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Summary

Background—Previous studies in medical imaging have shown disparate abilities of artificial 

intelligence (AI) to detect a person’s race, yet there is no known correlation for race on medical 

imaging that would be obvious to human experts when interpreting the images. We aimed to 

conduct a comprehensive evaluation of the ability of AI to recognise a patient’s racial identity 

from medical images.

Methods—Using private (Emory CXR, Emory Chest CT, Emory Cervical Spine, and Emory 

Mammogram) and public (MIMIC-CXR, CheXpert, National Lung Cancer Screening Trial, 

RSNA Pulmonary Embolism CT, and Digital Hand Atlas) datasets, we evaluated, first, 

performance quantification of deep learning models in detecting race from medical images, 

including the ability of these models to generalise to external environments and across multiple 
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imaging modalities. Second, we assessed possible confounding of anatomic and phenotypic 

population features by assessing the ability of these hypothesised confounders to detect race in 

isolation using regression models, and by re-evaluating the deep learning models by testing them 

on datasets stratified by these hypothesised confounding variables. Last, by exploring the effect of 

image corruptions on model performance, we investigated the underlying mechanism by which AI 

models can recognise race.

Findings—In our study, we show that standard AI deep learning models can be trained to predict 

race from medical images with high performance across multiple imaging modalities, which was 

sustained under external validation conditions (x-ray imaging [area under the receiver operating 

characteristics curve (AUC) range 0·91–0·99], CT chest imaging [0·87–0·96], and mammography 

[0·81]). We also showed that this detection is not due to proxies or imaging-related surrogate 

covariates for race (eg, performance of possible confounders: body-mass index [AUC 0·55], 

disease distribution [0·61], and breast density [0·61]). Finally, we provide evidence to show 

that the ability of AI deep learning models persisted over all anatomical regions and frequency 

spectrums of the images, suggesting the efforts to control this behaviour when it is undesirable 

will be challenging and demand further study.

Interpretation—The results from our study emphasise that the ability of AI deep learning 

models to predict self-reported race is itself not the issue of importance. However, our finding that 

AI can accurately predict self-reported race, even from corrupted, cropped, and noised medical 

images, often when clinical experts cannot, creates an enormous risk for all model deployments in 

medical imaging.

Funding—National Institute of Biomedical Imaging and Bioengineering, MIDRC grant of 

National Institutes of Health, US National Science Foundation, National Library of Medicine 

of the National Institutes of Health, and Taiwan Ministry of Science and Technology.

Introduction

Bias and discrimination in artificial intelligence (AI) systems has been studied in multiple 

domains,1–4 including in many health-care applications, such as detection of melanoma,5,6 

mortality prediction,7 and algorithms that aid the prediction of health-care use,8 in which the 

performance of AI is stratified by self-reported race on a variety of clinical tasks.9 Several 

studies have shown disparities in the performance of medical AI systems across race. 

For example, Seyyed-Kalantari and colleagues showed that AI models produce significant 

differences in the accuracy of automated chest x-ray diagnosis across racial and other 

demographic groups, even when the models only had access to the chest x-ray itself.9 

Importantly, if used, such models would lead to more patients who are Black and female 

being incorrectly identified as healthy compared with patients who are White and male. 

Moreover, racial disparities are not simply due to under-representation of these patient 

groups in the training data, and there exists no statistically significant correlation between 

group membership and racial disparities.10

In related work, several groups reported that AI algorithms can identify various demographic 

patient factors. One study11 found that an AI model could predict sex and distinguish 

between adult and paediatric patients from chest x-rays, while other studies12 reported 
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reasonable accuracy at predicting the chronological age of patients from various imaging 

studies. In ophthalmology, retinal images have been used to predict sex, age, and cardiac 

markers (eg, hypertension and smoking status).13–15 These findings, which show that 

demographic factors that are strongly associated with disease outcomes (eg, age, sex, and 

racial identity), are also strongly associated with features of medical images and might 

induce bias in model results, mirroring what is known from over a century of clinical and 

epidemiological research on the importance of covariates and potential confounding.16,17 

Many published AI models have conceptually amounted to simple bivariate analyses (ie, 

image features and their ability to predict clinical outcomes). Although more recent AI 

models have begun to consider other risk factors that conceptually approach multivariate 

modelling, which is the mainstay of clinical and epidemiological research, key demographic 

covariates (eg, age, sex, and racial identity) have been largely ignored by most deep learning 

research in medicine.

Findings regarding the possibility of confounding of racial identity in deep learning models 

suggest a possible mechanism for racial disparities resulting from AI models: that AI 

models can directly recognise the race of a patient from medical images. However, this 

hypothesis is largely unexplored18 and, in contrast to other demographic factors (eg, age and 

sex), there is a widely held, but tacit, belief among radiologists that the identification of a 

patient’s race from medical images is almost impossible, and that most medical imaging 

tasks are essentially race agnostic (ie, the task is not affected by the patient’s race). Given 

the possibility for discriminatory harm in a key component of the medical system that 

is assumed to be race agnostic, understanding how race has a role in medical imaging 

models is of high importance19 as many AI systems that use medical images as the primary 

inputs are being cleared by the US Food and Drug Administration and other regulatory 

agencies.20–22

In this study, we aimed to investigate how AI systems are able to detect a patient’s race to 

differing degrees of accuracy across self-reported racial groups in medical imaging. To do 

so, we aimed to investigate large publicly and privately available medical imaging datasets 

to examine whether AI models are able to predict an individual’s race across multiple 

imaging modalities, various datasets, and diverse clinical tasks.

Methods

Definitions of race and racial identity

Race and racial identity can be difficult attributes to quantify and study in health-care 

research23 and are often incorrectly conflated with biological concepts (eg, genetic 

ancestry).24 In this modelling study, we defined race as a social, political, and legal construct 

that relates to the interaction between external perceptions (ie, “how do others see me?”) and 

self-identification, and specifically make use of self-reported race of patients in all of our 

experiments. We variously use the terms race and racial identity to refer to this construct 

throughout this study.
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Datasets

We obtained public and private datasets (table 1, appendix p 2) that covered several imaging 

modalities and clinical scenarios. No one single race was consistently dominant across the 

datasets (eg, the proportion of Black patients was between 6% and 72% across the datasets). 

For all datasets, ethical approval was obtained from the relevant institutional ethical boards.

Investigation of possible mechanisms of race detection

We conduced three main groups of experiments to investigate the cause of previously 

established AI performance disparities by patient race. These experiments were: (1) to assess 

the ability of deep learning AI models to recognise race from medical images, including the 

ability of these models to generalise to new environments and across multiple imaging 

modalities; (2) to examine possible confounding anatomic and phenotype population 

features as explanations for these performance scores, and (3) to investigate the underlying 

mechanisms by which AI models can recognise race. The full list of experiments are 

summarised in table 2 and the appendix (pp 22–23).

We did not present measures of performance variance or null hypothesis tests because these 

data are uninformative given the large dataset sizes and the large effect sizes reported (ie, 

even in experiments in which a hypothesis could be defined, all p values were <0·001).

Race detection in radiology imaging

To investigate the ability of deep learning systems to detect race from radiology images, 

first, we developed models for the detection of racial identity on three large chest x-ray 

datasets—MIMIC-CXR (MXR),25 CheXpert (CXP),26 and Emory-chest x-ray (EMX) with 

both internal validation (ie, testing the model on an unseen subset of the dataset used to train 

the model) and external validation (ie, testing the model on a completely different dataset 

than the one used to train the model) to establish baseline performance. Second, we trained 

racial identity detection models for non-chest x-ray images from multiple body locations, 

including digital radiography, mammograms, lateral cervical spine radiographs, and chest 

CTs, to evaluate whether the model’s performance was limited to chest x-rays.

After establishing that deep learning models could detect a patient’s race in medical imaging 

data, we generated a series of competing hypotheses to explain how this process might 

occur. First, we assessed differences in physical characteristics between patients of different 

racial groups (eg, body habitus27 or breast density28). Second, we assessed whether there 

was a difference in disease distribution among patients of different racial groups (eg, 

previous studies provide evidence that Black patients have a higher incidence of particular 

diseases, such as cardiac disease, than White patients).29,30 Third, we assessed whether there 

were location-specific or tissue-specific differences (eg, there is evidence that Black patients 

have a higher adjusted bone mineral density and a slower age-adjusted annual rate of decline 

in bone mineral density than White patients).31,32 Fourth, we assessed whether there were 

effects of societal bias and environmental stress on race outcomes from medical imaging 

data, as shown by differences in race detection by age and sex (reflecting cumulative and 

occupational differences in exposures). Last, we assessed whether there was an effect on the 

Gichoya et al. Page 5

Lancet Digit Health. Author manuscript; available in PMC 2022 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ability of AI deep learning systems to detect race when multiple demographic and patient 

factors were combined, including age, sex, disease, and body habitus.

We also investigated potential explanations of race detection that could target the known 

shortcut mechanisms that deep models might be using as proxies for race33 by evaluating, 

first, frequency domain differences in the high frequency image features (ie, textural) and 

low frequency image features (ie, structural) that could be predictive of race; second, how 

differences in image quality might influence the recognition of race in medical images 

(given the possibility that image acquisition practices might differ for patients with different 

racial identities); and, last, whether specific image regions contribute to the recognition of 

racial identity (eg, specific patches or regional variations in the images, such as radiographic 

markers in the top right corner).

Role of the funding source

Grant support was used to pay for data collection, data analysis, data interpretation, and 

writing of the manuscript. The funders did not influence the decision to publish or the target 

journal for publication.

Results

The deep learning models assessed in this study showed a high ability to detect patient race 

using chest x-ray scans, with sustained performance on other modalities and strong external 

validations across datasets (table 3).

The ability of deep learning models that were trained on the CXP dataset to predict patient 

race from the body-mass index (BMI) alone was much lower than the image-based chest 

x-ray models (area under the receiver operating characteristics curve [AUC] 0·55), indicating 

that race detection is not due to obvious anatomic and phenotypic confounder variables. 

Similar results were observed across stratified BMI groups (0·92–0·99; appendix p 24).

The ability of logistic regression models to classify race on the basis of tissue density (AUC 

0·54) and on the combination of age and tissue density (0·61) was far lower than the ability 

of the image models on the breast mammograms in the EM-Mammo dataset (0·81; appendix 

p 25). These findings suggest that breast density and age did not account for most image 

model performance when detecting race.

Moreover, the ability of models to predict race from the diagnostic labels alone was 

much lower than the chest x-ray image-based models, with AUC values between 0·54 

and 0·61 for MXR, and between 0·52 and 0·57 for CXP (appendix p 30). AUC values for 

race detection in the no finding class of 0·914 (95% CI 0·901–0·926) were obtained for 

Asian patients, 0·949 (0·945–0·953) for Black patients, and 0·941 (0·937–0·945) for White 

patients, versus 0·944 (0·938–0·950 [Asian patients]), 0·940 (0·937–0·942 [Black patients]), 

and 0·933 (0·930–0·936 [White patients]) for the entire dataset containing all disease classes, 

including the no finding class. These results suggest that high AUC values for racial identity 

recognition were not caused by disease labels.
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We found that deep learning models effectively predicted patient race even when the bone 

density information was removed for both MXR (AUC value for Black patients: 0·960 [CI 

0·958–0·963]) and CXP (AUC value for Black patients: 0·945 [CI 0·94–0·949]) datasets. 

The average pixel thresholds for different tissues did not produce any usable signal to detect 

race (AUC 0·5). These findings suggest that race information was not localised within the 

brightest pixels within the image (eg, in the bone).

For patients in different age groups, there was no appreciable difference in racial identity 

recognition performance (appendix p 15). Similarly, there was also no appreciable difference 

in racial identity recognition performance between male and female patients (appendix p 

17).

The performance of a logistic regression model (AUC 0·65), a random forest classifier 

(0·64), and an XGBoost model (0·64) to classify race on the basis of age, sex, gender, 

disease, and body habitus performed much worse than the race classifiers trained on imaging 

data (AUC >0·95; appendix p 20). This finding suggests that the combination of these 

confounders did not significantly affect the imaging model’s ability to classify race.

We also examined whether race information persisted in all spectral ranges and in the 

presence of highly degraded images. As shown in figure 1, we tested the effect on model 

performance of adding a low-pass filter and a high-pass filter for various diameters in the 

MXR dataset, and show samples of the transformed images in figure 2. The addition of a 

low-pass filter resulted in significantly degraded performance at around diameter ten, which 

corresponded to high levels of visual degradation. A high performance (up to diameter 100) 

in the absence of discernible anatomical features was maintained with the addition of a 

high-pass filter (ie, model performance was maintained despite extreme degradation of the 

image visually). Further experiments that used band-pass and notch filtering are reported in 

the appendix (pp 25–26), with the transformed images visualised also given in the appendix 

(pp 7–8).

The AUC of various image resolutions, from 1 pixel resolution to 320 × 320 images in the 

MXR dataset, are shown in the appendix (p 12). For images at 160 × 160 resolution or 

higher, AUC values were >0·95. There was a reduction in performance for images below this 

resolution, which demonstrates that race information persisted more than random chance 

even for resolutions as small as 4 × 4 (appendix p 28). Similar results were observed for the 

perturbed images, with AUC values of 0·74 to 0·80 for the noisy images and 0·64 to 0·72 for 

the blurred images (appendix p 29).

Concerning whether race information was localised to a specific anatomical region or body 

segment, using data from multiple experiments from several datasets, there was no evidence 

of a clear contribution of any anatomical regions or body segments on race identity. Models 

tested on non-lung segmentations of images were better able to identify race compared with 

models tested on lung segmentations, but segmented predictions were lower than the original 

image predictions (appendix p 29). Therefore, the race information utilised by artificial 

intelligence was likely to be determined from a combination of information from all image 

segments, including both lung and non-lung segments. Similar findings were observed in 

Gichoya et al. Page 7

Lancet Digit Health. Author manuscript; available in PMC 2022 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



slice-wise analysis of CT scans. Occluding the image regions identified by saliency maps 

(appendix p 9) caused a decrease in AUC values in race identification but still led to AUC 

values ≥0·67 (appendix p 29).

Race prediction was robust to the removal of any particular patch from images in the MXR 

dataset, indicating that race information was not localised within a specific part of the 3 

× 3 grid (appendix p 30). We observed that there are parts of the image with little race 

information (appendix p 30). However, in most cases, using only one ninth of the image 

was sufficient to obtain prediction performance that was almost identical to using the entire 

image (appendix p 30).

Race prediction performance was also robust across models trained on single equipment and 

single hospital location on the chest x-ray and mammogram datasets (appendix pp 30–31). 

We observed a decrease in performance (although the outputs were better than random) on 

the digitised chest x-ray in the CheXphoto dataset compared with the digital CXP dataset, 

implying that some signal still persisted with different image acquisitions (appendix p 31).

Discussion

In this modelling study, which used both private and public datasets, we found that deep 

learning models can accurately predict the self-reported race of patients from medical 

images alone. This finding is striking as this task is generally not understood to be possible 

for human experts. We also showed that the ability of deep models to predict race was 

generalised across different clinical environments, medical imaging modalities, and patient 

populations, suggesting that these models do not rely on local idiosyncratic differences in 

how imaging studies are conducted for patients with different racial identities. Beyond these 

findings, in two of the datasets (MXR and CXP) analysed, all patients were imaged in the 

same locations and with the same processes, presumably independently of race.

We also provide evidence that disease distribution and body habitus of patients in the CXP, 

MXR, and EMX datasets were not strongly predictive of racial group, implying that the deep 

learning models were not relying on these features alone. Although an aggregation of these 

and other features could be partially responsible for the ability of AI models to detect racial 

identity in medical images, we could not identify any specific image-based covariates that 

could explain the high recognition performance presented here.

Our findings conflict with data from Jabbour and colleagues’ study,34 which measured the 

extent to which models learned potentially sensitive attributes (eg, age, race, and BMI) from 

an institutional dataset (the AHRF dataset) of 1296 patient chest x-rays. Their findings led 

to an AUC value of 0·66 (0·54–0·79). Possible explanations for this discrepant performance 

compared with our experiment could be due to the use of transfer learning in Jabbour and 

colleagues’ study, in which the MXR and CXP datasets were used for initial training, and 

the final layers were fine-tuned on the AHRF dataset. This possible contamination in the 

dataset might have degraded performance due to label misalignment. We do not have access 

to the AHRF dataset for further external validation and Jabbour and colleagues did not 

extend their experiments to MXR and CXP datasets.
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The results of the low-pass filter and high-pass filter experiments done in our study suggest 

that features relevant to the recognition of racial identity were present throughout the 

image frequency spectrum. Models trained on low-pass filtered images maintained high 

performance even for highly degraded images. More strikingly, models that were trained on 

high-pass filtered images maintained performance well beyond the point that the degraded 

images contained no recognisable structures; to the human coauthors and radiologists it 

was not clear that the image was an x-ray at all. Furthermore, experiments that were 

involved in patch-based training, slice-based error analysis, and saliency mapping were 

non-contributory: no specific regions of the images consistently informed race recognition 

decisions. Overall, we were unable to isolate specific image features that were responsible 

for the recognition of racial identity in medical images, either by spatial location, in the 

frequency domain, or that were caused by common anatomic and phenotype confounders 

associated with racial identity.

Although the ability to accurately detect self-reported race from highly degraded x-ray 

images is not meaningful on its own, this ability is important in the larger sociotechnical 

context that AI models operate in for medical imaging. One commonly proposed method 

to mitigate the known disparity in AI model performance is through the selective removal 

of features that encode sensitive attributes to make AI models “colorblind”.35 Although 

this approach has already been criticised as being ineffective, or even harmful in some 

circumstances,36 our work suggests that such an approach could be impossible in medical 

imaging because racial identity information appears to be incredibly difficult to isolate. The 

ability to detect race was not mitigated by any reasonable reduction in resolution or by 

the addition of noise, nor by frequency spectrum filtering or patch-based masking. Even 

ignoring the question of whether these approaches were beneficial, it seems plausible that 

technical solutions along these lines are unlikely to succeed and that strategies designed 

to detect racial bias,37 paired with the intentional design of models to equalise racial 

outcomes,38 should be considered to be the default approach to optimise the safety and 

fairness of AI in this context. The regulatory environment in particular, while evolving, has 

not yet produced strong processes to guard against unexpected racial recognition by AI 

models; either to identify these capabilities in models or to mitigate the harms that might be 

caused.

There were several limitations to this work. Most importantly, we relied on self-reported 

race as the ground truth for our predictions. There has been extensive research into the 

association between self-reported race and genetic ancestry, which has shown that there 

is more genetic variation within races than between races, and that race is more a social 

construct than a biological construct.24 We note that in the context of racial discrimination 

and bias, the vector of harm is not genetic ancestry but the social and cultural construct 

that of racial identity, which we have defined as the combination of external perceptions 

and self-identification of race. Indeed, biased decisions are not informed by genetic ancestry 

information, which is not directly available to medical decision makers in almost any 

plausible scenario. As such, self-reported race should be considered a strong proxy for racial 

identity.
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Our study was also limited by the availability of racial identity labels and the small cohorts 

of patients from many racial identity categories. As such, we focused on Asian, Black, 

and White patients, and excluded patient populations that were too small to adequately 

analyse (eg, Native American patients). Additionally, Hispanic patient populations were 

also excluded because of variations in how this population was recorded across datasets. 

Moreover, our experiments to exclude bone density involved brightness clipping at 60% and 

evaluating average body tissue pixels, with no methods to evaluate if there was residual bone 

tissue that remained on the images. Future work could look at isolating different signals 

before image reconstruction.

We finally note that this work did not establish new disparities in AI model performance 

by race. Our study was instead informed by previously published literature that has shown 

disparities in some of the tasks we investigated.10,39 The combination of reported disparities 

and the findings of this study suggest that the strong capacity of models to recognise race in 

medical images could lead to patient harm. In other words, AI models can not only predict 

the patients’ race from their medical images, but appear to make use of this capability to 

produce different health outcomes for members of different racial groups.

To conclude, our study showed that medical AI systems can easily learn to recognise 

self-reported racial identity from medical images, and that this capability is extremely 

difficult to isolate. We found that patient racial identity was readily learnable from medical 

imaging data alone, and could be generalised to external environments and across multiple 

imaging modalities. We strongly recommend that all developers, regulators, and users who 

are involved in medical image analysis consider the use of deep learning models with 

extreme caution as such information could be misused to perpetuate or even worsen the 

well documented racial disparities that exist in medical practice. Our findings indicate that 

future AI medical imaging work should emphasise explicit model performance audits on the 

basis of racial identity, sex, and age, and that medical imaging datasets should include the 

self-reported race of patients when possible to allow for further investigation and research 

into the human-hidden but model-decipherable information related to racial identity that 

these images appear to contain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in context

Evidence before this study

We used three different search engines to do our review. For PubMed, we used 

the following search terms: “(((disparity OR bias OR fairness) AND (classification)) 

AND (x-ray OR mammography)) AND (machine learning [MeSH Terms]).” For IEEE 

Xplore, we used the following search terms: “((disparity OR bias OR fairness) AND 

(mammography OR x-ray) AND (machine learning))”. For ACM, we used the following 

search terms: “[Abstract: mammography x-ray] AND [Abstract: classification prediction] 

AND [All: disparity fairness]”. All queries were limited to dates between Jan 1, 2010, 

and Dec 31, 2020. We included any studies that were published in English, focused 

on medical images, and that were original research. We also reviewed commentaries 

and opinion articles. We excluded articles that were not written in English or that were 

outside of the medical imaging domain. To our knowledge, there is no published meta-

analysis or systematic review on this topic. Most published papers focused on measuring 

disparities in tabular health data without much emphasis on imaging-based approaches.

Although previous work has shown the existence of racial disparities, the mechanism 

for these differences in medical imaging is, to the best of our knowledge, unexplored. 

Pierson and colleagues noted that an artificial intelligence (AI) model that was designed 

to predict severity of osteoarthritis using knee x-rays could not identify the race of the 

patients. Yi and colleagues conducted a forensics evaluation on chest x-rays and found 

that AI algorithms could predict sex, distinguish between adult and paediatric patients, 

and differentiate between US and Chinese patients. In ophthalmology, retinal scan images 

have been used to predict sex, age, and cardiac markers (eg, hypertension and smoking 

status). We found few published studies that explicitly targeted the recognition of racial 

identity from medical images, possibly because radiologists do not routinely have access 

to, nor rely on, demographic information (eg, race) for diagnostic tasks in clinical 

practice.

Added value of this study

In this study, we investigated a large number of publicly and privately available large-

scale medical imaging datasets and found that self-reported race is accurately predictable 

by AI models trained with medical image pixel data alone as model inputs. First, we 

showed that AI models are able to predict race across multiple imaging modalities, 

various datasets, and diverse clinical tasks. This high level of performance persisted 

during external validation of these models across a range of academic centres and patient 

populations in the USA, as well as when the models were optimised to do clinically 

motivated tasks. Second, we conducted ablations that showed that this detection was not 

due to trivial proxies, such as body habitus, age, tissue density, or other potential imaging 

confounders for race (eg, underlying disease distribution in the population). Finally, we 

showed that the features learned appear to involve all regions of the image and frequency 

spectrum, suggesting the efforts to control this behaviour when it is undesirable will be 

challenging and demand further study.

Implications of all the available evidence
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In our study, we emphasise that the ability of AI to predict racial identity is itself not 

the issue of importance, but rather that this capability is readily learned and therefore is 

likely to be present in many medical image analysis models, providing a direct vector 

for the reproduction or exacerbation of the racial disparities that already exist in medical 

practice. This risk is compounded by the fact that human experts cannot similarly identify 

racial identity from medical images, meaning that human oversight of AI models is of 

limited use to recognise and mitigate this problem. This issue creates an enormous risk 

for all model deployments in medical imaging: if an AI model relies on its ability to 

detect racial identity to make medical decisions, but in doing so produced race-specific 

errors, clinical radiologists (who do not typically have access to racial demographic 

information) would not be able to tell, thereby possibly leading to errors in health-care 

decision processes.
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Figure 1: The effect on model performance of adding a low-pass filter and a high-pass filter for 
various diameters in the MXR dataset
MXR=MIMIC-CXR dataset.
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Figure 2: Samples of the images after low-pass filters and high-pass filters in MXR dataset
HPF=high-pass filtering. LPF=low-pass filtering. MXR=MIMIC-CXR dataset.
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Table 2:

Summary of experiments conducted to investigate mechanisms of race detection in Black patients

Area under the receiver operating characteristics curve

Race detection in radiology imaging

Chest x-ray (internal validation)*

 MXR (Resnet34, Densenet121) 0·97, 0·94

 CXP (Resnet 34) 0·98

 EMX (Resnet34, Densenet121, EfficientNet-B0) 0·98, 0·97, 0·99

Chest x-ray (external validation)*

 MXR to CXP, MXR to EMX 0·97, 0·97

 CXP to EMX, CXP to MXR 0·97, 0·96

 EMX to MXR, EMX to CXP 0·98, 0·98

Chest x-ray (comparison of models)†

 MXR, CXP, EMX Multiple results (appendix p 26)

CT chest (internal validation)*

 NLST (slice, study) 0·92, 0·96

CT chest (external validation)*

 NLST to EM-CT (slice, study) 0·80, 0·87

 NLST to RSPECT (slice, study) 0·83, 0·90

Limb x-ray (internal validation)*

 DHA 0·91

Mammography*

 EM-Mammo (image, study) 0·78, 0·81

Cervical spine x-ray*

 EM-CS 0·92

Experiments on anatomic and phenotypic confounders

BMI*

 CXP 0·55, 0·52

Image-based race detection stratified by BMI†

 EMX, MXR Multiple results (appendix p 24)

Breast density*

 EM-Mammo 0·54

Breast density and age*

 EM-Mammo 0·61

Disease distribution*

 MXR, CXP 0·61, 0·57

Image-based race detection for the no finding class*

 MXR 0·94
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Area under the receiver operating characteristics curve

Model prediction after training on dataset with equal disease distribution†

 MXR 0·75

Removal of bone density features*

 MXR, CXP 0·96, 0·94

Impact of average pixel thresholds†

 MXR 0·50

Impact of age†

 MXR Multiple results (appendix p 27)

Impact of patient sex†

 MXR Multiple results (appendix p 28)

Combination of age, sex, disease, and body habitus*

 EMX (logistic regression model, random forest classifier, XGBoost model) 0·65, 0·64, 0.64

Experiments to evaluate the mechanism of race detection

Frequency domain filtering

 High-pass filtering*

 MXR Multiple results (appendix p 26)

Low-pass filtering*

 MXR Multiple results (appendix p 26)

Notch filtering†

 MXR Multiple results (appendix p 26)

Band-pass filtering†

 MXR Multiple results (appendix p 25)

Image resolution and quality*

 MXR Multiple results (appendix p 28)

Anatomical localisation

 Lung segmentation experiments†

  MXR Multiple results (appendix p 29)

 Saliency maps†

  MXR, CXP, EMX, NLST, DHA, EM-Mammo, EM-CS Multiple results (appendix pp 13–18)

 Occlusion experiments†

  MXR Multiple results (appendix p 30)

Patch-based training*

 MXR Multiple results (appendix p 30)

Image acquisition differences†

 EMX, EM-Mammo, ChexPhoto Multiple results (appendix p 31)

BMI=body-mass index. CXP=CheXpert dataset. DHA=Digital Hand Atlas. EM-CS=Emory Cervical Spine radiograph dataset. EM-CT=Emory 
Chest CT dataset. EM-Mammo=Emory Mammogram dataset. EMX=Emory CXR dataset. MXR=MIMIC-CXR dataset. NLST=National Lung 
Cancer Screening Trial dataset. RSPECT=RSNA Pulmonary Embolism CT dataset.
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*
Results located in main text.

†
Results located in the appendix.
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Table 3:

Performance of deep learning models to detect race from chest x-rays

Area under the receiver operating characteristics curve value for race classification

Asian (95% CI) Black (95% CI) White (95% CI)

Primary race detection in chest x-ray imaging

MXR Resnet34 0·986 (0·984–0·988) 0·982 (0·981–0·983) 0·981 (0·979–0·982)

CXP Resnet34 0·981 (0·979–0·983) 0·980 (0·977–0·983) 0·980 (0·978–0·981)

EMX Resnet34 0·969 (0·961–0·976) 0·992 (0·991–0·994) 0·988 (0·986–0·989)

External validation of race detection models in chest x-ray imaging

MXR Resnet34 to CXP 0·947 (0·944–0·951) 0·962 (0·957–0·966) 0·948 (0·945–0·951)

MXR Resnet34 to EMX 0·914 (0·899–0·928) 0·983 (0·981–0·985) 0·975 (0·973–0·978)

CXP Resnet34 to MXR 0·974 (0·971–0·977) 0·955 (0·952–0·957) 0·956 (0·954–0·958)

CXP Resnet34 to EMX 0·915 (0·901–0·929) 0·968 (0·965–0·971) 0·954 (0·951–0·958)

EMX Resnet34 to MXR 0·966 (0·962–0·969) 0·970 (0·968–0·972) 0·964 (0·962–0·965)

EMX Resnet34 to CXP 0·949 (0·946–0·952) 0·973 (0·970–0·977) 0·947 (0·945–0·950)

Race detection in non-chest x-ray imaging modalities: binary race detection (Black or White)

NLST 0·92 (slice; 0·910–0·918), 0·96 (study; 0·926–0·982) ·· ··

NLST to EM-CT 0·80 (slice; 0·796–0·800), 0·87 (study; 0·829–0·904) ·· ··

NLST to RSPECT 0·83 (slice; 0·825–0·834), 0·90 (study; 0·836–0·958) ·· ··

EM-Mammo 0·78 (slice; 0·773–0·786), 0·81 (study; 0·794–0·818) ·· ··

EM-CS 0·913 (0·892–0·931) ·· ··

DHA 0·87 (0·752–0·894) ·· ··

Values reflect the area under the receiver operating characteristics curve for each model on the test set per slice and per study (by 
averaging the predictions across all slices). CXP=CheXpert dataset. DHA=Digital Hand Atlas. EM-CS=Emory Cervical Spine radiograph 
dataset. EM-CT=Emory Chest CT dataset. EM-Mammo=Emory Mammogram dataset. EMX=Emory CXR dataset. MXR=MIMIC-CXR dataset. 
NLST=National Lung Cancer Screening Trial dataset. RSPECT=RSNA Pulmonary Embolism CT dataset.

Lancet Digit Health. Author manuscript; available in PMC 2022 November 11.


	Summary
	Introduction
	Methods
	Definitions of race and racial identity
	Datasets
	Investigation of possible mechanisms of race detection
	Race detection in radiology imaging
	Role of the funding source

	Results
	Discussion
	References
	Figure 1:
	Figure 2:
	Table 1:
	Table 2:
	Table 3:

