Skip to main content
. 2022 Nov 10;12:19200. doi: 10.1038/s41598-022-21848-3

Table 5.

This table summarises the seven CNN architectures adopted for the comparative analysis in terms of their main contributions, datasets involved, FLOPs, parameters and input shapes.

Architectures Main contributions Datasets FLOPs (B) Parameters (M) Input shapes
EfficientNetB028 Compound scaling ImageNet-ILSVRC-2012-CLS)47 0.39 5.3 224 × 224
EfficientNetV2B029 Progressive learning ImageNet-ILSVRC-2012-CLS 0.72 7.1 224 × 224
EfficientNetV2B0-21k29 Progressive learning ImageNet-21k48 0.72 7.1 224 × 224
ResNetV1-5049 Residual learning ImageNet-ILSVRC-2012-CLS 4.1 25.6 224 × 224
ResNetV2-5031 Identity mapping ImageNet-ILSVRC-2012-CLS 4.1 25.6 224 × 224
MobileNetV132 Depth-wise separable convolutions ImageNet-ILSVRC-2012-CLS 0.6 4.2 224 × 224
MobileNetV233 Inverted residuals and linear bottlenecks ImageNet-ILSVRC-2012-CLS 0.3 3.4 224 × 224