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Abstract

Inadequate sleep duration and quality are associated with reduced cardiovascular health and 

increased mortality. Experimental evidence points to the sympathetic nervous system as a 

key mediator in the observed relationship between poor sleep and cardiovascular dysfunction. 

However, brain mechanisms underpinning the impaired sympathetic function associated with poor 

sleep remain unclear. Recent evidence suggests the central orexin system, particularly orexins A 

and B and their receptors, have a key regulatory role for sleep in animal and human models. 

While orexin system activity has been observed to significantly impact sympathetic regulation 

in animals, the extension of these findings to humans has been difficult due to an inability to 

directly assess orexin system activity in humans. However, direct measures of sympathetic activity 

in populations with narcolepsy and chronic insomnia, two sleep disorders associated with deficient 

and excessive orexin neural activity, have allowed indirect assessment of the relationships between 

orexin, sleep, and sympathetic regulation. Further, the recent pharmaceutical development of 

dual orexin receptor antagonists for use in clinical insomnia populations offers an unprecedented 

opportunity to examine the mechanistic role of orexin in sleep and cardiovascular health in 

humans. The current review assesses the role of orexin in both sleep and sympathetic regulation 

from a translational perspective, spanning animal and human studies. The review concludes with 

future research directions necessary to fully elucidate the mechanistic role for orexin in sleep and 

sympathetic regulation in humans.
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Introduction

A significant proportion of the general population suffers from poor and/or insufficient 

sleep.1–3 Reduced sleep quantity and quality is associated with a number of cardiovascular 

and metabolic disorders, including an increased risk of hypertension as reported in cross-

sectional1 and longitudinal analyses.4 Sleep disorders such as insomnia are associated 

with cardiometabolic dysfunction.5, 6 While the preponderance of epidemiological studies 

indicate a clear role for poor sleep efficiency and quantity in the pathogenesis of 

cardiovascular dysfunction, the mechanism(s) underlying these associations remain elusive.

One posited mechanism by which poor sleep contributes to cardiovascular dysfunction is 

dysregulation of the sympathetic nervous system. Experimental sleep deprivation and sleep 

restriction paradigms have reported elevated levels of sympathetic activity following acute 

sleep impairment.7–9 Dysfunction of the sympathetic nervous system is similarly observed 

within sleep disorders,10, 11 as well as cardiometabolic disorders such as hypertension and12 

heart failure.13 Despite these findings, the central regulatory mechanisms underpinning these 

associations has not been established in humans.

Recent attention has shifted towards the potential role for the central orexin system in 

sleep and cardiovascular regulation.14–17 In an attempt to build upon prior findings, the 

current review assesses the crucial role that central orexinergic activity has on poor sleep 

and sympathetic dysregulation within animal and human models. Further, the potential 

for pharmaceutical interventions targeting the orexin system to more adequately assess its 

impact in human models, and to improve upon the translational efficacy of studies to date, 

will be discussed. Specifically, the recent development of dual orexin receptor antagonists 

offers a unique opportunity to assess the dynamic impact of orexin function on sleep and 

sympathetic neural control, not only in rodents and small animals, but also in humans.

Anatomical Situation of Orexin Neurons and Axonal Projections

The orexin peptides, also called hypocretins, were discovered simultaneously by two 

research groups just over two decades ago.18, 19 The orexin peptides consist of two types, 

orexin-A and B, which are encoded by the hypocretin neuropeptide precursor (HCRT) 

gene, and subsequently produced from the same precursor, prepro-orexin. Orexin producing 

neurons are contained within the lateral, dorsomedial, posterior and perifornical areas of the 

hypothalamus.18, 19 The isolation of orexin-producing neurons within specific hypothalamic 

regions suggests a limited scope of influence by the orexin system on other brain regions and 

physiological processes. However, orexin neurons extend a network of axonal projections 

which innervate numerous brain regions,20, 21 allowing a profound effect on complex 

physiological processes.

Some of the densest orexinergic axonal projections synapse in wake-promoting brain areas 

such as the noradrenergic locus coeruleus (LC), among others.20, 21 Orexin neurons receive 

additional input from the sleep-promoting regions,22, 23 which contribute to the modulatory 

role of orexin in sleep/wake transitions. In addition to its clear impact on sleep, orexin 

impacts areas involved in sympathetic autonomic control, including the nucleus of the 
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solitary tract (NTS), rostral ventrolateral medulla (RVLM), and the parvocellular neurons of 

the paraventricular nucleus of the hypothalamus (PVN).20, 24–26 Many of these projections 

are reciprocated via afferent neural synapses on orexin-producing neurons from numerous 

autonomic and sleep/wakefulness related brain nuclei.22, 23 The interconnectedness of orexin 

producing neurons within both sleep and autonomic related brain regions indicate a crucial 

role of orexin as a link between insufficient sleep and impaired sympathetic control.27

Activity of Orexin at Cellular Targets

Orexin neuropeptides A and B bind selectively to the orexin receptors 1 and 2 (OX1R 

and OX2R). OX1R and OX2R are seven-transmembrane G-protein coupled receptors with 

differing affinities for orexin-A and orexin-B. Specifically, orexin A has equal affinity for 

both receptors, while orexin B has higher affinity for OX2R.19 This is particularly important 

as the expression of OX1R and OX2R differs throughout brain regions. For example, OX1R 

is more heavily distributed within arousal promoting areas such as the LC, while OX2R is 

more prominent in the histaminergic tuberomammillary nucleus (TMN).28 Conversely, other 

regions of the brain, including the serotonergic dorsal raphe (DR), the PVN, and the RVLM, 

express both OX1R and OX2R.28–33

In the brain, orexin receptors are primary distributed in neurons.32 One recent study reported 

that PVN OX1Rs are also co-localized with astrocytes.32 In vitro studies have consistently 

observed a robust cyclic AMP (cAMP) production in rat cerebral cortex astrocyte cultures 

upon stimulation with orexin A, and this increase in cAMP is mediated by OX1R but 

not OX2R, suggesting that OX1R is expressed in the brain astrocyte and its activation 

activates Gs-adenylyl cyclase-cAMP signaling.34 Whether these astrocytes expressing OX1R 

are involved in blood pressure and sleep regulation remains unknown.

Orexins A and B have been observed to elicit primarily excitatory influences on 

brain regions involved in sleep/wake35–42 and sympathetic43–46 regulation. However, the 

mechanisms by which orexins carry out this excitatory response are vast and complex (for 

reviews see Kukkonen et al.47, Scammell et al.33, and Dale et al.48). Orexin receptors 

have been shown to act variably through coupling to G-protein families including Gq/11, 

Gi/o, and Gs,33, 47 whereby binding of orexins subsequently regulate phospholipases, ion 

channels, protein kinases, or adenylyl cyclase, ultimately triggering the activation of various 

downstream signaling pathways. One of the primary means of orexin-mediated neuronal 

excitation is through a rise in intracellular Ca2+ at the target cell.19 Orexin administration 

results in an augmented intracellular Ca2+ concentration that appears to be primarily 

mediated through extracellular Ca2+ influx into the cytosol.49, 50 A role for transient 

receptor potential canonical channels (TRPCs) in facilitating the entry of extracellular 

Ca2+ into the cytosol has been proposed.51 While Ca2+ influx from extracellular space 

appears to be the primary mechanism for cellular activation, intracellular release of Ca2+ 

from the endoplasmic reticulum via activation of the Gq/11 mediated phospholipase C 

inositol trisphosphate (IP3) pathway may serve as a secondary mediator of neuronal 

excitability.49, 50 Ca2+ is an important secondary messenger, which can in turn activate 

many Ca2+-sensitive enzymes including calcium/calmodulin-dependent protein kinase II 

(CaMKII).32 Previous studies report that orexin-mediated CaMKII activation within the 
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rat PVN can result in elevations of sympathetic nerve activity and blood pressure.32, 52 

Orexins may also act through activation of the sodium-calcium exchanger53 or suppression 

of potassium efflux54 to further post-synaptically modify neuronal excitability. Many orexin 

neurons are glutamatergic, and can also release glutamate to facilitate neuronal excitation.55 

Lastly, orexin neurons have been observed to modify neuronal excitability through pre-

synaptic modulation of glutamate and γ-amino-butyric acid (GABA) release,50, 53 outlining 

a complex regulatory role for orexin in neuronal excitability through both pre- and post-

synaptic mechanisms (Figure 1).

Natural Orexin Oscillations in Sleep and Wakefulness

Strong evidence of orexin’s behavior-state dependent activity come from two studies 

utilizing single-unit recordings of orexin neurons in head-fixed56 and freely moving, 

unrestrained rats.57 Both studies reported similar findings, namely that orexin neuronal 

discharge is at its peak during wakefulness in freely moving rodents, and subsequently 

decreases when entering resting wakefulness, slow wave sleep (SWS), and rapid 

eye movement (REM) sleep.56, 57 Orexin activities are further elevated during active 

exploration.57 Similar findings have reported that orexin neuronal discharge levels are 

highest during goal-oriented tasks, such as foraging behavior and in response to food 

restriction,58, 59 indicating a role for orexin neuronal activation in achieving central arousal 

levels necessary for motivated behaviors based on external demands and energy balance. 

However, discharge of orexin neurons is abruptly reduced upon goal attainment. For 

instance, in the case of food consumption, orexin neuron activity in freely moving mice 

was diminished less than 1 second after contact was made with the food source.59 As sleep 

ensues, orexin discharge rates are reduced with increased depth of sleep.56, 57 However, 

during REM sleep, while orexin neuronal activation is nearly absent in tonic REM, brief 

bursts of orexin neuronal firing occur in tandem with phasic events and muscle twitches.57

This pattern of reduced orexin neuronal firing is similarly observed in other wake-promoting 

nuclei, such as the noradrenergic LC that is virtually silenced during REM sleep.60 The 

activity of orexin neurons precedes muscle movement and arousals causing transitions 

from REM to wakefulness,56 suggesting an important role in transitions from sleep to 

wakefulness. This is relevant to disorders such as insomnia, where fragmented or poor REM 

sleep serve as a key underlying characteristic associated with the perceived poor sleep61–63 

and subsequent emotional disturbance.64, 65 The findings of orexin activation preceding 

arousal during REM sleep, as well as the role for REM disruption in the manifestation of 

insomnia, suggest a link between orexin hyperactivity and the clinical traits observed within 

insomnia disorder.

Causal Role for Orexin in Sleep-Wake Transitions

A key role for orexin stabilization of wake and sleep states was inferred by the discovery 

of orexin neuron destruction in the development of narcolepsy in animals66, 67 and 

humans.68, 69 Experimental manipulations of orexin activity have advanced the causal role 

for orexin in sleep, wakefulness, and sleep state transitions. De Lecea and colleagues have 

shown that selective, optogenetic stimulation of orexin producing neurons evokes transitions 
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from SWS and REM to wakefulness.70, 71 Activation of orexin neurons selectively reduces 

the latency to awakening from sleep, indicating a key role for orexin neurons in sleep-

state transitons,72 potentially through indirect effects on other arousal promoting brain 

regions.71, 73 Due to the differential expression of OX1R and OX2R in nuclei involved in 

sleep/wake regulation, it is likely that OX1R and OX2R exhibit differing effects on sleep 

regulation. Intracerebroventricular injection of orexin-A, which binds to both receptor types, 

promotes wakefulness in wildtype mice, although this effects is diminished to a greater 

extent following selective OX2R versus OX1R depletion.30 Similarly, antagonism of OX2R, 

but not OX1R, prior to optogenetic stimulation of orexin-producing neurons results in a 

significant reduction in orexin-mediated wakefulness.74

In the case of narcolepsy, the impact of orexin on maintaining wakefulness via projections to 

wake-promoting brain nuclei is thought to be a primary means by which narcolepsy occurs. 

In the ‘flip-flop’ model of sleep-state switching proposed by Saper and colleagues,72 orexin 

neurons send excitatory input to wake-promoting neurons, which act through a negative 

feedback mechanism to inhibit orexin neuronal activity. In narcolepsy, due to the removal of 

orexin neurons from this system, wake and sleep promoting brain centers exhibit a mutual 

inhibitory circuit, whereby any slight increase in activity in one system exceeding the other 

causes abrupt changes in arousal state due to self-disinhibition, leading to transitions from 

wakefulness to sleep.72 Orexin receptor restoration in orexin-receptor deficient mice,75 as 

well as intranasal orexin administration in narcoleptic humans76, 77 improve narcoleptic 

symptomology, supporting the role of proper orexin signaling in maintained sleep/wake 

regulation.

Conversely, mice with transgenic overexpression of prepro-orexin experience augmented 

levels of sleep fragmentation, particularly during REM sleep.78 Further, abnormalities 

are observed in muscle tone, with chronic overexpression of orexin resulting in intrusive 

muscle activation during REM sleep when atonia is normally observed.78 These findings are 

relevant given the associations between REM fragmentation and sleep disturbance observed 

in individuals with chronic insomnia.61–63 Thus, experimental evidence supports a causal 

role for orexin hyperactivity in the pathogenesis of insomnia.

Recently, there has been a surge in pharmaceutical development of dual orexin receptor 

antagonists for the treatment of insomnia,79–81 which have been shown to improve sleep 

outcomes while not drastically impacting sleep architecture. While invasive measures 

investigating the impact of orexin neuronal activity on sleep in humans are not feasible, 

the use of dual orexin receptor antagonists to improve sleep offers evidence of a key role for 

proper orexin signaling to maintain adequate sleep quality and offers a new research avenue 

to assess mechanistic roles of orexin in sleep and wakefulness in humans.

Orexin’s Role in Autonomic Nervous System Function

Orexin Regulation of Cardiac Activity

While the primary topic of this review surrounds the key role for orexin in sympathetic 

function and dysfunction, evidence has shown an additional role for the orexin system in 

parasympathetic regulation. Orexin-producing neurons synapse on brain regions involved 
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in vagal control of the heart.82–84 Orexin axonal projections synapse on preganglionic 

cardiac vagal neurons, and primarily exhibit excitatory influences through activation of 

glutamatergic post-synaptic currents.84 In support of this, acute microinjection of orexin-

A into regions involved in parasympathetic control of cardiac function such as the 

nucleus ambiguus (NAmb)82 and certain subnuclei of the NTS83 results in a robust 

dose-dependent bradycardic response which is abolished following muscarinic blockade 

or surgical vagotomy. However, this response is dependent on the brain region effected. 

For instance, orexin-A administration into the commissural nucleus of the NTS elicits a 

paradoxical pressor and tachycardic response.83, 85 Similarly, orexin-A injection into the 

rostral ventromedial medulla elicits tachycardia, a response which is partially abolished 

by muscarinic blockade, and fully ameliorated following nicotinic receptor inhibition,24 

highlighting the complex role for orexin in the regulation of both parasympathetic and 

sympathetic influences at the level of the heart.

Orexin Regulation of Peripheral Sympathetic Outflow

Orexin axonal projections synapse in numerous areas involved with central regulation 

of sympathetic outflow to the periphery,20, 24–26 and receptor expression appears to 

be primarily found in autonomic neurons rather than glial populations.32 Early studies 

established a clear pressor response and associated augmented peripheral sympathetic 

outflow following central injection of orexin peptides in healthy animals,86, 87 likely through 

interactions at the level of pre-sympathetic neurons within the RVLM26, 88, 89 or indirectly 

through input to cardiovascular relevant regions such as the PVN.31, 46, 90, 91 In both 

brain regions, orexin-A and orexin-B are effective in eliciting membrane depolarization 

on target cells,44–46 although this effect within the RVLM may be facilitated primarily 

through the OX2R.45 Recent studies have additionally observed augmented baroreflex gain 

or sensitivity in response to orexin administration,29, 92, 93 indicating that orexin not only 

elicits a sympathoexcitatory response, but also enhances sympathetic responsiveness to 

blood pressure fluctuations. Finally, orexin hyperactivity has been observed in numerous 

models of hypertension including salt-sensitive,94, 95 obesity related,90, 91 stress-induced,96 

and others (for review see Huber et al.16).

Despite several studies examining the role of orexin in sympathetic regulation within animal 

models, only one study has assessed orexin’s sympathomimetic effects in healthy humans 

using intranasal administation.97 Orexin administered intravenously does not appear to 

significantly impact cardiovascular measures, indicating a primarily central impact.88 For 

this reason, a significant barrier exists in assessing the effect of orexin on sympathetic 

regulation in humans. However, intranasal administration of orexin-A results in elevations 

of cerebrospinal fluid (CSF) orexin-A concentrations in non-human primates,98 indicating 

that nasal administration of orexins offers a feasible option to assess the effects of central 

orexin neuronal activity on peripheral sympathetic activation. In the only study of its 

kind, Meusel et al.97 utilized intranasal administration of orexin-A in healthy adults to 

assess its effects on muscle sympathetic nerve activity (MSNA), a direct measure of 

post-ganglionic efferent sympathetic outflow in humans.99–101 In response to intranasal 

orexin-A, the authors observed a significant, albeit modest, increase in MSNA independent 

of changes in other cardiovascular measures.97 In contrast to studies in rodents,29, 92, 93 
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orexin-A administration did not impact baroreflex sensitivity,97 although it appeared to 

elevate the set-point of sympathetic outflow to the periphery. In tandem with results from 

animal models, the findings of Meusel et al.97 suggest a sympathomimetic effect of central 

orexin, supporting the concept that hyperactive orexinergic activity is a key player in the 

exaggerated sympathetic activation observed in human sleep disorders.10

Orexin as a Link Between Sleep Disorders and Sympathetic Dysregulation 

in Humans

Sleep disruption and discontinuity are associated with sympathetic dysregulation in 

humans.27 While blood pressure is elevated in response to sleep deprivation, experimental 

evidence has shown that total sleep deprivation significantly increases peripheral 

sympathetic outflow dependent upon age and sex.7, 102 Similarly, levels of urinary and 

plasma norepinephrine have been observed to increase following semi-chronic models of 

sleep restriction with9 and without8 circadian misalignment in otherwise healthy adults. 

In an observational study assessing correlates of sleep disruption and corresponding 

associations with MSNA, Taylor et al.103 observed that the frequency of nocturnal arousals, 

or sleep disruptions, was most highly associated with peripheral sympathetic outflow in 

individuals with and without obstructive sleep apnea. These findings suggest an association 

between inadequate sleep quality/quantity and excessive sympathetic activation in humans. 

However, the role that orexin plays in these associations remains difficult to disentangle in 

humans due to methodological limitations. While acute intranasal administration of orexin-

A evokes a modest increase in sympathetic activity in healthy adults,97 the mechanisms 

of its action on central regulatory centers of peripheral sympathetic outflow can only be 

inferred from animal models. However, human models of chronic sleep disorders known to 

be impacted by orexin activity (i.e., narcolepsy and insomnia) offer further insight into the 

role of orexin in chronic sympathetic disturbance.

Narcolepsy Types 1 and 2.

Perhaps the most compelling evidence for a role of orexin in human sympathetic function 

comes from a study by Donadio et al.11 where MSNA was monitored in a group of patients 

with narcolepsy type 1 (NT1) and healthy controls. The authors reported a reduced level 

of peripheral sympathetic outflow in participants with NT1. These findings are consistent 

with early studies in orexin-knockout mice,104 whereby blood pressure and cardiovascular 

reactivity to stress were significantly reduced compared to wild-type mice. Further, these 

differences were abolished following systemic application of an α-adrenergic receptor 

antagonist, offering evidence of reduced peripheral sympathetic outflow in orexin knockout 

mice.104 The concentration of circulating orexin-A within the cerebrospinal fluid (CSF) of 

the patients with NT1 was positively associated with MSNA levels, indicating that lower 

levels of orexin expression was associated with blunted sympathetic activity11 (Figure 2).

While sympathetic outflow during wakefulness mimics what might be expected based on 

findings in animals, nocturnal sympathetic activity does not appear to be disturbed in 

individuals with NT1.105 Rather, MSNA in NT1 patients is reduced as NREM sleep is 

initiated, and increased during REM sleep,105 similar to healthy adults.106 Despite the 
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maintained reductions in nocturnal NREM sympathetic activity, narcolepsy is associated 

with elevated nocturnal blood pressure in humans105, 107 and animals108 alike. However, 

the mechanisms underlying non-dipping status are inconsistent between animal and human 

studies.105, 108 Administration of prazosin, an α1-receptor antagonist, alleviates blunted 

blood pressure dipping patterns in orexin-knockout mice,108 hinting at a role for augmented 

peripheral sympathetic nerve activity and thus increased peripheral vasoconstriction as a 

key determinant underlying the impaired blood pressure dipping pattern. However, this 

hypothesized sympathetic augmentation is not observed in humans.105 It is notable that 

Alvente et al.108 also observed a normalized blood pressure dipping pattern after application 

of atenolol, a β1-adrenergic antagonist in orexin knockout mice, which reduces adrenergic 

influence at the level of the heart. This finding suggests that while reductions in orexin levels 

may lead to reduced sympathetic outflow to regional arteries, including muscle sympathetic 

nerves, augmented regional sympathetic outflow to other organs such as the heart may be 

responsible for maintained elevations in nocturnal blood pressure. However, assessment of 

cardiac sympathetic activity in humans with narcolepsy via cardiac scintigraphy does not 

support this hypothesis.109 These discrepant findings of nocturnal sympathetic function and 

elevated blood pressure in NT1 patients infer that the nocturnal cardiovascular dysfunction 

is secondary to disturbed sleep, not necessarily orexin deficiency. Nocturnal arousals are 

associated with elevations in sympathetic outflow and blood pressure.110, 111 Importantly, 

the assessment by Donadio et al.105 only sampled MSNA during periods of undisturbed 

sleep, potentially limiting the extension of their findings to durations of sleep characterized 

by frequent arousals commonly associated with narcolepsy.112 Grimaldi et al.107 have shown 

that fluctuations in nocturnal blood pressure in narcolepsy are temporally related to sleep 

disruption caused by arousals, periodic limb movements, etc., indicating that the apparent 

contrary increases in nocturnal blood pressure in orexin-deficient humans may be more 

closely associated with sleep disruption, and not orexin-deficiency alone (Figure 3).

Based on these findings, it is plausible that increased sympathetic and cardiovascular 

reactivity to frequent arousals may lead to the augmented nocturnal blood pressure in 

NT1.107 Conversely, during the daytime when orexin neurons should be active,56, 57 the 

absence of these neurons in narcoleptic patients results in reduced sympathetic activity.11 

This is further supported by a blunted morning blood pressure surge in narcoleptic 

patients,107 given the well-characterized relationship between augmented sympathetic 

reactivity and elevated blood pressure surge in the morning.113

It is worth noting, however, that a recent study examining heart rate reactivity to nocturnal 

arousal and sleep disruption reported that NT1 patients with low levels of CSF orexin-A 

exhibited blunted reactivity.114 Given the findings that orexin neuronal activation precedes 

arousal,56 and in turn facilitates shifts from sleep to wakefulness,70, 71 deficient orexin 

neural activity may blunt the cardiovascular response to sleep disruption through inadequate 

orexin signaling. While blunted cardiovascular reactivity to nocturnal arousal may not 

support the augmented nocturnal blood pressure observed in NT1, an increased sleep 

fragmentation may lead to frequent arousals, whereby cardiovascular parameters remain 

elevated throughout the night107 despite acutely depressed reactivity to singular arousal 

events.114
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There has been limited research assessing autonomic control in populations with narcolepsy 

type 2 (NT2), though this is likely due to its etiology being less understood than that of 

NT1, making diagnosis and further assessment challenging. NT2 is phenotypically similar to 

NT1, although it is not associated with additional cataplexy. While NT2 has been associated 

with partial loss of orexin neurons within the hypothalamus,115 CSF orexin levels are 

more often within normal ranges when compared to narcolepsy with cataplexy.116, 117 

The similarities in symptomology, yet differing levels of orexin deficiency between NT1 

and NT2, make comparative analysis of autonomic dysfunction between the two disease 

subtypes an applicable avenue of future research to delineate the unique roles of orexin 

dysfunction versus sleep impairment on sympathetic control in humans.

In summary, while research within NT1 patients supports a role for orexin in maintaining 

wake basal sympathetic tone, discrepant findings exist regarding its role in nocturnal 

autonomic control, making it difficult to definitively determine the nocturnal role of orexin 

on sympathetic outflow. Future work assessing the diurnal impacts of orexin-deficiency 

on sympathetic regulation of the vasculature are warranted to disentangle the complex 

mechanisms underlying cardiovascular health concerns in individuals with narcolepsy.

Insomnia

In contrast with narcolepsy, insomnia has been suggested to result from excessive orexin 

neural activity.78 In a large sample of 228 humans with chronic insomnia, significant 

elevations in plasma orexin-A levels were reported when compared to controls.118 Orexin-A 

is highly lipophilic,119 allowing its access across the blood brain barrier and subsequent 

monitoring in the bloodstream. Further, plasma orexin-A levels were exacerbated both in 

the duration and self-reported severity of the disorder,118 outlining a key role for excessive 

orexin neural activity as an underlying factor of chronic insomnia.

While assessment of sympathetic activity in humans with chronic insomnia has been 

a variable of interest in numerous studies, the findings are often controversial and 

inconsistent with one another (for review120), although this may be primarily due to 

differing methodologies utilized to assess and/or estimate sympathetic activity. While 

early assessment of sympathetic activity in chronic insomnia reported elevated plasma 

norepinephrine levels,121 a recent study by Grimaldi et al.122 reported the opposite. These 

findings are beneficial given existing scientific gaps, but the use of plasma catecholamine 

sampling is subject to numerous limitations123 that limit the interpretability of the data.

To date, only one study has directly assessed sympathetic neural activity via 

microneurography in participants with chronic insomnia.10 In a cross-sectional analysis 

of 12 individuals with diagnosed chronic insomnia and 12 healthy controls, Carter et al.10 

reported that baseline sympathetic outflow in insomnia participants did not differ compared 

to controls, although sympathetic baroreflex sensitivity was reduced. Tang et al.118 reported 

that orexin concentrations differ based upon disease severity and the course of the disorder. 

It is possible that lack of differences in baseline sympathetic outflow reported by Carter et 

al.10 were due, in part, to differing levels of insomnia symptom severity and time-course, 

thus differing levels of central orexin neural activation. Evidence in support of this notion 
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can be observed in both rats and rabbits, whereby dose-dependent increases in peripheral 

sympathetic activity were observed following central administration of orexin peptides.86, 87

Although baseline MSNA was not different between insomnia and controls, MSNA 

reactivity to the cold pressor test was augmented in chronic insomnia10 (Figure 4). In animal 

models, activity of orexin neurons can differ based upon the type of stress.104, 124 Kayaba et 

al.104 reported a significantly blunted cardiovascular and locomotor response to social stress 

in orexin knockout mice. Conversely, the cardiovascular response to noxious stimuli was 

not impacted by orexin neuronal depletion, suggesting that orexin-mediated cardiovascular 

reactivity primarily occurs in response to social stressors that require active vigilance of 

the environment.104 These findings were supported by subsequent research reporting that 

pharmaceutical dual orexin receptor antagonism blunts the cardiovascular response to fear 

stress (i.e., re-exposure to previous foot-shock box), but not to restraint or cold stress.124 

These findings in animal models are not concordant with those in humans with chronic 

insomnia,10 perhaps in part due to the differing forms of cold stress.10, 124 In the study 

by Carter et al.,10 participants were required to submerge their hand voluntarily up to the 

wrist in cold ice water for 2 minutes, while the animals studied by Furlong et al.124 were 

placed in a 4°C refrigerator. The differences in the modality of the cold stress utilized 

makes translation of the findings between the two studies challenging. Further, previous 

work has shown that acute total sleep deprivation leads to an augmented pain perception 

in healthy adults exposed to cold pressor test.125 The chronic insomnia participants in the 

study by Carter et al.10 received, on average, just over 6 hours of sleep per night based on 

2-week actigraphy wristwatch monitoring in their home environment. As such, the insomnia 

participants tested likely had concurrent chronic sleep restriction that may have influenced 

how the cold stress and its associated perceived pain.125 The combined difficulties in the 

translatability of stressor methodologies between animal104, 124 and human10 studies, as well 

as the added perceptual/psychological influence on reactivity to cold stress in humans10, 125 

makes assessment of orexin on sympathetic regulation at rest and in response to stress 

difficult to interpret. Future work is needed to assess stressor-specific sympathetic reactivity 

in individuals with chronic insomnia, ideally in tandem with assessment of plasma or CSF 

orexin concentrations.

Dual Orexin Receptor Antagonism and Sympathetic Cardiovascular Control

Despite the difficulties regarding direct assessment of orexin neural activity in individuals 

with chronic insomnia, the recent utilization of dual orexin receptor antagonists for 

insomnia treatment80, 81 offer a unique opportunity to assess the role of orexin in 

sympathetic regulation. In hypertensive animal models, systemic dual orexin receptor 

antagonism reduced blood pressure.126, 127 Specifically, oral administration of almorexant 

in spontaneously hypertensive rats reduced daytime and nocturnal arterial pressure levels, 

and reduced norepinephrine sampled from cerebrospinal fluid and plasma.127 Similarly, in 

genetically hypertensive BPH/2J mice, Jackson et al.126 observed reduced blood pressure 

following intraperitoneal almorexant administration. Following almorexant administration, 

sympathetic ganglionic blockade only marginally reduced blood pressure in BPH/2J 

mice, indicating a significant sympathoinhibitory effect of pharmaceutical orexin receptor 

antagonism alone.126 To date, few studies have assessed the cardiovascular and sympathetic 
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consequences of orexin receptor antagonism in humans. In a study of treated hypertensive 

subjects with insomnia symptoms that persisted for at least one month, 2 weeks of treatment 

with Suvorexant did not improve ambulatory blood pressure compared to the placebo 

condition.128

Patel et al.129 examined the acute impact of low-dose SB-649868, a dual orexin-receptor 

antagonist, on neuroendocrine and sympathetic responsiveness to hypoglycemia in healthy 

young men. While hypoglycemia elicited an increase in circulating epinephrine and 

norepinephrine, orexin antagonism did not impact these responses.129 However, in a 

population of psychiatric patients treated with Suvorexant, plasma norepinephrine levels 

tended to decrease following 8-weeks of treatment,130 although plasma norepinephrine 

sampling is once again subject to numerous limitations in interpretability, and does not 

directly assess regional differentiation in sympathetic outflow.123

There is presently a lack of studies assessing the impact of orexin antagonism on 

subsequent sympathetic regulation in humans. Of the studies that have been conducted 

in humans,128–130 differing concentrations and length of medication, as well as the lack 

of direct sympathetic recordings, make conclusions difficult. Further, differing populations 

and comorbidities, including hypertension128 and psychiatric disorders,130 add ambiguity. 

The presence of dual orexin receptor antagonists that have shown efficacy in clinical 

trials80, 81 provide a unique opportunity to assess direct sympathetic recordings in healthy 

and disordered populations to fully elucidate the impacts of orexin receptor antagonism on 

high fidelity markers of peripheral sympathetic activity.

Conclusions and Future Directions

While orexin producing neurons are locally produced within the lateral hypothalamic 

area, widespread projections to numerous brain regions allow them to have an important 

role in orchestrating complex physiological processes. Orexin axonal projections exhibit 

dense innervation in brain regions responsible for sleep/wakefulness, as well as central 

sympathetic regulatory brain regions, suggesting a potential mechanistic link between 

sleep disruption and sympathetic dysregulation. Studies performed in animals have 

documented a clear role for orexin in the regulation of sleep and wakefulness, as well 

as sympathetic outflow to the periphery in healthy and diseased models. The translation 

of these findings into humans has been challenging due to numerous methodological and 

ethical considerations. Assessment of direct sympathetic recordings in response to acute 

intranasal orexin administration demonstrated a moderate sympathomimetic effect of orexin, 

corresponding to findings observed in animals.97 Studies assessing autonomic control in 

populations with sleep disorders, including narcolepsy and insomnia, have supported a role 

for deficient or excessive orexin neural activity as a mechanism underlying the autonomic 

impairments observed in these populations.10, 11, 107

Despite the important conclusions taken from studies to date, additional work remains 

to determine how orexin mediates sleep and sympathetic control in humans. Direct 

measurements of sympathetic neural activity via microneurography are necessary to 

assess how acute and chronic treatment with oral dual orexin receptor antagonists impact 
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sympathetic regulation and sleep parameters in healthy and disordered populations. How 

these treatments impact daytime versus nocturnal cardiovascular control will help to 

elucidate the impact of orexin versus secondary mechanisms, such as sleep fragmentation, 

on sympathetic regulation in humans. This is particularly important because sleep 

fragmentation alone has been associated with sympathoexcitation.103 Second, attentiveness 

to stressors employed in laboratory studies appears warranted. In animal models, 

cardiovascular responses differ in response to social versus physical stress following orexin 

knockdown,104, 124 whereas in humans, individuals with chronic insomnia and presumed 

augmented orexin activity118 exhibit hyperreactivity to cold stress.10 Additional studies 

assessing different stressor types in humans is necessary. Third, attention to symptom 

severity in human sleep-disordered populations is warranted. Sympathetic activity is related 

to CSF orexin levels in narcolepsy,11 and plasma orexin levels correspond to the severity 

of insomnia symptomology,10 indicating an association between present orexin levels and 

physiological dysfunction. Finally, age and sex need to be accounted for in research 

moving forward. Previous research from has shown that older, post-menopausal women 

are more susceptible to sympathoexcitation following sleep deprivation,7 supporting a 

greater association between poor sleep and hypertension in women compared to men.1 

Orexin antagonists were recently shown to reduce subjective vasomotor symptoms in older 

women,131 suggesting that treatment with orexin receptor antagonists may improve sleep 

quality surrounding the menopausal transition and into menopause. How these treatments 

impact subsequent cardiovascular and sympathetic function have yet to be determined. 

Further studies assessing the impact of orexin on sleep and sympathetic function may lead to 

a more robust understanding of mechanisms underlying the relationship between poor sleep 

and sympathetic dysfunction, and may lead to increased preventative care measures and 

improved the cardiovascular outlook for individuals impacted by chronic sleep disturbance.
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Figure 1: 
Actions of orexins A and B at cellular targets. Orexins elicit cellular excitation at targets 

through numerous means. Orexin receptors have been shown to act variably through 

coupling to G-protein families including Gq/11, Gi/o, and Gs which ultimately lead 

to numerous downstream signaling cascades. Orexin binding also leads to an influx of 

Ca2+ through cation channels, an inhibition of K+ efflux, and pre-synaptic modulation of 

glutamate and GABA release. OXA, orexin A; OXB, orexin B; OX1R, orexin receptor 

1; OX2R, orexin receptor 2; TRPC, transient receptor potential canonical channels; 

GIRK, G protein-activated inwardly rectifying K+ channels; GABA, γ-amino butyric acid; 

cAMP, cyclic adenosine monophosphate; ER, endoplasmic reticulum; CaMKII, calcium/

calmodulin-dependent protein kinase II.
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Figure 2: 
Relationships between orexin cerebrospinal fluid concentrations and resting A) muscle 

sympathetic nerve activity (MSNA) and B) heart rate (HR) in individuals with narcolepsy. 

HCRT, hypocretin; MSNA, muscle sympathetic nerve activity (bursts/100 heart beats); HR, 

heart rate.Obtained with permission from Donadio et al.11
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Figure 3: 
Nocturnal blood pressure fluctuations in a representative individual with narcolepsy (A) and 

a healthy control (B). Nocturnal fluctuations in systolic blood pressure (SBP) in individuals 

with narcolepsy are temporally related to changes in wake/sleep state. NC, narcolepsy with 

cataplexy; SBP, systolic blood pressure; C, control subject. Obtained with permission from 

Grimaldi et al.107
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Figure 4: 
Muscle sympathetic nerve (MSNA) reactivity to the cold pressor test in healthy adults and 

individuals with chronic insomnia. Individuals with chronic insomnia showed augmented 

total MSNA reactivity to cold pressor stress (A). This is similarly depicted in the 

representative neurogram (B) showing healthy controls (B, Top) and individuals with 

chronic insomnia (B, bottom) during resting baseline and a 2-minute cold pressor test. The 

dotted lines (B) represent amplitude normalization to the largest sympathetic burst during 

baseline recording. MSNA, muscle sympathetic nerve activity. Obtained with permission 

from Carter et al.10
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