Skip to main content
. 2022 Sep 16;12:15600. doi: 10.1038/s41598-022-19278-2

Table 9.

Evaluation metrics of our proposed model using Vahadane normalization

Folds Confusion matrices Performance evaluation
Predict Actual Ben. Ins. Inv. Nor. Prec. Rec. F1 Test Accuracy (%) Kappa
Fold 1 Benign 42 4 2 2 1.00 0.84 0.91 50 96.66 0.948
In situ 0 49 1 0 0.91 0.98 0.94 50
Invasive 0 0 226 4 0.98 0.98 0.98 230
Normal 0 1 1 118 0.95 0.98 0.97 120
Fold 2 Benign 45 2 0 3 0.98 0.90 0.94 50 96.44 0.945
In situ 1 48 0 1 0.91 0.96 0.93 50
Invasive 0 2 222 6 1.00 0.97 0.98 230
Normal 0 1 0 119 0.92 0.99 0.96 120
Fold 3 Benign 46 1 1 2 0.98 0.92 0.95 50 95.77 0.934
In situ 1 48 1 0 0.96 0.96 0.96 50
Invasive 0 0 227 3 0.95 0.99 0.97 230
Normal 0 1 9 110 0.96 0.92 0.94 120
Fold 4 Benign 47 1 0 2 0.98 0.94 0.96 50 97.77 0.965
In situ 1 48 1 0 0.96 0.96 0.96 50
Invasive 0 0 227 3 0.99 0.99 0.99 230
Normal 0 1 1 118 0.96 0.98 0.97 120
Fold 5 Benign 48 1 1 0 0.89 0.96 0.92 50 96.22 0.942
In situ 2 48 0 0 0.94 0.96 0.95 50
Invasive 0 1 223 6 0.99 0.97 0.98 230
Normal 4 1 1 114 0.95 0.95 0.95 120
Final Benign 46 1 1 2 0.98 0.92 0.95 50 97.33 0.958
In situ 1 47 2 0 0.96 0.94 0.95 50
Invasive 0 0 226 4 0.99 0.98 0.98 230
Normal 0 1 0 119 0.95 0.99 0.97 120