Table 3:
Performance of deep learning models to detect race from chest x-rays
Area under the receiver operating characteristics curve value for race classification |
|||
---|---|---|---|
Asian (95% CI) | Black (95% CI) | White (95% CI) | |
Primary race detection in chest x-ray imaging | |||
| |||
MXR Resnet34 | 0·986 (0·984–0·988) | 0·982 (0·981–0·983) | 0·981 (0·979–0·982) |
CXP Resnet34 | 0·981 (0·979–0·983) | 0·980 (0·977–0·983) | 0·980 (0·978–0·981) |
EMX Resnet34 | 0·969 (0·961–0·976) | 0·992 (0·991–0·994) | 0·988 (0·986–0·989) |
| |||
External validation of race detection models in chest x-ray imaging | |||
| |||
MXR Resnet34 to CXP | 0·947 (0·944–0·951) | 0·962 (0·957–0·966) | 0·948 (0·945–0·951) |
MXR Resnet34 to EMX | 0·914 (0·899–0·928) | 0·983 (0·981–0·985) | 0·975 (0·973–0·978) |
CXP Resnet34 to MXR | 0·974 (0·971–0·977) | 0·955 (0·952–0·957) | 0·956 (0·954–0·958) |
CXP Resnet34 to EMX | 0·915 (0·901–0·929) | 0·968 (0·965–0·971) | 0·954 (0·951–0·958) |
EMX Resnet34 to MXR | 0·966 (0·962–0·969) | 0·970 (0·968–0·972) | 0·964 (0·962–0·965) |
EMX Resnet34 to CXP | 0·949 (0·946–0·952) | 0·973 (0·970–0·977) | 0·947 (0·945–0·950) |
| |||
Race detection in non-chest x-ray imaging modalities: binary race detection (Black or White) | |||
| |||
NLST | 0·92 (slice; 0·910–0·918), 0·96 (study; 0·926–0·982) | ·· | ·· |
NLST to EM-CT | 0·80 (slice; 0·796–0·800), 0·87 (study; 0·829–0·904) | ·· | ·· |
NLST to RSPECT | 0·83 (slice; 0·825–0·834), 0·90 (study; 0·836–0·958) | ·· | ·· |
EM-Mammo | 0·78 (slice; 0·773–0·786), 0·81 (study; 0·794–0·818) | ·· | ·· |
EM-CS | 0·913 (0·892–0·931) | ·· | ·· |
DHA | 0·87 (0·752–0·894) | ·· | ·· |
Values reflect the area under the receiver operating characteristics curve for each model on the test set per slice and per study (by averaging the predictions across all slices). CXP=CheXpert dataset. DHA=Digital Hand Atlas. EM-CS=Emory Cervical Spine radiograph dataset. EM-CT=Emory Chest CT dataset. EM-Mammo=Emory Mammogram dataset. EMX=Emory CXR dataset. MXR=MIMIC-CXR dataset. NLST=National Lung Cancer Screening Trial dataset. RSPECT=RSNA Pulmonary Embolism CT dataset.