold 4 Benign 47 2 0 1 0.96 0.94 0.95 50 97.11 0.955
In situ 1 47 1 1 0.94 0.94 0.94 50
Invasive 0 0 227 3 0.99 0.99 0.99 230
Normal 1 1 2 116 0.96 0.97 0.96 120
Fold 5 Benign 47 3 0 0 0.87 0.94 0.90 50 95.33 0.928
In situ 2 47 0 1 0.87 0.94 0.90 50
Invasive 2 2 223 3 0.99 0.97 0.98 230
Normal 3 2 3 112 0.97 0.93 0.95 120
Final Benign 47 2 0 1 0.98 0.94 0.96 50 97.33 0.959
In situ 1 48 1 0 0.92 0.96 0.94 50
Invasive 0 1 226 3 0.99 0.98 0.98 230
Normal 0 1 2 117 0.97 0.97 0.97 120