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Abstract

Background and Purpose: Early diagnosis of cognitive impairment is important because 

symptoms can be delayed through therapies. Synaptic disconnections are the key characteristic of 

dementia, and through non-linear complexity analysis of brain function, it is possible to identify 

long-range synaptic disconnections in the brain.

Methods: We investigated the capability of a novel upper-extremity function (UEF) dual-task 

paradigm in the functional MRI (fMRI) setting, where the participant flexes and extends their arm 

while counting, to differentiate between cognitively normal (CN) and those with mild cognitive 

impairment (MCI). We used multiscale entropy (MSE) complexity analysis of the blood oxygen-

level dependent time-series across neural networks and brain regions. Outside of the fMRI, we 

used the UEF dual-task test while the elbow kinematics were measured using motion sensors, to 

record the motor function score.

Results: Results showed 34% lower MSE values in MCI compared to CN (p<0.04 for all 

regions and networks except cerebellum when counting down by one; effect size=1.35±0.15) and 

a negative correlation between MSE values and age (average r2 of 0.30 for counting down by one 

and 0.36 for counting backward by three). Results also showed an improvement in the logistic 

regression model sensitivity by 14–24% in predicting the presence of MCI when brain function 

measure was added to the motor function score (kinematics data).
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Conclusions: Current findings suggest that combining measures of neural network and motor 

function, in addition to neuropsychological testing, may provide an accurate tool for assessing 

early-stage cognitive impairment and age-related decline in cognition.
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Introduction

The average life-expectancy worldwide is increasing, and subsequently, the proportion of 

older adults is growing faster than ever, leading to a surge in age-related illnesses such 

as dementia.1,2 An estimated 6% of adults live with some form of cognitive impairment 

and some may remain undiagnosed during their lifetime.1,3 In the clinical setting, some 

individuals with cognitive impairment are too frail, anxious, or unwilling to undergo 

testing via existing assessment tools, which unfortunately leads to late-in-life diagnosis of 

Alzheimer’s disease (AD).2,3 Additionally, AD is an incurable disease in its late stages, but 

major complications can be delayed through motor or cognitive-based therapies especially in 

early stages of the disease (see2 for a review). Therefore, it is crucial to detect AD earlier in 

life, possibly when it is still considered mild cognitive impairment (MCI).1

Prior work demonstrated associations between dual-task performance and increased risk 

for AD or MCI,4–6 which is mostly due to the well-known fact that simultaneous 

decline in motor and cognitive performance occurs with neurodegenerative diseases.7–9 

It is hypothesized that compensatory processes in cortical and subcortical brain regions 

are required to allow simultaneous motor and cognitive performance among cognitively 

impaired older adults.10 Additionally, assessment of dual-task performance is important 

because it represents real-life conditions, such as performing daily activities that require 

divided attention.5,11–13 We previously developed an upper-extremity function (UEF) test, 

which involves flexion and extension of the elbow, to detect AD and even MCI-related dual-

task deficits.14 This test is highly applicable to clinical settings, especially where patients 

are too frail to perform dual-task assessments that involve walking. We have previously 

validated the UEF test to identify MCI and AD based on kinematics and kinetics parameters 

of upper-extremity performance.15–17 The UEF motor score is established based on motor 

function variability within dual-task performance, which involved UEF motor task and a 

cognitive task of counting backwards. In addition to being easy-to-perform, one advantage 

of the UEF test is its capability for assessment inside the functional MRI (fMRI) setting. In 

the current study, we implemented the UEF test in the fMRI setting to study brain function 

during dual-task performance.

To study brain function, non-linear complexity analysis of single-channel 

Electroencephalography (EEG), fMRI, or functional near infrared spectroscopy (fNIRS) 

time-series are utilized to determine the interconnectivity of neural networks, especially 

the connection between sub-cortical and cortical regions where disconnections can lead 

to altered pathways and activity in AD.10,18–22 Further, hypoactivation due to AD can be 

attributed to neuronal death and subsequent disruptions to synaptic connections.23,24 All 
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of these factors can lead to a low value of nonlinear complexity of the brain function 

in AD, which can be quantified using entropy analysis. Previous work suggests that the 

time series with repeating elements arise from a more ordered (deterministic) system 

(less complexity), which is attributed to characteristics of declining cognitive health due 

to neurodegenerative diseases.25–27 On the other hand, an increased value of entropy 

suggests that the interconnectivity between neuronal groups can lead to a more chaotic 

and unpredictable time series, which can be attributed to a complex and dynamic system 

characteristic of a healthy brain.18,21 Nevertheless, resting state fMRI has been often studied 

previously to show how the complexity of neural networks is associated with cognitive 

impairment.19,28–30

To this end, the goal of the current study was to investigate differences in the brain function 

between cognitively normal (CN) and MCI older adults, while they were challenged by the 

UEF dual-task performance. Based on these previous observations, our hypothesis is that 

complexity of brain function is a physiological correlate of cognitive impairment, and we 

expect to see a less complex brain function behavior among MCI compared to CN, which 

can be used as a measure for cognitive impairment assessment. We also expect to observe 

a significant association between age and brain function complexity, with less complexity 

with increased age. Finally, we assessed the association between brain function complexity 

and dual-task motor performance outside of the MRI setting. The hypothesis was that a 

less complex brain function behavior would be associated with a worse dual-task motor 

performance.

Methods

Participants

CN and MCI participants (≥65 years) were recruited from assisted living facilities, 

community aging centers, and internal medicine and geriatric clinics at the Banner 

University Medical Center, in Tucson, AZ, from September 2017 to June 2018. A brief 

screening questionnaire related to fMRI safety was administered to determine the eligibility 

of participants. Inclusion criteria were being 65 years or older, being able to understand 

study instructions, and proficiency in English language. Participants were excluded if they 

had MRI contraindications, which include implanted metal or electrical devices such as 

heart pacemakers, neurostimulators, metal hip replacements, and similar implants. However, 

those with orthopedic implants eight weeks post-surgery were allowed. Furthermore, 

participants were excluded if they had known disorders associated with severe motor 

function deficits (e.g., stroke and Parkinson’s disease) and upper-extremity disorders (e.g., 

severe shoulder or elbow osteoarthritis). Additionally, participants with active psychiatric 

disorders were excluded. Any other factors that in the investigator’s judgement may affect 

patient safety or compliance were considered as exclusion criteria. Before participating 

in the study, a written informed consent according to the principles expressed in the 

Declaration of Helsinki was obtained from each participant.31 Participants were informed 

about the benefits, possible negative consequences, and their right to withdraw from the 

study at any time without any repercussion. This pilot study was approved by the University 

of Arizona Institutional Review Board.
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Cognitive assessments

Cognitive status of each participant was determined based on Montreal Cognitive 

Assessment (MoCA score ≥ 26 representing CN). Other neuropsychological tests based 

on the National Alzheimer’s Coordinating Center Neuropsychological Uniform Data Set 

of the Alzheimer’s Disease Centers, included: 1) Rey Auditory Test; 2) Wechsler Adult 

Intelligence Scale (WAIS) Digit Span subtest; 3) WAIS-R Digit Symbol Test; 4) Trails 

Making Test; 5) Stroop Color and Word Test; 6) The Controlled Oral Word Association 

Test; and 7) Wisconsin Card Sorting Test. These standardized tests were included to 

assess several cognitive domains including memory, attention, working memory, cognitive 

inhibition, cognitive flexibility, reasoning, and complex problem-solving. Scores from 

neuropsychological tests were adjusted with normative age and education level based on 

previous work.32

UEF measures outside of the MRI

To assess the motor function outside of the MRI room, participants were asked to perform 

two UEF function tests, which consisted of a 60-second self-selected normal pace elbow 

flexion and a cognitive task of either counting numbers backwards by ones (Cog 1) or 

threes (Cog 2). Assessments were administered by trained researchers and all participants 

were given the same instructions for consistency. Two wearable motion sensors (LEGSys 

tri-axial gyroscope sensors, sample frequency = 100 Hz, BioSensics LLC, Cambridge, MA) 

were applied to the wrist and upper-arm of the dominant side using elastic bands. The 

sensors measured upper-extremity kinematics during elbow flexion, which were then used 

to obtain outcome parameters related to motor function variability and speed. Subsequently, 

these parameters were used to calculate two motor UEF scores. The UEF scores (range: 

cognitive normal = 0 - cognitive impairment = 100) were determined by summing points 

given based on UEF dual-task performance and computing the percent difference from 

maximum possible points. Points were assigned based on variable comparisons to previously 

determined ranges for the UEF parameters, including: 1) flexion number; 2) range of motion 

variability (coefficient of variation of the flexion angle range), and 3) flexion variability 

(coefficient of variation of time distances between consecutive angular velocity peaks). 

Readers are referred to previous work for details regarding UEF motor scores.16

Brain scanning

A 3-Tesla Siemens Skyra MRI machine (Siemens Healthineers, Erlangan, Germany) was 

utilized for performing fMRI, which used blood oxygenation level-dependent (BOLD) 

contrast echo-planar imaging with the following sequence parameters: echo time of 30 msec, 

repetition time of 2 sec, 1.9 mm in-plane spatial resolution, and a 2 mm slice thickness with 

62 slices for covering the whole brain. Each participant performed four trials; trial 1 and 

2 were identical with similar cognitive task of counting backwards by one and trial 3 and 

4 were also identical with similar cognitive tasks of counting backwards by three (Figure 

1). The duration of each trial was six minutes and included six thirty-second task blocks 

and six thirty-second rest periods in between, starting with a rest period. The following 

task trials were repeated twice in each trial: 1) counting backwards (cognitive task); 2) 

UEF (motor task); and 3) combined counting and UEF (dual task) (Figure 1). For the UEF 
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motor task, while laying down on the fMRI setup, participants flexed and extended the 

elbow of the dominant arm as consistently as possible with a self-selected pace for 30 

seconds. Participants had their heads fixed with a head mount within the MRI bore and were 

instructed to maintain their upper arm motionless. All participants included in this study 

exhibited less than 1.5 mm of displacement magnitude as well as less than 1.5° angular 

motion along each axis, which were within the acceptable ranges of head motion for fMRI 

analysis.33 During each trial, participants were instructed to perform actions displayed on 

a screen in the MRI bore. The resting periods were added to allow for BOLD response to 

return to a baseline condition after each task. Similar to UEF outside of the MRI, we had 

two cognition tasks: 1) counting numbers backward by ones (Cog 1: Trial 1&2); and 2) 

counting numbers backward by threes (Cog 2: Trial 3&4). The first rest block in each trial 

lasted 50 seconds instead of 30 seconds to account for the necessary initial transition into 

steady-state magnetization, where the first 20 s (N = 10) were discarded.34

fMRI data preprocessing

The fMRI images were preprocessed using Statistical Parametric Mapping (SPM)12 

(Wellcome Department of Imaging, Neuroscience, London, UK) and custom MATLAB 

software. The preprocessing included (Figure 1): 1) DICOM to NIfTI conversion using 

the SPM12 import tool; 2) non-brain region removal using a threshold of 0.1 multiplied 

by the maximum voxel time series amplitude;29 3) image realignment and normalization 

to Montreal Neurological Institute (MNI)23 space (resampled into 3mm × 3mm × 3 mm 

voxels) utilizing custom MATLAB program; 4) head motion correction using SPM12 

Realign (Estimation and Reslice) from the spatial pre-processing section;29 5) slice-timing 

correction using Hanning-windowed Sinc temporal interpolation35,36 included in SPM12; 6) 

spatial smoothing using a Gaussian Kernel of 8mm full width at half maximum;23,28,37,38 7) 

high pass filter of 0.01 Hz (128s) for each voxel time series;29,39 and 8) standardization of 

each voxel to a mean of zero and standard deviation of unity. The preprocessed data were 

afterwards used for complexity analysis across the whole brain using a custom MATLAB 

program (Mathworks, Sherborn, MA).

Sample entropy (SampEn) and multiscale entropy (MSE) analysis

Due to the low sampling frequency of the fMRI data, we used SampEn for brain function 

complexity analysis, since it is more reliable for smaller data sets.40 SampEn quantifies 

the signal complexity as the logarithmic likelihood of pattern reproducibility within a time 

series.41 MSE utilizes the SampEn formula but across multiple time scales in two steps.42 

For our complexity analysis, first, a course-graining procedure was performed using the 

following equation:

yj
l = 1

l ∑i = j−1 l + 1
jl xi,  1 ≤ j ≤ N

l (Eq. 1)

Where N is the original time series length, l is the time scale, and y1 is the resulting 

time series. A time scale of one, typically, results in the original time series, while others 

represent the system dynamics across different scale factors. The advantage of MSE over 

SampEn (scale 1) is that higher scale factors can improve the signal-to-noise ratio of a short 
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time series.43 For the current study scale 6 was selected as suggested by previous work.44 

The SampEn algorithm was then performed on the resulting course-grained time series as:

SampEn m, r, N = − lnPm+1 r
Pm r (Eq. 2)

Where N is the length of the time series, m is the pattern length for comparison, r is 

the tolerance for radius of similarity, and P is the probability of radius falling within the 

tolerance level r.40 SampEn was calculated here using a pattern length of m = 2 and a 

tolerance of r = 0.2 × SD, where SD is the standard deviation of the original time series.19

A custom MATLAB program was utilized to calculate MSE at each voxel for each time 

series. A threshold of 0.1 times the maximum signal was considered for determining 

voxels within the brain29 and subsequently, MSE maps were generated for these brain 

voxels.23,43 Standard masks for general regions were generated using the Wake Forest 

University PickAtlas toolbox (Wake Forest University, School of Medicine, Winston Salem, 

NC), which generates masks based on the Talairach Daemon database.45,46 Using the 

masking process, we included the gray matter of five general regions of frontal, parietal, 

temporal, and occipital lobes, and cerebellum. Further, a custom MATLAB program was 

utilized to modify the 90 functional region of interest atlas from the functional imaging 

in neuropsychiatric disorders lab47 for generating eight functional neural network masks 

associated with MCI and AD. The selected neural networks for complexity analysis 

included basal ganglia (motor symptoms and amyloid-β deposition,48 default mode (dorsal 

and ventral default mode associated with amyloid-β and tau pathology and episodic 

memory),49–53 central executive (right and left executive control associated with executive 

and compensatory cognitive control),49,54,55 language (amyloid-β and tau pathology),56 

precuneus (disruption of functional connectivity due to AD,56,57 salience (anterior and 

posterior salience with altered brain function due to AD),58,59 sensorimotor (connectively 

alterations due to AD),49,60,61 and visuospatial (amyloid-β and tau pathology)56 networks 

for complexity analysis. The average MSE was calculated for two similar trials (average of 

Trail 1 and 2 for Cog 1 and Trail 3 and 4 for Cog 2 – See Figure 1) for all MSE maps 

created.

Statistical analysis

Univariate analysis of variance (ANOVA) was utilized to evaluate the differences in 

demographic characteristics and neuropsychological tests between the two cognitive groups 

of CN and MCI. Similarly, differences in SampEn and MSE values for each brain region 

were assessed via univariate ANOVA. The analyses were repeated after replacing cognitive 

groups with age. Further, multivariable ANOVA was used, with age, cognitive group, 

sex, and body mass index (BMI) (with significant association with SampEn or MSE) as 

independent variables and SampEn and MSE as the dependent variables.

We evaluated the associations between UEF scores (outside MRI), SampEn, and MSE 

values with cognition status (CN or MCI) as the dependent variable utilizing multiple 

logistic regression models; UEF scores, and SampEn (or MSE) values were considered as 

hypothesis covariates, and age, sex, and BMI (with significant association with SampEn 
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or MSE) as adjusting covariates. To determine predictive covariates, first we tested for 

collinearity between independent variables (i.e., UEF scores, SampEn, MSE, age, and 

BMI) using variance inflation factor (VIF) values. A VIF cutoff value larger than 10 

was considered an indication of presence of collinearity.62 We then employed a stepwise 

procedure based on Akaike information criterion values; subsequently, we computed the 

area under the curve (AUC) with 95% confidence interval utilizing receiver operating 

characteristics curves for each predictive model.

Finally, Pearson or Spearman’s rank correlation (based on the distribution of the data) was 

applied for assessing relationships between UEF scores (outside MRI) and SampEn (or 

MSE) values, as well as the relationship between SampEn (or MSE) values with age and 

MoCA scores. All data was analyzed using the JMP statistical program (version 14.2.0, 

copyright 2018 SAS institute Inc), and statistical significance was indicated when p<0.05.

Results

Participants

Among 24 participants that were recruited for this study, eight were classified as CN (age = 

73.63 ± 3.70 years; BMI = 25.67 ± 4.74 kg/m2; and 50% female) and nine were MCI (age 

= 78.78 ± 8.39 years; BMI = 27.53 ± 5.29 kg/m2; and 77.8% female), while the rest were 

excluded based on several factors, including severe motion artifacts within fMRI data (n=2), 

left handedness (n=3), hyperintensities within white matter due to brain cancer (n=1), and 

lost to follow-up for the neuropsychological testing (n=1). None of the demographics were 

significantly different between the cognitive groups (p>0.13). The MoCA and WAIS-R Digit 

Symbol neuropsychological tests were significantly different between the groups (p≤0.05, 

Table 1). Of note, although expected trends were observable across other neuropsychological 

tests and UEF motor scores, these parameters were not significantly different between the 

cognitive groups due to our small sample of participants.

SampEn and MSE

Univariate ANOVA tests showed significant effect of age on MSE values among all five 

brain regions across both Cog 1 and Cog 2 conditions (r2≥0.31 and p≤0.02, Table 2 and 

Figure 2). On the other hand, univariate results showed significant associations between 

cognitive groups and MSE values within all brain regions except cerebellum for Cog 1, and 

only for frontal region for Cog 2 (p≤0.03, effect size=1.35±0.16 for significant associations, 

Table 2). Across all regions except cerebellum, MSE on average was 30% and 28% lower 

in the MCI group compared to CN (Table 2 and Figure 3) for Cog 1 and Cog 2 conditions, 

respectively. Additionally, multivariable analyses showed that when age and cognitive group 

were both included as independent variables, there were significant differences between 

cognitive groups in MSE for frontal and parietal brain regions for Cog 1 and frontal region 

for Cog 2 condition (p≤0.05, Table 2). Of note, gender and BMI were not included in the 

multivariable analyses because they were not associated with MSE results and were not 

significantly different between the cognitive groups.
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Results for neural networks showed significant univariate association between age and 

MSE for all neural networks including basal ganglia, default mode, central executive, 

language, precuneus, salience, sensorimotor, visual, and visuospatial across both Cog 1 and 

Cog 2 conditions (r2≥0.23 and p≤0.05, Table 2 and Figure 4). Univariate results showed 

significant differences in MSE between MCI and CN for all neural networks under the 

Cog 1 condition (p≤0.04, effect size=1.34±0.16, Table 2), and for basal ganglia, central 

executive, language, salience, and visuospatial networks under the Cog 2 condition (p≤0.05, 

effect size=1.12±0.22 for significant associations, Table 2). Multivariable analysis showed 

significant group differences across the default mode, central executive, precuneus, and 

salience neural networks, when adjusted with age, under the Cog 1 condition (Table 2). 

Overall, within both univariate and multivariate analyses, the strongest association between 

MSE and cognitive status was observed for executive control and salience networks, with 

respective 34% and 40% lower MSE for MCI compared to CN (Table 2 and Figure 3).

Logistic results showed that the frontal lobe and salience network were best predictors of 

cognitive status (AUC of 0.92 and 0.89 for frontal lobe and salience network for Cog 1 and 

0.86 and 0.81 for Cog 2). Prediction of cognitive status improved when MSE of the frontal 

lobe or salience network were included to the UEF scores, where the AUC went from 0.72 

to 0.93 and 0.88 for Cog 1 and from 0.74 to 0.88 and 0.83 for Cog 2, respectively (Table 3).

Finally, UEF motor score measured outside of the fMRI was significantly associated with 

MSE values of five brain regions and six neural networks within Cog 2 condition (p≤0.05 

and ρ≥0.49 for Spearman, Table 4), including cerebellum, frontal, occipital, parietal, and 

temporal lobes and default mode, central executive, language, salience, sensorimotor, visual, 

and visuospatial networks. On the other hand, for the Cog 1 condition, only the occipital 

lobe and visual and visuospatial networks showed MSE values that were significantly 

associated with UEF motor scores (p≤0.05 and ρ≥0.49 for Spearman, Table 4). Results 

showed significant associations between MSE values within frontal and parietal brain 

regions and the salience network with MoCA scores for Cog 1 (p≤0.05 and ρ≥0.48 for 

Spearman, Table 4) and frontal region MSE values with MoCA score for Cog 2 (p=0.03 and 

ρ = 0.52 for Spearman, Table 4).

Discussion

Complexity and Brain Function

As hypothesized, complexity analysis revealed significant differences in brain activity 

between CN and MCI older adults. Overall, a lower time-domain complexity of brain 

activity was observed among older adults with signs of early-stage cognitive impairment, 

compared to CN. A lower entropy value is associated with neuronal death and synaptic 

disconnections linked with memory loss;18,21,25 the less connections between neurons, the 

less complex (more predictable) the signal becomes, as there is less neuronal activity in a 

given brain area.25 Based on the current findings, the observed differences in brain function 

complexity were more pronounced across frontal, parietal, and temporal brain regions, and 

default mode, central executive, precuneus, and salience brain networks. Previous research 

suggests that synaptic losses occur unevenly throughout the cortical regions in the AD 

brain, where severity is highest in the frontal lobe and lowest within the occipital lobe;63 
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additionally, synaptic losses begin within the temporal lobe or more specifically within the 

limbic entorhinal cortex, and radiate outward from the hippocampus as a linear function of 

hippocampal volume loss.63,64 It has been previously found that AD affects the following 

brain networks: the default mode, central executive, and salience. Dysfunction in one of 

these networks can affect the performance of the other twoS65 Specifically, the salience 

network can affect the switching between the default mode and central executive when 

performing self-referential, conscious motor control, or memory-based tasks.64–66 Results 

from the current study suggest that fMRI complexity analysis is sensitive to detect these 

gradual alterations in brain function within specific brain regions/networks.

Further, a significant association was observed between age and brain function complexity; 

older participants showed less brain function complexity compared to younger individuals 

(Table 2 and Figure 2 and 4). Previous research done by Smith et al. suggested similar 

trends of complexity reduction with healthy aging, reporting significant differences in MSE 

between young (age of 23±2 years) and older (age of 66 ± 3 years) adults.67 In another 

study, a negative significant correlation was reported between approximate entropy and 

age, specially across frontal, parietal, limbic, temporal, and cerebellum regions.68 All these 

results, in agreement to the current findings, confirm the theory of higher complexity for 

healthier and more robust physiological systems.27

Current findings suggest that complexity analysis of the brain function from cortical regions 

may provide a stronger indicator of early-stage AD, compared to subcortical deep brain 

regions. The effect of cognitive impairment on complexity of brain function has been 

investigated in previous research using fMRI, EEG, and more recently fNIRS. In agreement 

with current findings, resting state fMRI studies showed smaller complexity due to cognitive 

impairment in cortical brain regions, including temporal, parietal, occipital, and frontal 

lobes.20,69 The observed smaller complexity of fNIRS and EEG signal in AD also support 

the fact that measuring the complexity of cortical brain regions is a reliable methodology for 

assessing cognitive impairment, rather than deep brain regions.70,71 This is primarily due to 

the well-known phenomena of increased recruitment of cortical neurons when brain damage 

occurs due to the plasticity of cortical brain regions,63,64 the capacity of which reduces in 

AD.63 Furthermore, cortical brain regions connect directly to sub-cortical regions like the 

hippocampus,63,64,66 where early AD has been identified with volume loss analysis. It is 

supported by evidence that complexity analysis of lower temporal frequencies similar to 

the current setting can reflect long range interconnectivity between neural populations (e.g., 

cortical and sub-cortical regions) and their respective synaptic disconnections and loss of 

signal complexity.43 Subsequently, it is possible to detect brain damage early via observation 

of complexity in cortical time-series.

Unlike most research focusing on resting-state brain function, the current study employed 

an upper-extremity motor task to assess brain function complexity between healthy and 

cognitively impaired older adults. Previous motor task-based fMRI studies utilized finger-

tapping and imagery gait to determine brain function alterations due to AD. These 

studies found that atrophy in the hippocampus was directly correlated with hyper- and 

hypo-activations throughout the brain, evidence of compensatory processes for motor-based 

control, and deficits in the deactivation of specific regions in the default mode.64,66 
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Current findings suggest that consistent normal-speed elbow flexion motor task may 

provide advantages over previously implemented approaches. First, UEF is measurable 

with sensors; although motor performance was not measured in the current study due to 

equipment limitations, UEF motor task can be measured using fMRI-friendly accelerometers 

or cameras. Further, UEF may provide a better direct assessment of motor performance 

compared to imagery tasks (e.g., imagery gait), since previous work suggested difference 

in imagery and actual task in terms of both brain function and the task performance.66,72 

Further, although gait dual-tasking has been commonly validated for cognitive impairment 

assessment,73–75 it relies heavily on procedural memory systems, while novel motor 

functions that requires some degree of skill learning, such as UEF, may increase the demand 

on attentional resources and working memory to better reveal cognitive impairment.76,77

In addition to UEF as a novel method for performing motor task in the fMRI setting, we also 

employed the task of counting numbers in combination with UEF (dual-task UEF). In our 

previous work we showed association between UEF and gait dual-task performance, within 

which, a better prediction of cognitive impairment (15% higher accuracy) was achieved 

using UEF motor variability parameters compared to gait measures.14 Further, in association 

with cognitive components, we previously observed that visuospatial/executive, attention, 

delayed recall, and orientation MoCA subcategories were better correlated with the UEF 

dual-task performance.17 These observations agree with the current fMRI findings, which 

show association between cognitive impairment and brain function complexity. For instance, 

previous work suggested that default mode is linked to episodic memory,78 frontoparietal to 

executive function,54 and central executive to attention during dual-tasking.79

Clinical Implications

Recent studies suggest that motor deficits may be considered as early markers of 

Alzheimer’s disease and cognitive impairment in general.64,66,72 Current findings provided 

evidence that by assessing brain function in combination with motor performance we would 

be able to improve cognitive impairment detection. Further, complexity of brain function 

in cortical regions were mostly affected by cognitive impairments. These findings showed 

potential for developing a quick and objective measure of cognitive decline using UEF and 

brain function measurement tools such as EEG and fNIRS. Once targeted neural networks 

are identified, it is possible to limit the confounding effects due to motion artifacts and 

reduce the duration of assessments by implementing EEG and fNIRS, because of higher 

temporal frequency of these devices. These technologies can help with early and objective 

screening of cognitive decline to establish a baseline, facilitate tracking cognition over time, 

and ensure appropriate care for cognitive health.

Limitations and Future Direction

The following limitations exist, which warrant future research. First, the sample size of the 

two CN and MCI groups was small. The effect size hints at the potential for a larger sample 

size to yield more significant results. Second, the present study only included MCI older 

adults and no AD patients, so we were unable to determine whether the observed trend 

of smaller complexity for MCI would be expandable to AD patients as well. We advise 

that this study be upscaled in future research and include older adults with AD. Our study 

Peña et al. Page 10

J Neuroimaging. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



also consisted of a very low sampling rate within the fMRI (<0.5 Hz); therefore, assessing 

complexity changes across paradigm blocks, such as transitioning from resting-state to dual-

task condition, was not possible. In future work, changes in complexity measures, especially 

dual-task costs, should be investigated within fNIRS and/or EEG setup with higher sampling 

frequencies.

Conclusion

In the current work, a significant difference in brain function complexity, measured 

by entropy analysis, was found between CN and MCI participants while performing a 

series of tasks including elbow flexion, counting numbers, and both elbow flexion and 

counting simultaneously. MCI participants showed on average 28% smaller brain function 

complexity across frontal, occipital, parietal, and temporal regions, and 35% smaller brain 

function complexity across default mode, central executive, salience, and visuospatial neural 

networks. Further, there were significant negative correlations between brain function 

complexity and age. Using brain function measures, MCI identification was improved by 

14–24% compared to models that included only dual-task motor performance. Accordingly, 

current findings suggest that combining brain and motor function measures may provide an 

accurate tool for assessing early-stage cognitive impairment among older adults.
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Figure 1: 
Flow chart demonstrating pre-processing steps in SPM12 and the customized MATLAB 

program for processing fMRI data. Our dual-task paradigm consisted of 30 s (N=15 data 

points) blocks for rest, counting (cognitive task), flexion (motor task), and counting + 

flexion (dual-task) conditions. Two trials resulted in two whole time series (N = number 

of data points, 180 data points each, for a time (t) of 260 second (s)), which underwent 

complexity analysis. Cog 1: counting down by ones; and Cog 2: counting down by threes; 

CN: cognitively normal; MCI: mild cognitive impairment; SMP: statistical parametric 

mapping; DICOM: digital imaging and communications in medicine; NIfTI: neuroimaging 

informatics technology initiative; MNI: Montreal Neurological Institute; SampEn: sample 

entropy; MSE: multiscale entropy; Hz: Hertz
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Figure 2: 
Spearman correlation between age (in years) and multiscale entropy (MSE scale 6) values 

across brain regions for Cog 1 of counting by ones (A-D) and Cog 2 of counting backward 

by threes (E-H). p-value cutoff is 0.05.
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Figure 3: 
Results from univariate analysis of variance models for differences in multiscale entropy 

(MSE Scale 6) between cognitive groups across brain regions (top) and neural networks 

(bottom). A significant between-group (CN versus MCI) difference is indicated with the 

asterisk (* for p<0.05 and ** for p<0.01). Cog 1: counting down by ones; and Cog 2: 

counting down by threes; CN: cognitively normal; and MCI: mild cognitive impairment.
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Figure 4: 
Spearman correlation between age (in years) and multiscale entropy (MSE scale 6) values 

across neural networks for Cog 1 of counting by ones (A-D) and Cog 2 of counting 

backward by threes (E-H). p-value cutoff is 0.05.
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Table 1.

Average values of participant demographics and neuropsychological test results.

Demographic information CN (n=8) MCI (n=9) p-value (effect size)

Female, n (% of group) 4.00 (50%) 7.00 (77.8%) 0.23

Age, years (SD) 73.63 (3.70) 78.78 (8.39) 0.13 (0.79)

Stature, cm (SD) 169.70 (11.64) 161.57 (9.96) 0.14 (0.75)

Body Mass, kg (SD) 74.20 (17.12) 71.81 (14.54) 0.76 (0.15)

BMI, kg/m2 (SD) 25.67 (4.74) 27.53 (5.29) 0.46 (0.37)

Neuropsychological tests

UEF Cognitive Score 1 (SD) 0.43 (0.27) 0.57 (0.21) 0.25 (0.58)

UEF Cognitive Score 2 (SD) 0.45 (0.33) 0.72 (0.33) 0.12 (0.82)

Stroop Word (SD) 87.00 (12.83) 75.33 (18.71) 0.16 (0.73)

Stroop Color (SD) 63.13 (14.21) 49.33 (13.44) 0.06 (1.00)

Stroop Inhibition (SD) 35.25 (7.76) 24.56 (14.14) 0.08 (0.94)

MoCA (SD) 27.63 (2.26) 19.11 (3.33) < 0.01 (2.99) *

Rey Auditory (SD) 53.38 (18.06) 38.25 (18.21) 0.12 (0.83)

COWAT (SD) 37.75 (7.83) 33.22 (9.12) 0.29 (0.53)

WAIS-R Digit Symbol (SD) 51.25 (5.95) 36.67 (17.23) 0.04 (1.13) *

Card Sort (SD) 68.00 (10.84) 72.50 (20.04) 0.62 (0.23)

n: number of participants in each group; CN: cognitively normal; MCI: mild cognitive impairment; SD = standard deviation; BMI = body mass 
index; UEF = upper extremity function; MoCA = Montreal cognitive assessment; COWAT = controlled oral word association test; and WAIS-R = 
Wechsler adult intelligence scale.

A significant difference between parameters (p<0.05) is indicated with the asterisk.
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Table 2.

Results of univariate analysis of variance for each of age (in years) or cognitive groups as independent 

variable, and multivariable analysis with age and cognitive group as independent variables.

Brain Regions
MSE – Mean (SD)

Univariate p-value 
(effect size or r2)

Multivariable p-value

CN MCI Cognitive group Age Cognitive group Age

Cerebellum - Cog 1 1.26 (0.30) 1.00 (0.34) 0.11 (0.82) 0.02 (0.31)* 0.40 0.03*

Cerebellum - Cog 2 1.26 (0.20) 1.05 (0.48) 0.24 (0.57) <0.01 (0.42)** 0.84 0.01*

Frontal - Cog 1 1.49 (0.10) 1.14 (0.29) 0.01 (1.57)* 0.27 (0.08) 0.03* 0.15

Frontal - Cog 2 1.51 (0.08) 1.13 (0.45) 0.01 (1.20)* 0.28 (0.08) 0.03* 0.25

Occipital - Cog 1 1.39 (0.22) 1.00 (0.40) 0.03 (1.23)* <0.01 (0.46)** 0.11 0.01*

Occipital - Cog 2 1.34 (0.10) 1.04 (0.49) 0.16 (0.85) <0.01 (0.48)** 0.60 0.01*

Parietal - Cog 1 1.50 (0.07) 1.13 (0.35) 0.01 (1.46)* <0.01 (0.37)** 0.04* < 0.01*

Parietal - Cog 2 1.54 (0.24) 1.17 (0.53) 0.07 (0.91) <0.01 (0.38)** 0.29 0.01*

Temporal - Cog 1 1.48 (0.09) 1.22 (0.27) 0.02 (1.27)* <0.01 (0.39)** 0.10 < 0.01*

Temporal - Cog 2 1.53 (0.15) 1.23 (0.51) 0.06 (0.80) <0.01 (0.50)** 0.27 0.01*

Neural Networks
MSE – Mean (SD)

Univariate p-value 
(effect size or r2)

Multivariable p-value

CN MCI Cognitive group Age Cognitive group Age

Basal Ganglia - Cog 1 1.37 (0.19) 0.97 (0.38) 0.02 (1.33)* 0.06 (0.22) 0.07 0.05*

Basal Ganglia - Cog 2 1.38 (0.10) 0.98 (0.51) 0.05 (1.10)* 0.03 (0.27)* 0.16 0.11

Default Mode - Cog 1 1.42 (0.15) 1.03 (0.34) 0.01 (1.44)* <0.01 (0.40)** 0.04* 0.00*

Default Mode - Cog 2 1.42 (0.27) 1.07 (0.42) 0.06 (0.99) 0.01 (0.36)* 0.24 0.01*

Central Executive - Cog 1 1.47 (0.08) 1.10 (0.33) 0.01 (1.54)* 0.08 (0.19) 0.03* 0.04*

Central Executive - Cog 2 1.50 (0.15) 1.12 (0.45) 0.02 (1.14)* 0.05 (0.23) 0.10 0.09

Language - Cog 1 1.48 (0.12) 1.17 (0.33) 0.02 (1.25)* <0.01 (0.38)** 0.11 0.01*

Language - Cog 2 1.57 (0.08) 1.19 (0.36) 0.05 (1.47)* <0.01 (0.43)** 0.21 0.01*

Precuneus - Cog 1 1.40 (0.17) 0.96 (0.41) 0.01 (1.41)* <0.01 (0.48)** 0.05* < 0.01

Precuneus - Cog 2 1.34 (0.10) 1.02 (0.52) 0.17 (0.85) <0.01 (0.54)** 0.66 < 0.01*

Salience - Cog 1 1.47 (0.15) 1.05 (0.35) 0.01 (1.56)* 0.13 (0.14) 0.03* 0.09

Salience - Cog 2 1.46 (0.23) 1.04 (0.58) 0.02 (0.96)* 0.22 (0.10) 0.08 0.17

Sensorimotor - Cog 1 1.42 (0.14) 1.09 (0.37) 0.03 (1.16)* 0.02 (0.33)* 0.14 0.02*

Sensorimotor - Cog 2 1.42 (0.15) 1.14 (0.44) 0.17 (0.83) <0.01 (0.49)** 0.63 0.01*

Visual - Cog 1 1.37 (0.24) 0.98 (0.39) 0.03 (1.22)* <0.01 (0.48)** 0.12 0.01*

Visual - Cog 2 1.32 (0.10) 1.02 (0.41) 0.17 (1.00) <0.01 (0.37)** 0.62 0.01*

Visuospatial - Cog 1 1.53 (0.08) 1.17 (0.36) 0.01 (1.40)* 0.11 (0.16) 0.06 0.03*

Visuospatial - Cog 2 1.57 (0.24) 1.18 (0.54) 0.04 (0.93)* 0.01 (0.34)* 0.17 0.02*

MSE: multiscale entropy, SD: standard deviation; CN: cognitively normal; MCI: mild cognitive impairment; Cog 1: counting down by ones; and 
Cog 2: counting down by threes.

A significant association is indicated with the asterisk (* for p<0.05 and ** for p<0.01).
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Table 3.

Multivariable ordinal logistic prediction models for cognition status.

UEF Score Only - Counting Down by Ones (Sensitivity = 0.67; Specificity = 0.75; AUC = 0.72)

Estimate Standard Error χ2 P value Lower 95% Upper 95%

Intercept −1.29 1.28 1.02 0.31 −4.19 1.07

UEF Cognitive Score 2.85 2.45 1.36 0.24 −1.47 8.65

MSE Only - Counting Down by Ones (Sensitivity = 0.89; Specificity = 0.75; AUC = 0.92)

Intercept 22.67 13.60 2.78 0.10 5.12 60.61

Frontal Lobe −16.23 9.55 2.89 0.09 −42.72 −3.80

MSE Only - Counting Down by Ones (Sensitivity = 0.78; Specificity = 0.75; AUC = 0.89)

Intercept 10.87 5.92 3.38 0.07 2.68 26.56

Salience Network −8.15 4.29 3.60 0.06 −19.51 −2.11

Combined - Counting Down by Ones (Sensitivity = 0.89; Specificity = 0.75; AUC = 0.93)

Intercept 25.58 15.70 2.65 0.10 4.36 67.80

UEF Cognitive Score 4.60 4.61 0.99 0.32 −4.15 15.77

Frontal Lobe −19.50 11.63 2.81 0.09 −50.73 −4.13

Combined - Counting Down by Ones (Sensitivity = 0.78; Specificity = 0.75; AUC = 0.88)

Intercept 10.46 6.51 2.58 0.11 0.99 27.55

UEF Cognitive Score 2.72 3.45 0.62 0.43 −4.39 10.81

Salience Network −8.69 4.95 3.08 0.08 −22.41 −1.95

UEF Score Only - Counting Down by Threes (Sensitivity = 0.67; Specificity = 0.75; AUC = 0.72)

Intercept −1.39 1.14 1.49 0.22 −4.12 0.64

UEF Cognitive Score 2.55 1.67 2.32 0.13 −0.44 6.44

MSE Only - Counting Down by Threes (Sensitivity = 0.89; Specificity = 0.75; AUC = 0.86)

Intercept 22.01 13.48 2.67 0.10 4.08 57.20

Frontal Lobe −15.40 9.28 2.75 0.10 −39.71 −3.01

MSE Only - Counting Down by Threes (Sensitivity = 0.67; Specificity = 0.75; AUC = 0.81)

Intercept 7.67 5.06 2.30 0.13 1.24 21.80

Salience Network −5.69 3.59 2.51 0.11 −15.67 −0.99

Combined - Counting Down by Threes (Sensitivity = 0.89; Specificity = 0.75; AUC =0.88)

Intercept 23.71 17.59 1.82 0.18 1.98 71.27

UEF Cognitive Score −0.43 2.63 0.03 0.87 −6.34 4.83

Frontal Lobe −16.42 11.57 2.02 0.16 −47.96 −2.31

Combined - Counting Down by Threes (Sensitivity = 0.89; Specificity = 0.75; AUC = 0.83)

Intercept 6.49 5.38 1.45 0.23 −1.49 21.17

UEF Cognitive Score 1.03 1.98 0.27 0.60 −2.80 5.47

Salience Network −5.23 3.60 2.11 0.15 −15.23 −0.22

AUC: area under curve of receiver operating characteristic curve; and UEF: upper-extremity function; and MSE: multiscale entropy.

A significant association of p<0.05 is indicated with the asterisk.
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Table 4:

Correlations between brain function multiscale entropy with upper-extremity function motor score and 

Montreal cognitive assessment (MoCA).

Brain Regions
Motor Score MoCA

Spearman ρ p-value Spearman ρ p-value

Cerebellum Cog1 −0.44 0.07 0.23 0.37

Cerebellum Cog2 −0.54 0.03 0.16 0.55

Frontal Cog1 −0.25 0.33 0.60 0.01

Frontal Cog2 −0.61 0.01 0.52 0.03

Occipital Cog1 −0.49 0.05 0.31 0.23

Occipital Cog2 −0.49 0.05 0.13 0.62

Parietal Cog1 −0.39 0.12 0.48 0.05

Parietal Cog2 −0.57 0.02 0.16 0.55

Temporal Cog1 −0.45 0.07 0.35 0.16

Temporal Cog2 −0.68 0.00 0.26 0.31

Neural Network
Motor Score MoCA

Spearman ρ p-value Spearman ρ p-value

Basal Ganglia Cog1 −0.23 0.37 0.38 0.13

Basal Ganglia Cog2 −0.45 0.07 0.18 0.48

Default Mode Cog1 −0.36 0.15 0.40 0.12

Default Mode Cog2 −0.56 0.02 0.17 0.51

Executive Control Cog1 −0.44 0.08 0.40 0.12

Executive Control Cog2 −0.63 0.01 0.36 0.16

Language Cog1 −0.46 0.06 0.38 0.13

Language Cog2 −0.67 0.00 0.26 0.32

Precuneus Cog1 −0.47 0.06 0.40 0.11

Precuneus Cog2 −0.45 0.07 0.05 0.85

Salience Cog1 −0.32 0.22 0.51 0.04

Salience Cog2 −0.53 0.03 0.40 0.12

Sensorimotor Cog1 −0.47 0.05 0.32 0.22

Sensorimotor Cog2 −0.56 0.02 0.12 0.65

Visual Cog1 −0.51 0.04 0.30 0.25

Visual Cog2 −0.38 0.14 0.08 0.76

Visuospatial Cog1 −0.51 0.04 0.30 0.24

Visuospatial Cog2 −0.50 0.04 0.23 0.37

MSE: multiscale entropy; Cog 1: counting down by ones; and Cog 2: counting down by threes.

A significant association of p<0.05 is indicated with the asterisk.
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