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Abstract

Purpose—We employ nnU-Net, a state-of-the-art self-configuring deep learning-based semantic 

segmentation method for quantitative visualization of hemothorax (HTX) in trauma patients, and 

assess performance using a combination of overlap and volume-based metrics. The accuracy 

of hemothorax volumes for predicting a composite of hemorrhage-related outcomes — massive 

transfusion (MT) and in-hospital mortality (IHM) not related to traumatic brain injury — is 

assessed and compared to subjective expert consensus grading by an experienced chest and 

emergency radiologist.

Materials and methods—The study included manually labeled admission chest CTs from 

77 consecutive adult patients with non-negligible (≥50 mL) traumatic HTX between 2016 and 

2018 from one trauma center. DL results of ensembled nnU-Net were determined from fvefold 

cross-validation and compared to individual 2D, 3D, and cascaded 3D nnU-Net results using the 

Dice similarity coefcient (DSC) and volume similarity index. Pearson’s r, intraclass correlation 

coefcient (ICC), and mean bias were also determined for the best performing model. Manual 

and automated hemothorax volumes and subjective hemothorax volume grades were analyzed 
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as predictors of MT and IHM using AUC comparison. Volume cut-ofs yielding sensitivity or 

specifcity≥90% were determined from ROC analysis.

Results—Ensembled nnU-Net achieved a mean DSC of 0.75 (SD: ± 0.12), and mean volume 

similarity of 0.91 (SD: ± 0.10), Pearson r of 0.93, and ICC of 0.92. Mean overmeasurement 

bias was only 1.7 mL despite a range of manual HTX volumes from 35 to 1503 mL (median: 

178 mL). AUC of automated volumes for the composite outcome was 0.74 (95%CI: 0.58–0.91), 

compared to 0.76 (95%CI: 0.58–0.93) for manual volumes, and 0.76 (95%CI: 0.62–0.90) for 

consensus expert grading (p = 0.93). Automated volume cut-offs of 77 mL and 334 mL predicted 

the outcome with 93% sensitivity and 90% specificity respectively.

Conclusion—Automated HTX volumetry had high method validity, yielded interpretable visual 

results, and had similar performance for the hemorrhage-related outcomes assessed compared 

to manual volumes and expert consensus grading. The results suggest promising avenues for 

automated HTX volumetry in research and clinical care.
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Introduction

Chest trauma collectively results in a quarter of all fatal traumatic injuries annually, and 

hemorrhage into the thoracic cavity is an important proximate cause of early morbidity and 

mortality [1–7]. Since admission computed tomography (CT) is rapid and allows concurrent 

monitoring by the trauma team, the modality is routinely employed in patients sufciently 

hemodynamically stable for transfer to a trauma bay-adjacent scanner. Hemothorax refects 

the total amount of bleeding into the chest cavity from the time of injury and manifests 

as dependently layering accumulations of blood within the pleural space [3]. Hemothorax 

is difcult to quantify with chest x-ray, and CT is generally superior for characterization 

of thoracic injury [2, 8, 9]. The unobstructed anatomic detail aforded by CT opens 

the possibility for voxelwise quantifcation of hemothorax, and could facilitate objective 

personalized prognostication and decision support with respect to hemorrhage control; 

however, manual or semi-automated voxelwise measurement is labor-intensive and not 

feasible at the point of care [10, 11].

There is currently no universal and clinically validated system for grading hemothorax 

size on imaging, with coarse subjective descriptors such as “small” or “moderate” 

routinely used in the clinical setting [5, 12, 13]. Because the thoracic cavity can 

accommodate accumulation of a large volume of blood, traumatic hemothorax may result 

in exsanguination and mortality. Massive transfusion is an important life-saving intervention 

and there is an unmet need for objective criteria to guide the transfusion strategy in patients 

with chest trauma and hemothorax [14, 15].

Automated methods for voxelwise segmentation and quantification have been described for 

features of hemorrhage in other body cavities, including extraperitoneal pelvic hematomas 
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[16, 17] and hemoperitoneum [18]. Segmentation methods must be robust at multiple scales 

given the wide range of hemothorax volumes encountered.

The purpose of this pilot study is to assess method validity of deep learning-based 

automated hemothorax segmentation and quantification and explore the potential clinical 

role of automated hemothorax volumetry for predicting need for massive transfusion and 

hemorrhage-related mortality.

Materials and methods

Study dataset

De-identified admission contrast-enhanced chest CT studies that were performed on arrival 

at a level I trauma center were retrospectively compiled into the study dataset as part of an 

IRB-approved HIPAA compliant study. Consecutive adult (age ≥ 18 years) patients between 

August 2016 and December 2018 who experienced blunt or penetrating thoracic trauma 

were queried for the keyword “hemothorax” within radiologic reports, returning 97 patients. 

Four patients were excluded because of lack of archived CT images or clinical data. Ten 

cases with incomplete imaging data or corrupted meta-data could not be successfully loaded 

into the segmentation software and were also excluded.

Labeling in all patients was performed using 3D slicer [19] (details provided below), and 

trace hemothoraces (≤ 50 mL, reflecting a small fraction of one unit of transfused blood) 

expected to be too small to impact haemorrhage-related outcomes were excluded a priori 

(n = 6). The final dataset consisted of 77 labeled CT studies. These patients’ charts were 

reviewed by a research assistant for hemorrhag-erelated outcomes that were used to generate 

a composite endpoint including massive transfusion (MT-, defined as at least 4 units of 

packed red blood cells (PRBC) in a 4-h period or at least 10 units of PRBC over 24 h [20, 

21]); or in-hospital mortality (IHM), excluding fatalities from traumatic brain injury (head 

abbreviated injury severity score of 6).

Image acquisition

Thoracic CT studies were completed using either a duals-ource 128-section (Siemens Force; 

Siemens, Erlangen, Germany) or 64-section (Brilliance; Philips Healthcare, Andover, MA) 

scanners located within the trauma center. The scanning protocol included injection of 100 

mL of intravenous contrast (Omnipaque [iohexol; 350 mg of iodine per milliliter]; GE 

Healthcare, Chicago, IL) and image acquisition in the arterial phase at 120 kVp (Philips) or 

120 kVp equivalent blend (Siemens) at 150–159 reference mAs. Studies were archived with 

1.5–3-mm section thickness.

Qualitative grading

Blinded qualitative evaluation of hemothoraces was performed by consensus of two board-

certifed radiologists — a chest radiologist with over 15 years of experience and an 

emergency radiologist with 10 years of experience. In keeping with clinical practice, 

hemothorax size was graded in a gestalt fashion as small, moderate, or large. The following 

guideline was used to inform qualitative grading [5]: small hemothoraces have an estimated 
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volume less than 250 mL, with pleural thickness less than 1.5 cm; moderate hemothoraces 

have estimated volumes between 250 and 1000 mL, with pleural thickness between 1.5 and 

4 cm; and large hemothoraces have a volume > 1000 mL with pleural thickness >4 cm.

Manual labeling

Each study was converted to Neuroimaging Informatics Technology Initiative (NifTI) file 

format and manually labeled by trained staf at the voxel level using the segment editor 

module in 3D slicer (version 4.10.2, www.slicer.org). The 3D ROI paint tool was employed 

with thresholding between −20 and 100 HU to account for image noise and beam hardening 

from adjacent ribs. Labels were created in the axial planes with further editing in the coronal 

and sagittal planes. A morphologic smoothing flter was uniformly applied to eliminate label 

artifact. All studies underwent further editing by a radiologist. Manual hemothorax volumes 

were calculated using voxel counting with the slicer quantifcation module.

High-level overview of the deep learning method

Convolutional neural networks with encoder and decoder architectures such as U-Net 

form the backbone of contemporary automated semantic segmentation methods [22]. At 

baseline, U-Net and similar fully convolutional neural networks (FCNs) involve gradual 

hierarchical increases in size of receptive fields in progressively deeper layers and are 

therefore suboptimal for segmentation of targets that vary greatly in scale [23]. Traumatic 

bleeding in the large body cavities, including pelvic hematoma [17], hemoperitoneum [18], 

and hemothorax, ranges widely in volumes and best results have been achieved using 

tailored multiscale solutions.

In recent years, numerous approaches have proliferated to address multiscale problems 

in cross-sectional imaging. Commonly, low-resolution networks that maximize global 

contextual awareness are combined with high resolution networks that produce fine detail 

segmentations, operating in a cascaded [17] or tandem [18, 24–26] fashion. nnU-Net, 

introduced in Nature in 2021 by Isensee et al. [27], is based on the principle that design 

choices in pre-processing and hyper-parameter tuning, including intensity thresholding, 

cropping, slice thickness resampling, data augmentation, batch size, and learning rate 

[28], have more impact on performance than do architectural variations. nnU-net is self-
configuring, automatically determining the aforementioned design choices in a data-driven 

manner derived from best results on over 20 public cross-sectional imaging datasets. The 

selected design choices produce a unique dataset and pipeline fingerprint for the new data 

at hand. The rules-based method for determining the fingerprint is based on features which 

include median number of positive voxels, spacing and size anisotropy, number of training 

cases, and imaging modality. It is shorthand for “no new U-Net” as it employs generic 2D, 

3D, and cascaded 3D U-Net architectures in fivefold cross-validation using a Dice similarity 

coefficient loss function. Ensembled results of the three methods are also determined, and 

the best-performing method (2D, 3D, cascaded 3D, or ensembled) is selected.

In spite of the simplicity of the backbone architectures, nnU-Net surpasses most 

existing highly-specialized solutions for 53 diferent segmentation tasks from international 
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biomedical image segmentation challenges, and serves as a state-of-the-art out-of-the-box 

automated segmentation tool that is robust for multiscale problems [27].

Statistical analyses

nnU-Net training and validation were performed with an RTX 3090 NVIDIA GPU with 24 

GB of RAM using Python version 3.7.11. The best performing model was selected based 

on highest mean Dice similarity coefcient (DSC) and volume similarity [29]. Correlation 

and agreement between automated and manual volumes were further interrogated using 

intraclass correlation coefcient (ICC), Pearson’s r, and mean bias derived from Bland–

Altman analysis.

Median automated volumes were compared by composite outcome using the Mann–Whitney 

U test. Automated volumes were compared to manual volumes and qualitative consensus 

expert grading for the composite outcome of massive transfusion and in-hospital mortality 

using the area under the ROC curve (AUC). Statistical comparisons were performed using 

the DeLong method. Receiver operating characteristic curve (ROC) analysis was also used 

to determine volume thresholds resulting in ≥90% sensitivity and ≥90% specifcity.

Results

Ensembled nnU-Net was selected for further analysis as it demonstrated the best overall 

combined performance using overlap and volume-based segmentation metrics, achieving 

high mean volume similarity of 0.91 — equivalent to high-resolution 3D and cascaded 

3D methods — and highest mean DSC of 0.75 (Table 1). The distribution of manual and 

automated (ensembled nnU-Net) hemothorax volumes ranged between 35 and 1503 mL 

(manual) and 34 and 1451 mL (auto), with median volumes of 178 mL (manual) and 

185 mL (auto). Standard quantitative imaging biomarker evaluation metrics [30] comparing 

manual to automated volumes included an ICC of 0.92 (95%CI: 0.88 to 0.95), and Pearson’s 

r of 0.93 (95%CI: 0.90 to 0.96). Pearson’s r values ≥ 0.80 are indicative of strong correlation 

and ICC values ≥ 0.75 are considered to indicate excellent agreement [31]. The automated 

method had a mean overmeasurement bias of 1.7 mL compared to manual volumes.

Patient baseline characteristics are provided in Table 2. Among the 77 patients included 

in the study, the median age was 50 years (interquartile range [IQR] 36–62), and 74% 

were male. Mean Abbreviated Injury Score (AIS) score was 3.2 (SD: 0.6), and mean injury 

severity score (ISS) was 24.2 (SD: 10.3). Four patients (5%) suffered penetrating injuries, 

and the other 73 patients (95%) experienced blunt injuries. Twelve patients (16%) underwent 

massive transfusion, and 8 patients (10%) died during their hospital admission. A total of 15 

patients (18%) had either or both outcomes.

Automated volumes were significantly higher in patients with the composite outcome 

(massive transfusion or in-hospital mortality) than those without (341.1 mL versus 158.4 

mL, p = 0.004). Examples of automated segmentation results for a range of HTX volumes 

are illustrated in Fig. 1.
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The AUCs of traumatic automated HTX volumes, manual volumes, and qualitative expert 

grading for the composite outcome were 0.74 (95%CI: 0.58–0.91), 0.76 (95%CI: 0.58–

0.93), and 0.76 (95%CI: 0.62–0.90) (p = 0.93 for testing the null hypothesis that the three 

AUCs are equal). A traumatic automated HTX volume cut-off of 81 mL predicted the 

outcome with 93% sensitivity and 11% specificity and a volume cut-off 341 mL with 90% 

specificity and 53% sensitivity.

Discussion

Persistent hemorrhage into the pleural space may be fatal, and clinical decisions in 

managing traumatic hemothorax early in the course of treatment relate to addressing 

the origin of hemorrhage and transfusing to compensate for blood loss until the 

source can be controlled [1, 3, 13–15]. CT is integral to the evaluation of patients 

after severe thoracic trauma and is an important component of trauma care algorithms 

where intracavitary hemorrhage is suspected [4, 6]. Despite advancements in image 

technology that enables rapid acquisition of anatomic data, point of care hemothorax 

volume estimation is typically achieved with coarse subjective assessment. In comparison 

to broad, qualitative categorizations that are traditionally given in radiology reports, 

automated quantitative visualization of hemothorax could potentially provide objective 

information for prognosticating hemorrhage-related outcomes. Our automated hemothorax 

results demonstrate high method validity and outcome prediction on par with expert level 

qualitative grading undertaken in a controlled research setting. Automated hemothorax 

volumes that can be visually verified by any radiologist or trauma surgeon end-user 

are advantageous because they are rapid, consistent, and objective, not depending on 

experience level, subspecialization, reader fatigue, reading room distractions, or the lengthy 

study turnaround times of trauma CT exams, which can exceed 20–30 min [32–34]. By 

comparison, nnU-Net has inference times of under 2 min.

To engender trust among radiologists or trauma surgeons, hemothorax segmentation masks 

must conform to the boundaries of hemothorax while avoiding neighboring structures of 

similar attenuation values such as compressed lung. We achieved high-saliency interpretable 

visual results with corresponding high mean DSC values, volume similarity scores, 

correlation, and agreement using nnU-Net.

In this dataset, injury severity scores, and lactate levels were significantly higher in patients 

requiring massive transfusion or that expired from hemorrhage-related complications, and 

admission systolic blood pressure was significantly lower. This is likely accounted for by 

multicavitary hemorrhage, which is not addressed in this pilot study. Bleeding features on 

routine admission trauma CT are often leading indicators of hemodynamic collapse [4, 6, 

35–37] and can soon be accounted for more holistically using similar deep learning-based 

quantitative visualization approaches. Proof-of-concept automated methods for quantitative 

visualization of pelvic hematoma volumes and hemoperitoneum are described [16–18], 

and comprehensive assessment of hemorrhage burden using automated hemothorax, 

hemoperitoneum, and pelvic hematoma segmentation is planned in future work scaled to 

larger datasets. Once containerized as software and deployed, high-throughput automated 

hemorrhage burden quantification tools will likely accelerate cross-institutional research 
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and may play an important role in objective decision-making in the early management of 

patients with torso hemorrhage.

Additional outcomes specific to hemothorax may also be of interest, including the risk 

of retained hemothorax and empyema [13]. Other manifestations of injury including lung 

contusion can impact the risk of developing traumatic acute respiratory distress syndrome 

(ARDS) [38], and in the future, automated multi-class voxelwise labeling and quantification 

of traumatic chest injuries on CT could facilitate prediction of a variety of outcomes based 

on multiple quantitative imaging parameters.

The computer vision aspect of our work is currently limited to the canonical task of 

segmentation. The method is currently not intended as a screening or workfow prioritization 

tool. A pipeline that screens for, segments, and measures hemothorax and hemorrhage 

in other body cavities autonomously in the clinical background and automatically notifes 

practitioners of critical quantitative results, as RAPID software has achieved for stroke 

imaging [39], is likely feasible but will require initial deep learning object detection steps 

with algorithms such as mask R-CNN preceding segmentation tasks [40, 41].

Finally, our pilot study used a CT dataset from a single institution. A large multi-institutional 

dataset will eventually be needed to ensure robust performance in the face of domain shift 

from scanner and scanning protocol heterogeneity and variable patient populations [42, 43] 

to achieve a technology readiness level suitable for deployment across institutions.

In conclusion, in this pilot study, we found that a state-of-the-art deep learning method 

resulted in objective and interpretable automated quantitative visualization of traumatic 

hemothorax, with hemorrhage-related outcome prediction comparable to expert qualitative 

grading. Future work will entail combining the method with similar pelvic hematoma and 

hemoperitoneum pipelines for comprehensive torso hemorrhage burden quantification, using 

initial detection algorithms to facilitate full-throughput autonomous function in the clinical 

background, and scaling to large multicenter datasets to ensure robustness.
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Fig. 1. 
Automated results using nnU-Net are shown for a wide range of hemothorax volumes (A 
96.6 mL, B 147.8 mL, C 185.4 mL, D 287.3 mL, E 419.6 mL, F 597.4 mL, G 714.0 mL, H 
898.6 mL, I 1450.6 mL)
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Table 1

Performance metrics for nnU-Net

nnU-Net component network Mean DSC (± SD) Volume similarity score (± SD)

2D U-Net 0.65 (± 0.14) 0.87 (± 0.13)

3D U-Net (high resolution) 0.74 (± 0.12) 0.91 (± 0.10)

3D U-Net (cascaded) 0.74 (± 0.12) 0.91 (± 0.10)

Ensembled nnU-Net 0.75 (± 0.12) 0.91 (± 0.10)
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