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Systematic characterization of cancer
transcriptome at transcript resolution

Wei Hu1,5, Yangjun Wu2,5, Qili Shi3,5, Jingni Wu1, Deping Kong1, Xiaohua Wu2,
Xianghuo He 3 , Teng Liu1,4 & Shengli Li 1

Transcribed RNAs undergo various regulation and modification to become
functional transcripts. Notably, cancer transcriptome has not been fully
characterized at transcript resolution. Herein, we carry out a reference-based
transcript assembly across >1000 cancer cell lines. We identify 498,255 tran-
scripts, approximately half ofwhich are unannotated. Unannotated transcripts
are closely associated with cancer-related hallmarks and show clinical sig-
nificance. We build a high-confidence RNA binding protein (RBP)-transcript
regulatory network, wherein most RBPs tend to regulate transcripts involved
in cell proliferation. We identify numerous transcripts that are highly asso-
ciated with anti-cancer drug sensitivity. Furthermore, we establish RBP-
transcript-drug axes, wherein PTBP1 is experimentally validated to affect the
sensitivity to decitabine by regulating KIAA1522-a6 transcript. Finally, we
establish a user-friendly data portal to serve as a valuable resource for
understanding cancer transcriptome diversity and its potential clinical utility
at transcript level. Our study substantially extends cancer RNA repository and
will facilitate anti-cancer drug discovery.

RNA transcripts, as the direct carriers of translational codes of pro-
teins, are generated via diverse regulation and modification in parti-
cular contexts1–3. Under different contexts, transcriptional activity
shows diversity in that different quantities of transcripts or totally
distinct transcripts are produced from the same genes4,5. Transcrip-
tional diversity greatly expands the encoding storage capacity of the
genome for proteins in eukaryotes. Along with advancements in high-
throughput RNA sequencing (RNA-seq)and the development of com-
putational algorithms, transcriptional diversity has been largely
brought to light in human diseases6,7. By reanalyzing RNA-seq data
from 32 cancer types, Kahles et al. detected thousands of alternative
splicing variants in many tumors8. Xiang et al. identified many alter-
native polyadenylation variants in 6398 tumor patients and 739 cancer
cell lines, wherein 1971 variants were found to be clinically relevant9.
These transcriptional variants generate specific RNA transcripts that

may play important roles in tumor development. For example, a
LIN28B variant, LIN28B-TST, was found to be specifically expressed in
tumor samples and critical for cancer cell proliferation and
tumorigenesis10. However, an integrative depiction of RNA transcripts
in large-scale cancer transcriptomics data has been lacking. RNA-
binding proteins (RBPs)have been shown to play crucial regulatory
roles in post-transcriptional RNA expression, and aberrantly pro-
grammed RBP-RNA interactions modulate cancer initiation and
progression11–13. Van Nostrand et al. reported the largest effort to date
to systematically study the functions of 356 human RBPs. They com-
bined the RBP binding data (eCLIP-seq)and RBP knockdown followed
by RNA-seq data (KD-RNA-seq) to construct the RBP-gene regulation
and RBP-splicing association. Furthermore, several RBPs have also
been demonstrated to mediate the response of cancer cells to anti-
cancer drugs, such as estrogen receptor α (ERα)14 and eukaryotic
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translation initiation factor 2 subunit beta (EIF2S2)15. Nevertheless, RBP
regulation at the transcript level and its roles in mediating the
response to anti-cancer drugs of cancer cells remain incompletely
understood.

Human cancer-derived cell lines have been widely used as pre-
clinical cancer models in cancer biology research and anti-cancer
drug discovery16. Massive efforts have been made to delineate the
molecular characteristics across large-scale cancer cell lines17. The
Cancer Cell Line Encyclopedia (CCLE) project generated high-
throughput sequencing data of hundreds of cancer cell lines at var-
ious molecular levels, including genomics, transcriptomics, epige-
nomics, proteomics, and metabolomics18,19. To further expedite drug
discovery, the Genomics of Drug Sensitivity in Cancer (GDSC) project
provides an unprecedented resource about drug sensitivity for 266
anti-cancer agents across 1,065 different cancer cell lines20, while the
Cancer Therapeutics Response Portal (CTRP) provides information on
responses to 481 compounds in 860 cancer cell lines21. Large biological
troves and potential clinical applications have been discovered
through the multifarious integrative characterization of sophisticated
molecular landscapes across cancer cell lines17,22,23.

To comprehensively delineate the transcript atlas in cancer, we
carried out a reference-based transcript assembly with RNA-seq data
across more than 1000 cancer cell lines. The unannotated transcript
AC092803.3-u1 from the AC092803.3 gene was experimentally vali-
dated and showed a higher expression level and clinical significance in
multiple tumor types than the other transcript, AC092803.3-a1. Fur-
thermore, RBP-transcript regulation and transcript-drug associations
in cancer were combined to build RBP-transcript-drug axes, wherein
PTBP1 was experimentally validated to affect the sensitivity to decita-
bine by regulating the expression of the KIAA1522-a6 transcript of the
KIAA1522gene.We alsodeveloped a user-friendly data portal to benefit
the biomedical research community.

Results
Comprehensive characterization of the transcript landscape
across over 1000 cancer cell lines
To extensively dissect the transcriptional atlas across pan-cancer cell
lines at the transcript level, reference-based transcript assembly was
performed across pan-cancer cell lines (see “Methods”). Briefly, 1017
transcriptomes of cancer cell lines derived from 25 different lineages
(Supplementary Fig. 1a and Supplementary Data 1) were subjected to
two-round alignments to identify all possible splicing junctions (Sup-
plementary Fig. 1b). Based on this comprehensive repertoire of spli-
cing junctions, expressed transcripts derived from various genomic
regions were assembled and quantified. In total, 498,255 transcripts
were detected in at least one cell line. On average, 72.31% of transcripts
showed expression levels lower than 0.1 TPM, and 11.64% were found
to be expressed at higher than 1 TPM (Supplementary Fig. 1c). Among
all detected transcripts, 27.24%weredetected in less than 10%of all cell
lines, while 19.78% were expressed in more than 90% of cell lines
(Supplementary Fig. 1d). Except for non-coding and intergenic RNAs,
which are likely uncharacterized or small regulatory RNAs, most
transcripts from non-coding genomic regions have a length distribu-
tion similar to those from protein-coding regions (Supplemen-
tary Fig. 1e).

Transcript expressionprofileswere then adopted to cluster all cell
lines, wherein cell lines from the same or close primary sites were
clustered closer (Fig. 1a). The numbers of identified transcripts ranged
vastly across different cell lines, with the largest median number of
2062 (per million mapped reads) in prostate and the smallest median
number of 1472 (per million mapped reads) in biliary tract cell lines
(Fig. 1b). Newly assembled transcripts were compared to those anno-
tated in various databases/datasets to filter unannotated transcripts
(see “Methods”), removing 35,986 transcripts from the unannotated
transcripts (Supplementary Fig. 2a). The vast majority (72.55%) of

transcripts were expressed from protein-coding genes (Fig. 1c, Sup-
plementary Data 2). Among all detected transcripts from protein-
coding regions, approximately half (50.57%) were unannotated.
Moreover, a considerable portion of transcripts are from non-coding
genomic regions, such as lncRNAs (13.04%) and pseudogenes (4.81%).
The numbers of lineage types that expressed individual transcripts
showed a hump distribution, wherein most transcripts were identified
in 22 different lineages or one specific cell line lineage (Supplemen-
tary Fig. 2b).

The lineage specificity scores were then calculated to identify
cancer cell line lineage-specific transcripts (see “Methods”). In total, we
identified 72,865 lineage-specific transcripts across 22 different linea-
ges. We further evaluated the specificity of host genes that generated
these lineage-specific transcripts. We found that the majority of
lineage-specific transcripts were generated from non-specific host
genes (Supplementary Fig. 2c). The intergenic and long non-coding
RNA transcripts showed the highest overall specificity scores, followed
by pseudogene and non-coding RNA transcripts (Supplementary
Fig. 2d). The numbers of lineage-specific transcripts ranged from 1201
in the pancreas to 12,769 in haematopoietic and lymphoid cell lineages
(Fig. 1d, SupplementaryData 3). For example, the LAPTM5-a7 transcript
(transcribed from the LAPTM5 gene) and CORO1A-u2 transcript (an
unannotated transcript from the CORO1A gene) are exclusively
expressed in cancer cell lines derived from haematopoietic and lym-
phoid lineages (Fig. 1e). One transcript of the MFSD12 gene, MFSD12-
a11, and the unannotated AC141557.1-u1 transcript from the AC141557.1
gene showed specific transcriptional activities in skin cell lines (Fig. 1f).

We further analyzed available long-read RNA-seq datasets (see
“Methods”). In total, 6.23% of our unannotated transcripts were map-
ped by long-read RNA sequencing reads (Supplementary Fig. 3a).
Unannotated transcripts with high expression level weremore likely to
be mapped by long-read RNA-seq data, wherein 18.23% of the tran-
scripts that showed top 10% expression levels were found to be over-
lapped by long-read RNA-seq reads (Supplementary Fig. 3b). The
coverage of transcriptome by long-read RNA-seq might be lower than
that of short-read RNA-seq. In particular, less than 8% of annotated
transcripts were covered by long-read RNA-seq reads, while appro-
priately 40% of them were mapped by short-read RNA-seq reads
(Supplementary Fig. 3c). Therefore, the validation percentages of
unannotated transcripts by long-read RNA-seq reads in our study were
acceptable and reasonable. In a previous study that used short-read
RNA-seq data for transcriptome assembly, 7.6% of their newly assem-
bled single-exon transcripts were mapped by long-read RNA-seq
reads24. To provide more transcription evidence of our unannotated
transcripts, we analyzed the CAGE sequencing data from the FANTOM
project25, and the chromatin states from the Roadmap Epigenomics
project26. In total, 78.64% of unannotated transcripts were overlapped
by transcription evidence (8.28% by only CAGE, 24.08% by only active
chromatin states, and 46.29% by both CAGE and active chromatin
states), which was comparable with the annotated transcripts, 86.62%
of which were mapped by transcription evidence (Supplementary
Fig. 3d). In summary, our results presented an extended compendium
of the cancer transcriptome and revealed many unexplored RNA
transcripts.

Transcript-level analysis reveals largely unexplored trove in
cancer transcriptome
As unannotated transcripts constituted over half of our cancer tran-
script atlas, we next investigated whether the expression of these
unannotated transcripts was associated with disease progression or
prognosis in human cancer. In total, 253,254 unannotated transcripts
were identified. Unannotated transcripts from protein-coding genes
exhibited relatively lower expression level, while those from the other
gene types showed comparable expression levels over annotated
transcripts across different expression ranges (Supplementary Fig. 4a).
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Fig. 1 | Transcriptional atlas across pan-cancer cell lines. a t-SNE clustering based
on the expression profile of all detected transcripts across all cell lines. b The dis-
tribution of normalized transcript numbers across different cell lineages. In each
primary site, n is the number of different cell lines. Each box (inset) represents the
IQR andmedian of cell line number in each primary site, whiskers indicate 1.5 times
the IQR. c Pie charts show the percentages of distinct gene/genomic regions where
transcripts are transcribed. The middle pie chart shows different types of genes
from which transcripts were derived. The upper pie shows the composition of
annotated and unannotated transcripts derived from protein-coding genes. The
bottompie shows the portions of transcripts fromdifferent cis-regulatory elements

(CREs). d Lineage-specific transcript profile across cell lineages. Bar plots in the
upper panel show the percentage of lineage-specific transcripts in each cell lineage.
e t-SNE plots show the expression of LAPTM5-a7 and CORO1A-u2 transcripts across
all cell lines. The specifically highly expressed cell lines are haematopoietic and
lymphoid cell lines. f t-SNE plots show the expression of MFSD12-a11 and
AC141557.1-u1 transcripts across all cell lines. The cell lines with specific high
expression are skin cell lines. In (e) and (f), the colors of dots indicate different
expression levels of transcripts, wherein a deeper red color represents a higher
expression level.
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Themajority of unannotated transcripts were derived from alternative
splicing junctions of multiple exons with at least one annotated junc-
tion (Fig. 2a and Supplementary Fig. 4b). In addition, approximately
one-third (35.46%) of unannotated transcripts were readthrough
transcripts (Fig. 2b). To investigate the possible biological functions
that unannotated transcripts may participate in, we performed corre-
lation analysis between unannotated transcripts and transcriptional

activities of hallmark biological processes. Significant hallmarks
(FDR <0.05) with the highest correlation were linked to the corre-
sponding transcripts. Epithelial–mesenchymal transition (EMT) was
found to be associated with the largest number of unannotated tran-
scripts (Fig. 2c and Supplementary Fig. 5a). The expression levels of
individual unannotated transcripts varied widely across different cell
lines (Fig. 2d). Compared to paired adjacent non-tumor samples,
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75,343 unannotated transcripts showed significantly differential
expression in at least one tumor type, wherein LUSC had the largest
number of differentially expressed transcripts (Supplementary
Fig. 5b). Most of these differentially expressed transcripts showed
specific differences in one or two cancer types (Supplementary
Fig. 5b). For example, the UBE2C-u5 transcript showed significant
upregulation in 11 different cancer types (Supplementary Fig. 5c).
Furthermore, 119,212 showed significant association with tumor stages
(Supplementary Fig. 6a), and 131,506 unannotated transcripts were
found to be significantly associated with the overall survival of tumor
patients in at least one tumor type (Supplementary Fig. 6b). Higher
expression of UBE2C-u5 also indicated more advanced tumor stages
(Supplementary Fig. 7a) and poorer prognosis (Supplementary Fig. 7b)
across different cancer types.

Unannotated transcripts from protein-coding gene regions
exhibited relatively lower expression level, while those from the other
gene types showed comparable expression level over corresponding
annotated transcripts across different expression ranges (Supple-
mentary Fig. 3a). Comparable expression levels indicated that these
unannotated transcripts from non-protein-coding regions might pos-
sess alternative or stronger functions over known transcripts of the
same host genes in cancer. LncRNAs have been demonstrated to have
key roles in human cancer27,28, which are also the vast majority of non-
protein-coding regions where our unannotated transcripts are from.
To select stable and representative unannotated transcripts from
lncRNAs for validation, we first ranked the expression levels of those
that have no overlaps with protein-coding genes and ≤1000bp in
length (Supplementary Fig. 8a). We also calculated the number of
cancer types that unannotated transcripts had survival significancebut
the corresponding annotated transcripts didn’t. RACE assays were
performed to validate the top 10 unannotated transcripts with high
average expression level. The unique sequences or junctions of three
unannotated transcripts, including CRIM1-DT-u1, AC107032.2-u1, and
AC092803.3-u1, were confirmed by 3′ RACE and Sanger sequencing
(Supplementary Fig. 8b). Of the three transcripts, AC092803.3-u1 had
the largest number of cancer types where only unannotated tran-
scripts had survival significance. The AC092803.3-u1 transcript was
overlapped by 2, 13, and 4 long-read RNA-seq reads in the K562, PC9,
and CACO2 cell lines, respectively (Supplementary Fig. 8c) We also
validated the expression of AC092803.3-u1 in cancer tissue samples,
wherein AC092803.3-u1 showed significantly higher expression than
the corresponding annotated transcript AC092803.3-a1 (P =0.022)
(Supplementary Fig. 8d).

The AC092803.3-u1 transcript was found to be transcribed from
theAC092803.3 gene, whichwas derived from splicing and joining of 3
exons, two of whichwere uncharacterized and quite different from the
annotated transcript AC092803.3-a1 (Fig. 2e). The junction that joins
exon 2 and exon 3 of AC092803.3-u1 was not found in AC092803.3-a1.
The junction of uncharacterized exons 2 and 3was further validated by
3′ RACE and Sanger sequencing, which demonstrated the valid

expression of the AC092803.3-u1 transcript (Fig. 2e). The AC092803.3-
u1 transcript showed a significantly higher expression level than the
other transcript (P = 2.6E−5), AC092803.3-a1, across 1017 cell lines
(Fig. 2f). The expression level of AC092803.3-u1 significantly dis-
tinguished tumor patients with longer survival times from those with
shorter survival times, while AC092803.3-a1 exhibited no association
with patient survival in adrenocortical carcinoma (ACC), brain lower
gradeglioma (LGG), liver hepatocellular carcinoma (LIHC), andovarian
serous cystadenocarcinoma (OV) cohorts (Fig. 2g). Compared to that
in paired non-tumor samples, AC092803.3-a1 showed no expression
difference in tumor samples, whereas AC092803.3-u1 was found to be
significantly differentially expressed in cholangiocarcinoma (CHOL,
P =0.015), kidney renal clear cell carcinoma (KIRC, P = 0.00042), and
head and neck squamous cell carcinoma (HNSC, P =0.0016) cohorts.
These results indicate that a large number of transcripts with con-
siderable expression levels and valuable clinical significance remain
unexplored in the cancer transcriptome.

Establishment of a high-confidence RBP-transcript regulatory
network
RBPs have been shown to extensively participate in the regulation of
post-transcriptional modifications, thus modulating the expression
levels of transcripts29,30. We next aimed to establish RBP regulation
relationships at the transcript level. TheRBP knockdown (KD-RNA-seq)
and binding (eCLIP-seq) data were integrated to identify high-
confidence RBP-transcript regulatory pairs (see “Methods”). A high-
confidence regulatory network that consisted of 129 different RBPs
and 47,667 different transcripts was constructed (Fig. 3a, Supple-
mentary Data 4), wherein the numbers of up- and down-regulated
transcripts had no obvious difference for each RBP (Supplementary
Fig. 9a, Supplementary Data 4). We further analyzed the essentiality of
RBPs in cancer cells (see “Methods”). Over half of these RBPs (70,
53.85%) showed essentiality in nomore than 68 of all examined cancer
cell lines (Supplementary Fig. 9b). RBPs that are essential genes inmost
cell lines also showed a broad range of dependency scores across
different cancer cell lines (Fig. 3a and Supplementary Fig. 9c). These
RBPs might be important targets for cell viability. Our analysis sug-
gested thatRBPs could be targeted tomodulate cell viability in specific
cell types.

The numbers of regulated transcripts varied largely among dif-
ferent RBPs, with the largest number for AQR (8,955 transcripts) and
the smallest number for SBDS (2 transcripts) (Fig. 3b). RBPs were
categorized according to their primary functions31,32, including “spli-
ceosome”, “splicing regulation”, “modification& processing”, “stability
& decay”, “other” and “novel RBP”. RBPs in the “spliceosome” and
“stability & decay” categories regulate many more transcripts than
those in other categories (Supplementary Fig. 9d). The major portion
of transcripts were regulated by a very small number of different RBPs;
for example, 21,101 (44.27%) transcripts were regulated by only one
RBP, and 8754 (18.36%) transcripts were regulated by two different

Fig. 2 | Characterization of unannotated transcripts identified in cancer cell
lines. a Composition of different unannotated transcript types. match_Refjunc-
tion: multi-exon with at least one junction match; contain_Ref: containment of
reference (reverse containment); intergenic: no overlap with annotated genes;
retain_Refintron: retained intron(s), all or partial introns matched or retained;
within_Refintron: fully contained within a reference intron; overlap_Refexon:
other same strand overlap with reference exons.bBar plots show the numbers of
transcripts matching one single genes (non-readthrough transcripts) or mat-
ched more than one gene (readthrough transcripts). c Associations between
unannotated transcripts and hallmarks. Color bars represent different hall-
marks, and bar lengths indicate the number of associated unannotated tran-
scripts. The characters in inner circle indicate the chromosomes. Red links
indicate positive correlations, while blue links indicate negative correlations.
d The heatmap shows representative unannotated transcripts from different

gene types, including protein-coding genes, lncRNAs, intergenic genes, and
pseudogenes. Bar plots on the right represent the numbers of significant cancer
types for each transcript in the Cox proportional hazards model, differential
expression analysis, and association analysis of tumor stages. e Identification of
the unannotated transcript AC092803.3-u1 in A2780 cells by 3′ RACE and Sanger
sequencing. f Comparison of the expression levels of AC092803.3-u1 and
AC092803.3-a1 across cancer cell lines (n = 1017). P, two-sided Wilcoxon’s rank-
sum test p-value. Each box represents the IQR andmedian of expression for each
transcript, whiskers indicate 1.5 times IQR. g Comparison of survival risk and
expression levels between AC092803.3-u1 and AC092803.3-a1 transcripts in
individual tumor types (n = 9 paired tumor and normal samples for CHOL, n = 72
for KIRC, n = 43 for HNSC). Each box represents the IQR and median of expres-
sion in each sample group, whiskers indicate 1.5 times IQR. Log-rank test for
survival analysis, two-sided Student’s t test for differential expression analysis.
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Fig. 3 | The regulation of transcripts by RBPs. a The regulatory network of RBPs
and transcripts. b The numbers of regulated transcripts for each RBP. c The num-
bers of transcripts regulated by different numbers of RBPs. d The bubble plot
shows the enrichment of regulated transcripts in biological hallmarks across dif-
ferent RBPs. Bubbles with FDR values <0.05 are labeled with black borders.

e Comparisons of enrichment among different categories of RBPs (n = 13 RBPs for
“spliceosome” category, n = 28 for “splicing regulation” category, n = 15 “mod-
ification & processing” category, n = 15 for “stability & decay” category). Each box
represents the IQR and median of enrichment scores for each category, whiskers
indicate 1.5 times IQR. P, two-sided Wilcoxon’s rank-sum test p-value.
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RBPs (Fig. 3c). However, some transcripts were regulated by many
different RBPs, such as the FRMD8-u2 transcript, which was regulated
by 47 different RBPs. Most of the RBPs regulated transcripts that were
involved in proliferation, especially “G2M checkpoint”, “MYC targets”,
and “E2F targets” (Fig. 3d). Some RBPs regulated transcripts with
specific biological functions; for example, the regulation of NOL12 was
significantly enriched in “Coagulation” and “Complement”. Compared
to those regulated by RBPs that were related to “splicing regulation”
and “modification & processing”, transcripts regulated by “spliceo-
some”- and “stability & decay”-associated RBPs were significantly
enriched in “MYC targets v1” (Fig. 3e). In summary, our analysis
revealed a fine RBP-transcript regulatory network that might guide
transcript manipulation through specific RBPs.

Some human RBPs have been shown to express in a tissue- or
cancer-type specific manner, such as ELAVL3 and ELAVL4 in the
neuron33. Additionally, RBPs that support basic cellular functions
are widely expressed across tissues, such as ribosomal and spli-
ceosome RBPs29. To extensively examine the expression specificity
of RBPs, we collected 1751 RBPs from previous studies29,31,34, and
calculated a specificity score for each RBP in the RNA-seq datasets
of the CCLE, TCGA and GTEx project. We employed the Shannon
entropy method to calculate specificity score as described in pre-
vious studies29,35. In total, 97 (5.57%), 106 (6.09%), and 128 (7.38%)
cancer/tissue-type specific RBP genes (specificity score >1) were
identified in the CCLE (Supplementary Fig. 10a and Supplementary
Data 5), TCGA (Supplementary Fig. 10b), and GTEx (Supplementary
Fig. 10c) datasets, respectively. Our results were consistent with
previous investigations of human RBP cell/tissue specificity29,36. Of
these RBPs involved in our study, LIN28B showed specifically high
expression in the liver and autonomic ganglia cancer cell lines,
LIN28B and IGF2BP1 exhibited exclusively high expression in the
testicular germ cell cancer, LIN28B and IGF2BP1 showed exclusively
high expression in the testis tissue, and IGF2BP3 exhibited specifi-
cally high expression in the skin and testis tissue. Some RBPs may
express specific transcripts in certain cancer/tissue types, which
generate tissue/cancer-specific RBP protein isoforms. We next cal-
culated specificity scores of 16,312 transcripts generated from RBP
genes. On the whole, 688 (4.82%), 2549 (16.85%), and 1548 (10.36%)
cancer/tissue-specific RBP transcripts were identified in the CCLE
(Supplementary Fig. 10d), TCGA (Supplementary Fig. 10e), and
GTEx (Supplementary Fig. 10f) datasets, respectively. Our analysis
revealed that many RBPs might exert tissue/cancer-specific func-
tions by expressing specific transcripts and protein isoforms.

Exploration of therapeutic relevance of transcripts in cancer
To further explore the potential clinical utility of transcripts in cancer,
associations between transcript expression and anti-cancer drug sen-
sitivity were evaluated. Based on correlations with transcript expres-
sion, anti-cancer drugs were clustered, wherein drugs with targets
from similar gene classes were more closely clustered, such as HDAC-
and EGFR-targeted drugs (Fig. 4a). To further identify the transcripts
that were closely associated with the sensitivity to anti-cancer agents,
transcripts were first filtered to keep those with considerable abun-
dance across cancer cell lines (Fig. 4b). Then a preliminary correlation
between each transcript and drug was evaluated to select possible
transcript-drug pairs (see “Methods”). Significant transcript-drug pairs
were subjected to an elastic net regression model with 5 rounds of
repeated 10-fold cross-validation to optimize the α and λ parameters.
The optimized model was submitted to a bootstrapping procedure to
generate a predictive score for each transcript-drug pair. Transcript-
drug pairs with passing predictive scores (≥0.7) were retained as high-
confidence transcript-drug associations. The transcript-drug associa-
tion network comprised 43,602 (top 1.92%) transcript-drug pairs
(Supplementary Fig. 11a). Most of the anti-cancer agents had larger
numbers of positively associated transcripts, for example, the

sensitivity of PHA-793,887 was positively associated with 781 tran-
scripts and negatively associated with 442 transcripts (Fig. 4c). More-
over, some drugs had balanced positively and negatively associated
transcripts, such as ABT-737, which was positively associated with 328
transcripts and negatively associated with 436 transcripts. Most of the
anti-cancer agents-associated transcripts were dispersed across var-
ious biological processes,while somewere notably enriched in specific
processes; for example, transcripts that were associated with “Notch
signalling”-targeted drugs were specifically enriched in “EMT”, “Apical
junction”, and “UV response down” (Fig. 4d). Only “IGF1R signalling”-
targeted drugs were associated with transcripts that were involved in
immune-related processes, such as “inflammatory response” and “IL6
JAK STAT3 signalling”. Our analysis revealed a large number of anti-
cancer drug-associated transcripts that may be used to modulate the
response sensitivity of cancer cells to anti-cancer drugs.

Integrative analysis reveals RBP-transcript-drug axes in cancer
The RBP-transcript regulation and transcript-drug association inspired
us to propose that RBPs might affect anti-cancer drug sensitivity by
regulating drug-associated transcripts. Next, we performed an analysis
to integrate the RBP-transcript and transcript-drug networks. Inte-
grative analysis revealed 1,066,380 RBP-transcript-drug axes, bridging
128 RBPs and 430 anti-cancer drugs through 15,511 transcripts (Fig. 5a).
The “spliceosome”-, “splicing regulation”-, and “stability & decay”-
related RBPs tended to affect sensitivity to more anti-cancer drugs
(Supplementary Fig. 11b, c). We next examined the transcripts that
were regulated by one specific RBP. Among these transcripts,
KIAA1522-a6 had the second largest number of associated anti-cancer
drugs, and showed large expression change upon PTBP1 knockdown
(Supplementary Fig. 12a). PTBP1 has been demonstrated to be exten-
sively involved in the regulationof alternative splicing37. Knockdownof
PTBP1 significantly induced upregulation of 175 anddownregulationof
552 transcripts in cancer cells (Fig. 5b). Among them, the KIAA1522-a6
transcript from the cancer-related protein-coding gene KIAA152238–41

had the most connections with anti-cancer drugs, whose higher
expression was significantly associated (P = 2.6E−6) with a lower
response sensitivity to decitabine (Fig. 5c). In the KD-RNA-seq data, a
notable decrease of KIAA1522-a6 was observed upon PTBP1 knock-
down (Supplementary Fig. 12b). The eCLIP binding signals were also
observed in multiple exons of the KIAA1522-a6 transcript. Two specific
siRNAs targeting PTBP1 were designed, siPTBP1-1 and siPTBP1-2, and
both showed efficient knockdown of PTBP1 in the A2780 andHuh7 cell
lines (Supplementary Fig. 13). Compared to that with only PTBP1
knockdown or decitabine treatment, cell viability notably decreased
upon the combination of PTBP1 knockdown and decitabine treatment
(Fig. 5d, e). Furthermore, cancer cells diedmuchmore quickly with the
knockdown of PTBP1 and combinational treatments of decitabine and
carboplatin or navitoclax. These results indicated that PTBP1 knock-
down could promote the sensitivity of cancer cells to decitabine and
combination treatment with decitabine and carboplatin or navitoclax.
To further validate that PTBP1 might impact decitabine sensitivity
through the KIAA1522-a6 transcript, we first examined the expression
levels of KIAA1522-a6, which showed significant downregulation upon
PTBP1 knockdown (Fig. 5f). The transcriptional activity of KIAA1522-a6
markedly decreased upon decitabine treatment (Fig. 5g) and combi-
nation treatment with decitabine and carboplatin (Fig. 5h) or navito-
clax (Fig. 5i). The PTBP1-KIAA1522-a6-decitabine axes was also
demonstrated with the siPTBP1-2 (Supplementary Fig. 14a–g), and in
the Huh7 cell line (Supplementary Fig. 14h–n). To further explore the
causality of the KIAA1522-a6-decitabine axis, we knocked down
KIAA1522-a6 in cells treated with 0 µMand 2 µMdecitabine. Our results
showed that KIAA1522-a6 knockdown significantly increased the sen-
sitivity to decitabine in the A2780 (Fig. 5j) and Huh7 (Fig. 5k) cell lines.
Our integrative analysis uncovered RBP-transcript-drug axes that
might provide potential treatment strategies in cancer.
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TAiC: a user-friendly dataportal for the transcript atlas in cancer
To promote the exploration of molecular troves across over 1000
human cancer cell lines at transcript-level resolution, we developed a
comprehensive and interactive web resource, the Transcript Atlas in
Cancer (TAiC, http://www.shenglilabs.com/TAiC/). In this data portal,
we provide four interactive modules, including the expression land-
scape of transcripts, coding potential of unannotated and non-coding
transcripts, RBP-mediated transcript expression, and pharmacological
and clinical relevance (Fig. 6a). Users can query and visualize the
expression level of individual transcripts in multiple cancer cell lines
(Fig. 6b). TAiC enables users to examine the RNA sequences and
coding potential of unannotated RNAs. TAiC also provides an RBP-

transcript regulatory network for users to explore the upstream reg-
ulating factors of transcript expression across cancer cell lines. Users
can also investigate the associations between transcript expression
and anti-cancer drug sensitivity. In addition, users can also explore the
expression changes and clinical relevance of transcripts in 33 different
cancer types. TAiC will be continuously updated to serve as an
instructive resource for researchers to investigate cancer at the tran-
script level.

Discussion
With the rapid development of high-throughput RNA sequencing
techniques and computational algorithms, transcriptomediversity has
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been gradually realized in complex humandiseases, including cancers.
By employing reference-based transcript assembly in more than 1000
cancer cell lines, we presented a comprehensive human cancer tran-
scriptome. Due to the limitation of available large-scale RNA-seq data,
themajority of non-polyadenylated RNA transcripts were not detected
in our study. However, our results coveredmajor RNA biotypes, which

also largely complemented other efforts aiming to annotate human
transcripts.

Lorenzi et al. presented a comprehensive atlas of the human
transcriptome through transcriptome assembly of 300 human tissues
and cell lines24. Our study is quite different from this study. Firstly, our
study is more focused on cancer transcriptome. This study only
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included 89 cancer cell lines, while we examined 1017 cancer cell lines
and investigated the clinical significance of transcripts in cancer. Sec-
ondly, this study focused on non-coding RNAs, whereas we examined
all detected transcripts, including those from protein-coding gene,

lncRNAs, and other non-coding regions. Thirdly, we also built the RBP-
transcript regulatory network and the associations between tran-
scripts and the response of cancer cells to anti-tumor drugs. Other
studies of large-scale transcriptome assembly used other RNA-seq

Fig. 5 | RBP-transcript-drug regulatory axes in cancer. a Sankeydiagramshowing
the RBP-transcript-drug regulatory axes in cancer. b Drug correlations of differ-
entially expressed transcripts upon the knockdown of PTBP1. c Comparison of
decitabine sensitivity between KIAA1522-a6 high and low expression cancer cell
lines (n = 392 for high expression cell lines, n = 393 for low expression cell lines).
Each box represents the IQR and median of AUC values for each cell group, whis-
kers indicate 1.5 times IQR. P, two-sided Wilcoxon’s rank-sum test. d Crystal violet
staining of the colony formation assay indicates the sensitivity of siNC-transfected
or siPTBP1-transfected cells to decitabine, decitabine combined with carboplatin,
or decitabine combined with navitoclax. The effect of treatments is shown for

A2780 cells. qRT-PCR assays were applied to analyse the expression level of PTBP1
(e) and KIAA1522-a6 (f) after transfection by siPTBP1 for 48h in A2780 cells. qRT-
PCR assays were applied to analyze the expression level of KIAA1522-a6 in A2780
cells treated with Decitabine (g), Decitabine combined with Carboplatin (h), and
Decitabine combined with Navitoclax (i). The relative expression of KIAA1522-a6
upon siKIAA1522-a6-1 and siKIAA1522-a6-2 transfection and the relative proliferation
activity upon siKIAA1522-a6-MIX and decitabine treatment in the A2780 cell line (j)
and the Huh7 cell line (k). SiKIAA1522-a6-MIX is the mixture of siKIAA1522-a6-1 and
siKIAA1522-a6-2.P, two-sided Student’s t testp-value. n = 3 biologically independent
samples. Error bars represent the means ± SDs.
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datasets and focused on different aspects of transcriptome. Jiang
et al.42 and Iyer et al.43 presented expanded landscapes of lncRNAs
from thousands of RNA-seq data of tumor, normal, and cell line sam-
ples. Based on transcriptome assembly from RNA-seq datasets of 768
patient samples in TCGA datasets, Attig et al. uncovered a large
number of long-terminal repeat (LTR)-overlapping transcripts44. Per-
tea et al. constructed an expanded human gene catalog from deep
RNA-seq libraries of nearly 10 thousand normal samples45.

In the present study, approximately 50% of the detected tran-
scripts were unannotated. This may be due to the reference-based
transcriptome assembly strategy used in this study. In addition to
existing junctions, our analysis identifiedmany unannotated junctions
in both known genes and uncharacterized genomic regions. Of note,
approximately one-third of unannotated transcripts spanned more
than one gene, named readthrough transcripts. Readthrough tran-
scripts are RNA molecules that are generated through the splicing of
exons frommultiple distinct genes46, which is quite common in human
transcriptome27,47. Most previous studies have focused on gene levels
that were combinations of all transcripts from the same genes, which
only quantified reads falling within genomic regions of reference
genes48. Our previous studies based on RNA-seq data also identified
many unannotated transcripts that were further validated to play
important roles in cancer10,34. Lorenzi et al. reported thousands of
uncharacterized non-coding RNAs from RNA-seq data24. These studies
demonstrated that a considerable part of the human transcriptome
remains uncharacterized. The uncharacterized transcriptome has
been concealed, at least in part, by reference-based transcriptome
quantification. Together with these reports, our study provides an
important complement to the existing human transcriptome. In the
RBP-transcript network, 62.43% of RBP-regulated transcripts were
unannotated (Supplementary Fig. 15a). The unannotated transcripts
occupied over half of regulated transcripts by each RBP (Supplemen-
tary Fig. 15b). In the RBP-transcript-drug axes, 53.78% of all transcripts
that bridged RBPs and drugs were unannotated (Supplementary
Fig. 15c). Furthermore, the unannotated transcripts linked 75.27% RBP-
drug connections together with annotated transcripts, and 15.97% of
the RBP-drug connections was linked by only unannotated transcripts
(Supplementary Fig. 15d). These results showed that unannotated
transcripts contributed appropriately half of the links to the RBP and
drug networks.

Various strategies of selecting unannotated transcripts for vali-
dation can be applied to choose transcripts of interest, such as
expression levels, specific cell types, clinical significance, specific gene
types, or coding potential. We constructed the TAiC data portal to
serve the research community to explore potential functions of these
unannotated transcripts. A part of the unannotated transcripts might
be incomplete or even nonexistent due to the limitations of short-read
RNA sequencing and the transcript assembly algorithm, and cannot be
experimentally validated. However, to our best knowledge, our study
made nonnegligible contribution to the transcript-level exploration of
cancer transcriptome.

The integration of RBP-transcript regulation and transcript-drug
association networks enables the identification of RBPs that could
affect the sensitivity to anti-cancer drugs by regulating transcript
expression. Our analysis linked RBPs to anti-cancer drugs through
transcripts. Several RBPs have been demonstrated to mediate drug
sensitivity in cancer, such as ERα in breast cancer14, CELF2 in ovarian
cancer49, and hnRNPA0 in p53-mutant tumors50. These studies showed
that RBPs could be used to modulate the response sensitivity to anti-
cancer drugs of cancer cells. Our study provided a resource doc-
umenting thousands of RBP-transcript-drug axes, which is expected to
offer alternative strategies to modulate drug resistance in cancer.

Third-generation RNA-seq technologies have shown great power
to capture and characterize full-length RNA transcripts, such as
Nanopore and PacBio long-read RNA sequencing51. These long-read

RNA technologies could correct a major bias in next-generation RNA-
seq data, wherein fragmented sequencing reads were computationally
mapped and assembled to refer to original RNA transcripts48. With the
rapid development of long-read RNA sequencing technology, we
believe that more and more unannotated transcripts identified in our
study will be functionally validated.

Methods
RNA-seq datasets of different cancer cell lines
The raw RNA-seq data of 1017 cancer cell lines were downloaded from
the Sequence Read Archive (SRA, https://www.ncbi.nlm.nih.gov/sra)
database with the accession number SRP186687 by utilizing the pre-
fetch tool (version 2.10.8) in the SRA Toolkit (http://ncbi.github.io/sra-
tools/). Then, FASTQ files of raw RNA-seq reads were extracted from
the SRA by using the fasterq-dump tool (version 2.10.8). Detailed
information of these cancer cell lines was supplied in Supplemen-
tary Data 1.

Transcript assembly and quantification from RNA-seq data
Raw RNA-seq reads were aligned to the human reference genome
(GRCh38, https://www.gencodegenes.org/human/release_35.html) by
using STAR software (version 2.7.6a)52. To achieve the most sensitive
unannotated junction discovery, STAR was run in the 2-pass mode,
which allowed more mapping of splicing reads to unannotated junc-
tions. In particular, STAR was run with usual parameters in the first-
pass run, wherein the junctions were collected. All detected junctions
were subjected to second-pass mapping. The alignments obtained
from STAR 2-pass mapping were provided as input to StringTie (ver-
sion 2.1.4)53 for reference-based transcript assembly. Transcript
annotation from GENCODE54 version 35 (https://www.gencodegenes.
org/human/release_35.html) was adopted as the transcript model
reference to guide the assembly process with the “-G” option. Tran-
script assembly was performed separately for each cell line. Then, all
transcript assemblies were merged to generate a nonredundant mas-
ter set of transcripts for all cell lines by using StringTie “–merge”mode.
The GffCompare tool (version 0.12.2)55 was employed to compare
newly assembled transcripts with those annotated in various data-
bases/datasets, including ENCODE56, UCSC known genes57, RefSeq
genes58, AceView59, CHESS45, RefLnc42, and LTRs assembled by Attig
et al.44. The transcripts that were not matched in these databases/
datasets were defined as unannotated transcripts in the following
analysis. StringTie quantification was utilized to reveal both transcript-
and gene-level expression for individual cell lines. Expression levels
were normalized in TPM (transcripts per million mapped reads).
Transcripts with expression levels ≥0.1 TPM in at least one cell line
were retained for subsequent analysis. We used different criteria of
transcript expression levels (0.1, 0.5, 1, 2, and 3) and cell line numbers
(1, 2, 5, 10, and 20). As expected, the number of unannotated tran-
scripts decreasedmorewith the increasing criteria of cell line numbers
(Supplementary Fig. 16). The threshold of TPM 0.1 was shown to be a
robust and sensitive expression detection threshold for lowly-
expressed transcripts, which has been used in many previous
studies24,60,61. Transcripts were named by using their respective gene
names followed by an “a” or “u” with numbers for annotated or
unannotated transcripts, respectively (Supplementary Data 2). The
StringTie names were used for those transcripts that overlapped with
no known genes.

Processing long-read RNA-seq data
The available raw long-read RNA-seq data of cancer cell lines were
downloaded from the ENCODE data portal, including the A673,
CACO2, CALU3, HCT116, HepG2, K562, MCF7, PANC1, PC3, and PC9
cell lines. The raw long-read RNA-seq data were processed by uti-
lizing the FLAIR pipeline (version 1.5)62. In particular, reads were
aligned to the human reference genome (GRCh38) by using

Article https://doi.org/10.1038/s41467-022-34568-z

Nature Communications |         (2022) 13:6803 11

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra/?term=SRP186687
http://ncbi.github.io/sra-tools/
http://ncbi.github.io/sra-tools/
https://www.gencodegenes.org/human/release_35.html
https://www.gencodegenes.org/human/release_35.html
https://www.gencodegenes.org/human/release_35.html


minimap2 (version 2.17-r941)63 in spliced alignment mode with
default parameters. High-confidence isoforms were then collapsed
by the collapse function implemented in FLAIR. The quantify func-
tion was employed to quantify transcripts, wherein only reads with
alignment scores >1 were used.

Analysis of transcription evidence for unannotated transcripts
The Cap Analysis Gene Expression (CAGE) sequencing results were
downloaded from the FANTOM project25. The chromatin states of
human genome were obtained from the Roadmap Epigenomics
project26. Chromatin states indicative for active transcription, includ-
ing transcription, active transcription start site, transcribed and reg-
ulatory, bivalent_promoter, transcribed and enhancer, and active
enhancer, were used for the integrative analysis with CAGE data. The
presence of CAGE sequencing or chromatin state peaks within 500 nt
around the transcription start site (TSS) was considered as transcrip-
tion evidence of corresponding transcripts.

Calculation of coding potential of unannotated transcripts
The codingpotential of eachunannotated transcriptswas evaluatedby
using the CPC2 (version 1.01)64 and CPAT (version 3.0.4)65 software.
CPC2 predicted the coding potential of RNA sequences by a SVM
model trained from four intrinsic features, including Fickett TEST-
CODE score, open reading frame (ORF) length, ORF integrity, and
isoelectric point (pI). CPAT uses four sequence features to distinguish
coding and non-coding RNA transcripts, including open reading frame
(ORF) size, ORF coverage, Fickett TESTCODE statistic, and hexamer
usage bias.

Calculation of transcriptional activity of hallmark biological
processes
To estimate the transcriptional activities of hallmark biological pro-
cesses, gene lists of 50 hallmarks were retrieved from the MSigDB
database66. For each hallmark, theGene Set Variation Analysis (GSVA)67

algorithm (version 1.38.2) was employed evaluate the overall tran-
scriptional activity in single samplemode. TheGSVAmethod estimates
variation of activities of individual gene sets over a sample population
in an unsupervised manner. Each sample was endowed 50 activity
scores of different hallmarks.

RACE assays
We performed the RACE analyses to determine full length of the
CRIM1-DT-u1 (CRIM1-DT-u1-3′GSP: GGGGCCAGATTGGAGTTCGA),
AC107032.2-u1 (AC092803.3-u1-3′GSP: AGGGAAGAGCACTTTGGTCA),
and AC092803.3-u1 (AC107032.2-u1-3′GSP: CCTGGTCTGGTCAGGG
CTCAGTTAG) transcript by using a SMARTer™ RACE cDNA Amplifi-
cation Kit (Clontech, California, USA) according to the manufacturer’s
instructions.

eCLIP-seq and knockdown RNA-seq datasets of RNA-binding
proteins
We retrieved paired eCLIP-seq and KD-RNA-seq (knockdown followed
by RNA sequencing) datasets from the Encyclopedia of DNA Elements
project (ENCODE, https://www.encodeproject.org/)31, covering 85 and
107 different RBPs in HepG2 and K562 cell lines, respectively. All raw
sequencing readswere first subjected to Trimmomatic (version 0.39)68

to remove adapters and low-quality bases. For eCLIP-seq data, we
followed the ENCODE processing pipeline31 to obtain enriched binding
regions for each RBP. TrimmedKD-RNA-seq reads weremapped to the
human reference genome (GRCh38) by using STAR (version 2.7.6a) in
two-pass mode52. The alignments were then subjected to StringTie
(version 2.1.4)53 with our assembled transcriptome to quantify tran-
script abundance. Finally, DESeq2 (version 1.30.0)69 was applied to
compare transcript differences between RBP-knockdown and control
cell lines for each RBP.

Estimating the expression specificity of transcripts across pan-
cancer cell lines
Toobtain lineage-specific transcripts, a specificity scorewas calculated
for each transcript according to a previous study29. In particular, the
specificity score was equal to the logarithm of the lineage number
minus the Shannon entropy of transcript expression. The calculation
was conducted as follows:

St = log2ðNÞ � �
XN
i= 1

ðpit × log2pitÞ
 !

ð1Þ

where St represents the specificity score of transcript t, N is the total
number of cell lineages, and pit indicates the expression ratio of tran-
script t in lineage i. One specificity score and N expression ratio were
assigned to each transcript. The expression ratio of each transcript
across all lineages was calculated as follows:

pit =
xitPN
i = 1xit

ð2Þ

where pit is the expression ratio of transcript t in lineage i, N indicates
the total number of lineages, and xit represents the expression value of
transcript t in lineage i.

When the largest expression ratio was more than two times the
second largest expression ratio and the specificity score was larger
than 1, the transcript was defined as a lineage-specific transcript in the
lineage with the largest expression ratio. The expression specificity of
RBPs across cancer cell lines, cancer tissues, and normal tissues was
also calculated as described above.

Construction of an RBP-transcript regulatory network
The KD-RNA-seq and eCLIP-seq data for individual RBPs were sub-
jected to integrative analysis to identify high-confidence RBP-tran-
script regulatory relations. For each RBP, transcripts with |fold
change| > 1.5 and FDR <0.05 were considered significantly changed
upon RBP knockdown. High-confidence RBP-transcript regulatory
relationshipswere establishedwhenRBPbinding signals were found in
these significantly changed transcripts.

Analyzing the essentiality of RBPs in cancer cells
The gene dependency scores of 17,386 genes across 1086 cancer cell
lines were downloaded from the DepMapdata portal (https://depmap.
org/portal/),whichweredeterminedbyusinghigh-throughputCRISPR
screening. In this dataset, genes with a dependency score < −1 are
considered as essential genes in the corresponding cell lines. We
extracted the RBPs and cell lines involved in our study, generating a
dependency score matrix of 130 RBPs and 671 cancer cell lines.

Transcript analyses in TCGA datasets
The aligned RNA-seq reads of 33 TCGA cancer types were downloaded
from the Genomic Data Commons data portal (GDC, https://portal.
gdc.cancer.gov/) with official authorization, including 10,358 samples
across 33 cancer types. All alignments were subjected to StringTie
(version 2.1.4) with customized transcript annotation to quantify
transcript abundance. Normalized expression matrixes were
employed to perform differential expression analysis by adopting
paired Student’s t test (as implemented in R software). Only cancer
types with no <5 paired tumor and adjacent non-tumor samples were
involved in this differential expression analysis. Transcripts that were
expressed ≥0.1 TPM in no less than 25% of tumor or adjacent non-
tumor samples in each cancer typewere kept for downstreamanalysis.

Survival analysis
Clinical follow-up information (days to last follow-up and vital status)
of tumor patients was retrieved from GDC data portal (https://portal.

Article https://doi.org/10.1038/s41467-022-34568-z

Nature Communications |         (2022) 13:6803 12

https://www.encodeproject.org/
https://depmap.org/portal/
https://depmap.org/portal/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/


gdc.cancer.gov/)70. For each transcript in each tumor type, tumor
patients were divided into high- and low-expression groups by using
themedian expression level of the transcript. Then the overall survival
timewas compared by using log-rank test implemented in the survival
package (version 3.4-0, https://CRAN.R-project.org/package=survival).
The survival curves were generated by using the Kaplan-Meiermethod
in the survminer package (version 0.4.9, https://CRAN.R-project.org/
package=survminer).

Associating transcript expression and drug response by elastic
net regression
The strategy that combines elastic net regression and bootstrapping
was used to evaluate the associations between transcript expression
and drug sensitivity as described in a previous study71. To feed elastic
net regression with a stable transcript expression profile, transcripts
that were expressed (TPM>0.1) in less than 20% of the cell lines were
filtered out. The sensitivity (AUC values) to anti-cancer drugs was
retrieved from the CTRP database (https://portals.broadinstitute.org/
ctrp.v2.1/)21, which included 481 compounds across 887 cancer cell
lines. Then correlations of all possible transcript-drug pairs were cal-
culated by Spearman correlation. Transcript-drug pairswith Spearman
R >0.2 and FDR <0.05 were used to build a prediction matrix, n × t,
wherein n is the number of cancer cell lines and t is the number of
transcripts. The prediction matrix was first normalized for each tran-
script to have zero mean and unit standard deviation. The normalized
prediction matrix was then fitted for the elastic net regression by uti-
lized the glment R package (version 4.1)72. To minimize the root mean
squared error, the caret package (version 6.0–86) was employed to
optimize the α and λ parameters. In particular, 10-fold cross-validation
was performed 5 times with 25 possible α and λ values in random
search mode.

Prioritizing transcript-drug pairs through the bootstrapping
procedure
To obtain reliable transcript-drug pairs, the bootstrapping procedure
was performed with the optimal α and λ parameters to produce 1000
resampleddatasets by samplingwith replacement. For each resampled
dataset, a list of regression coefficients (β) was generated, which was
used to calculate a prediction score as follows:

Score=
F ½β >0� �F ½β<0�

1000 if F½β>0�> F ½β<0�
F ½β <0� �F ½β>0�

1000 if F½β>0�< F ½β<0�

(
ð3Þ

where F[β > 0] represents the frequency of transcripts with positive
coefficients in bootstrap datasets, and F[β <0] represents the fre-
quency of transcripts with negative coefficients in bootstrap datasets.
Transcripts with a prediction score ≥0.7 were considered significantly
predictive of the sensitivity of specific drugs.

Cell culture
A2780 and Huh7 cells were maintained in DMEM medium supple-
mented with 10% fetal bovine serum, 100mg/ml penicillin, and 100U/
ml streptomycin. A2780 cell line was purchased from the American
Type Culture Collection (ATCC,Manassas, VA, USA). Huh7 cell line was
purchased from the Shanghai Cell Bank Type Culture Collection
(Shanghai, Chinese Academy of Sciences, China).

Transfection of cell lines
SiRNAs and negative control siRNAsweredesigned and synthesized by
RiboBio (RiboBio Biotechnology, Guangzhou, China). Specific RNAi
sequences are as follows (5′-3′): siPTBP1-1, CAAAGCCUCUUUAUU-
CUUU; siPTBP1-2, CUUCCAUCAUUCCAGAGAA; siKIAA1522-a6-1, ACU
CACACCACAAGAGGAAG; siKIAA1522-a6-2, GUCCCCGGGUCCGCAGC
UUC. Cells were transfected with the siRNAs using Oligofectamine
transfection reagent (RNAi MAX, Invitrogen) according to the

manufacturer’s instructions. The cells were harvested 48 h after
transfection for further analysis.

Cell viability assay
Cell viability was determined by CCK8 assay. Briefly, A2780 and Huh7
cells (5 × 103 cells/well) were seeded into 96-well plates. After 24 h of
culture, the cells were treated with carboplatin, decitabine, and navi-
toclax (MCE, Shanghai, China) at the indicated concentrations for
another 24 h. CCK8 solution (10μl) was added to each well, and the
cells were further incubated at 37 °C for 3 h. The absorbance of each
well was measured at 450nm with a spectrophotometer.

Colony formation assay
A2780 and Huh7 cells transfected with siRNAs were seeded into a 12-
well plate and incubated with complete medium at 37 °C for 24 h.
Then, the cells were treated with different concentrations of carbo-
platin, decitabine, and navitoclax (MCE, Shanghai, China) for another
10 days. The cells were fixed with 4% paraformaldehyde and stained
with 2% crystal violet. Images were obtained, and the number of
colonies was counted. Different concentrations of carboplatin, deci-
tabine, andnavitoclax (MCE, Shanghai, China)were diluted in dimethyl
sulfoxide (DMSO) (Sigma-Aldrich) or PBS.

Quantitative reverse transcription PCR
Total RNA was isolated from cells by using TRIzol Reagent (Thermo
Fisher Scientific, Massachusetts, USA). Then, the extracted RNAs were
reverse transcribed into cDNA by using a Superscript II reverse tran-
scription kit (Takara Bio, Beijing, China) according to the manu-
facturer’s protocols. Subsequently, qRT-PCR was conducted with a
SYBR-Green master kit (Vazyme, Nanjing, China) on a LightCycler 480
II (Roche Diagnostics) instrument according to the manufacturer’s
protocols. The primers used to amplify PTBP1 (PTBP1_q_F1:
CTCCAAGTTCGGCACAGTGTTG; PTBP1_q_R1: CAGGCGTTGTAGATG
TTCTGCC), KIAA1522-a6 (KIAA1522-a6_q_F1: ACTCACACCACAAGA
GGAAG; KIAA1522-a6_q_R1: TTTGTCATTCTCAGCCTTGG), and β-actin
(β-actin-F: TTGTTACAGGAAGTCCCTTGCC; β-actin-R: ATGCTATCA
CCTCCCCTGTGTG) were chemically synthesized by TSINGKE
(TSINGKE, Beijing, China). All qRT‑PCRs were performed in triplicate.

Western blot assay
Proteins were subject to SDS-PAGE and transferred to the nitrocellu-
lose membranes (GE, CT, USA). After being blocked by non-fat milk,
the membrane was incubated with PTBP1 polyclonal antibody (Pro-
teintech, cat#12582-1-AP) and GAPDH monoclonal antibody (Pro-
teintech, cat#60004-1-Ig). The banddensitywas analyzedusing ImageJ
and compared with the internal control.

Database and web site implementation
The TAiC database was built with the Python FLASK_REST API (https://
flask-restful.readthedocs.io/) as a backendweb framework. In the TAiC
database, MongoDB (https://www.mongodb.com) was adopted for
data deposition and management. Angular (https://angular.io/) was
utilized to develop web interfaces of TAiC. The frontend framework
was constructed by using Bootstrap (https://getbootstrap.com). Data
visualization was carried out by Echarts (https://echarts.apache.org/).
The TAiC online database was tested and found to be supported in
popular web browsers, including Microsoft Edge, Google Chrome,
Firefox, and Safari. The TAiC database is publicly accessible at http://
www.shenglilabs.com/TAiC/.

Statistics and reproducibility
Statistical analysis and data visualization in this study were performed
by using R software (R Foundation for Statistical Computing, Vienna,
Austria; http://www.r-project.org). Unless otherwise specified, all tests
were two-tailed, and a P or FDR value <0.05 was considered to indicate
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statistical significance. All experiments were repeated independently
three times.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The rawRNA-seq data of CCLE project were downloaded from the SRA
database (SRP186687). The eCLIP-seq and KD-RNA-seq were retrieved
from the ENCODE database (https://www.encodeproject.org/). The
sensitivity to anti-cancer drugs of cancer cell lines was retrieved from
the CTRP database (https://portals.broadinstitute.org/ctrp.v2.1/). The
human reference genome and transcript annotation were downloaded
from theGENCODEdatabase (https://www.gencodegenes.org/human/
release_35.html). Software and resources used for analysis and plotting
are described in each method section. All results generated in this
study can be found in supplementary tables and the TAiC data portal
(http://www.shenglilabs.com/TAiC/). Source data are provided with
this paper.

Code availability
Scripts and codes that were used to generate the data in the TAiC data
portal were deposited in https://github.com/lishenglilab/TAiC/tree/
main/Code.
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