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Abstract

Synonymous mutations in protein-coding genes do not alter protein sequences so are generally 

presumed neutral or nearly so1–5. To experimentally verify this presumption, we constructed 

8,341 yeast mutants each carrying a synonymous, nonsynonymous, or nonsense mutation in 

one of 21 endogenous genes with diverse functions and expression levels, and measured their 

fitness relative to the wild-type in a rich medium. Surprisingly, three-quarters of synonymous 

mutations reduce the fitness significantly, and the distribution of fitness effects is overall similar 

albeit nonidentical between synonymous and nonsynonymous mutations. We find that both 

synonymous and nonsynonymous mutations frequently disturb the mutated gene’s mRNA level 

and that the extent of the disturbance partially predicts the fitness effect. Investigations in 

additional environments reveal greater across-environment fitness variations for nonsynonymous 

than synonymous mutants despite their similar fitness distributions in each environment, 

suggesting a smaller proportion of nonsynonymous than synonymous mutants that are always 

non-deleterious in a changing environment to permit fixation, potentially explaining substantially 

lower nonsynonymous than synonymous substitution rates commonly observed. The strong non-

neutrality of most synonymous mutations, if also true for other genes and in other organisms, 

would require reexamining numerous biological conclusions about mutation, selection, effective 

population size, divergence time, and disease mechanism that rely on the neutral assumption of 

synonymous mutations.

The cracking of the genetic code in the 1960s revealed that between a quarter and a third 

of single nucleotide mutations in protein-coding genes do not alter protein sequences1,2. 

Although these synonymous mutations are not strictly neutral because they could influence 

many processes6–8 such as transcription factor (TF) binding9, transcription10, pre-mRNA 
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splicing7, mRNA folding11 and stability12,13, translational initiation14, efficiency15,16 , 

and accuracy17,18, and co-translational protein folding19,20, the vast majority of them 

are presumed to be at least nearly neutral1–5, contrasting nonsynonymous mutations, 

which alter protein sequences and frequently the fitness3–5. The (near) neutrality of 

synonymous mutations is widely assumed in inferring mutation rate, pattern, and 

mechanism, testing natural selection, estimating effective population sizes (Ne) and neutral 

genetic diversities commonly considered in conservation policymaking in addition to 

population and evolutionary biology, and dating evolutionary events such as population or 

species divergences and gene or genome duplication3–5. This assumption also diverts the 

mechanistic study of disease from synonymous mutations21.

Nevertheless, synonymous mutations affecting the fitness by >1% are known16,20,22–24. 

Some even reported comparable fitness effects of synonymous and nonsynonymous 

mutations25–27. These reports, however, were based on either relatively few genes and 

mutations25 or many natural polymorphisms26,27 that may not represent random mutations. 

Here we test the (near) neutrality of synonymous mutations by measuring the fitness 

effects of thousands of coding mutations in 21 genes in the budding yeast Saccharomyces 
cerevisiae.

Quantifying mutational fitness effects

The 21 chosen genes participate in diverse biological processes such as metabolism, 

chromatin remodeling, transcription, translation, and cell wall synthesis (Data S1) and vary 

by 1000 times in their expression levels (Fig. 1a). These genes are nonessential but their 

deletions lower the fitness by discernable amounts28 such that the mutational fitness effects 

are quantifiable. In each gene, we picked an approximately 150-nucleotide coding sequence 

and chemically synthesized all 450 possible variants that deviate from the wild-type by 

a point mutation (Fig. 1b). The wild-type sequence at its native genomic location was 

replaced by the variant sequences using CRISPR/Cas9 genome editing of a haploid strain, 

followed by confirmation of the respiratory function of the mutant library (Extended Data 

Fig. 1a, b). All mutants of a gene, together with a wild-type control that went through the 

same CRISPR/Cas9 editing (Extended Data Fig. 1c), were competed en masse in a rich 

medium (YPD) at 30°C, with no diploidization observed (Extended Data Fig. 1d). Four 

separate competitions were performed using a common starting population (T0), and the 

focal gene was respectively amplified from T0 and the four replicate populations at 12 (T12) 

and 48 (T48) hrs, followed by 250-nucleotide paired-end Illumina sequencing (Fig. 1b). The 

sequences informed genotypes and allowed tabulating genotype frequencies (Data S2) in 

each population29.

For the 21 genes, we identified a total of 8,341 variants with read counts ≥50 at 

T0, including 1,866 synonymous, 6,306 nonsynonymous, and 169 nonsense mutants, 

respectively. The observed relative numbers of synonymous and nonsynonymous mutants 

reflect those designed (Extended Data Fig. 2a). Changes in genotype frequencies between T0 

and T48 (or T12) were used to estimate the fitness of each mutant relative to the wild-type. 

The fitness estimates (Data S3) were highly correlated between replicates, with a mean 

Pearson’s r of 0.92 (Fig. 1c, Extended Data Fig. 2b–f). Fitness estimates from the en 
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masse competitions agreed well with those measured from monoculture growths for 24 

reconstructed synonymous and nonsynonymous mutants (Fig. 1d).

Comparing mutational fitness effects

The median fitness of the 169 nonsense mutants is 0.940 (Extended Data Fig. 3a). As 

expected, the corresponding value for the 6,306 nonsynonymous mutants is much higher, 

reaching 0.988 (Fig. 2a). Surprisingly, the median fitness of the 1,866 synonymous mutants 

is 0.989, much closer to that of nonsynonymous mutants than to the neutral expectation 

of 1; the same trend holds for mean fitness (Fig. 2a). While the fitness distributions 

look similar for synonymous and nonsynonymous mutants (Fig. 2a), they are statistically 

distinct due to a higher density of nonsynonymous than synonymous mutants in the 

fitness range of 0.91-0.97 but the reverse in the range of 0.97–0.99 (Fig. 2b, Extended 

Data Fig. 3b). A significant fitness difference was observed between synonymous and 

nonsynonymous mutants in only five of the 21 genes, with all five exhibiting higher fitness 

for synonymous than nonsynonymous mutants (Fig. 2c, Extended Data Fig. 3c). Even in 

these five genes, however, the median fitness of synonymous mutants is much closer to that 

of nonsynonymous mutants than to 1 (Fig. 2c).

Classifying each mutant into one of three bins based on whether its fitness is significantly 

below 1 (nominal P < 0.05, t-test), above 1, or neither, we found similar distributions for 

synonymous and nonsynonymous mutants (Fig. 2d). Among synonymous mutations, 75.9% 

are significantly deleterious while 1.3% are significantly beneficial. The corresponding 

values are 75.8% and 1.6% for nonsynonymous mutations. Slightly lower values were 

obtained at the false discovery rate (FDR) of 0.05 (Fig. 2d legend). The smallest absolute 

fitness effect found significant in our study is 0.001, orders of magnitude greater than the 

sensitivity (10−7) of natural selection in yeast30 (see Methods). Hence, all mutations with 

significant fitness effects are strongly nonneutral. Mutant fitness is lower when the mutation 

is unobserved in the genomes of related yeast species than when it is observed (Fig. 2e, 

Extended Data Fig. 3d), indicating that our laboratory fitness estimates are evolutionarily 

relevant.

Mechanisms of mutational fitness effects

Because synonymous codon usage bias is stronger in more highly expressed genes probably 

due to translational selection6, synonymous mutations from the wild-type are thought to be 

more deleterious in more highly expressed genes8. However, we did not detect a significant 

negative correlation between the expression level of a gene and the mean fitness of its 

synonymous mutants (Extended Data Fig. 4a). Because synonymous mutations in a gene 

can alter its mRNA level10,12,13, which could affect fitness31, we measured the relative 

expression level (REL) of the mutated gene in each mutant in four replicates by dividing 

its mRNA level by that of the wild-type. Briefly, from a population of cells including the 

wild-type and all mutants of a gene, we amplified and sequenced the DNAs of the focal 

gene as well as the cDNAs made from the mRNAs of the focal gene (Fig. 3a). REL is the 

number of cDNA-derived sequencing reads divided by the number of DNA-derived reads for 

a mutant, relative to that for the wild-type.
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We obtained mutant RELs for 20 of the 21 genes (Data S4). Mutant RELs are highly 

correlated between replicates (Extended Data Fig. 4b–g), confirming the quality of the 

expression estimates. REL deviates significantly from 1 (nominal P < 0.05, t-test) in 

53.8% of synonymous and 55.0% of nonsynonymous mutants (39.7% and 39.6% at 

FDR <0.05, respectively), indicating that both synonymous and nonsynonymous mutations 

frequently alter the mRNA level. The REL distribution is not significantly different between 

synonymous and nonsynonymous mutants (Extended Data Fig. 4h; see Extended Data Fig. 

4i for individual genes) and is more or less symmetrical around 1 (Fig. 3b). By contrast, 

the mean REL is only 0.301 for nonsense mutants (Extended Data Fig. 4j), likely owing to 

nonsense-mediated mRNA decay32.

Because reducing REL from 1 to 0, equivalent to gene deletion, has different fitness effects 

for different genes15, we rescaled mutant fitness F to f = (F-F0)/(1-F0), where F0 is the 

fitness of the strain lacking the focal gene. Consequently, 1-f measures the fitness effect of 

a mutation relative to that of deleting the focal gene, permitting analyzing the relationship 

between REL and fitness across mutants of different genes. REL and rescaled fitness are 

significantly positively correlated for both synonymous and nonsynonymous mutants under 

REL <1, but the correlation is much weakened under REL >1 (Fig. 3c). These observations 

suggest that influencing the mRNA level is likely a general mechanism underlying the 

fitness effects of coding mutations and that expression reduction from the wild-type level 

typically imposes a stronger fitness effect than the opposite (see Methods).

To understand how coding mutations impact the mRNA level, we identified TF-binding sites 

in the mutated region of each gene33, but mutations within and outside TF-binding sites do 

not show significantly different magnitudes of expression effects (Extended Data Fig. 5a, b).

Previous manipulative experiments showed that increasing the codon adaptation index 

(CAI)34 of a gene through synonymous mutations can boost its mRNA level by slowing 

mRNA degradation12,13,35 and perhaps enhancing transcription10. Because nonsynonymous 

mutations can also alter CAI, we computed the relative CAI (rCAI) of each mutant gene 

by dividing its CAI by that of the wild-type. Indeed, a significant positive correlation exists 

between rCAI and REL among synonymous mutants as well as among nonsynonymous 

mutants (Fig. 3d). The same is true between rCAI and rescaled fitness, especially under 

rCAI <1 (Extended Data Fig. 5c, d).

Due to the increased prevalence of preferred codons in more highly expressed genes6, 

synonymous mutations decreasing CAI (Extended Data Fig. 5e) and lowering the mRNA 

level (Extended Data Fig. 5f) are both more abundant in more highly expressed genes. 

Similar trends are seen for nonsynonymous mutations (Extended Data Fig. 5g, h), because 

a random nonsynonymous mutation from a preferred codon of an amino acid will likely 

arrive at a less preferred codon of another amino acid. Consequently, synonymous (Extended 

Data Fig. 5i) and nonsynonymous (Extended Data Fig. 5j) mutants of more highly expressed 

genes have lower mean rescaled fitness.

Because of the demand for mRNA folding strength (MFS)11, which is at least in part related 

to translational accuracy36 and co-translational protein folding37, a change in MFS caused 
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by a coding mutation may affect fitness25. Indeed, we found a significant positive correlation 

between the relative MFS of a mutant and its rescaled fitness among mutants with reduced 

MFS (Extended Data Fig. 5k, l), although the correlation is substantially weaker than that 

between REL and rescaled fitness (Fig. 3c), suggesting that coding mutations’ fitness effects 

are likely conferred more by their influences of the mRNA level than those of the mRNA 

folding strength.

Fitness effects across environments

Interspecific comparisons have shown that the nonsynonymous to synonymous substitution 

rate ratio (dN/dS) is substantially below 1 for most genes in almost all organisms3–5 

including yeast38, indicating that the probability of fixation of nonsynonymous mutations is 

generally much lower than that of synonymous mutations in long-term evolution, seemingly 

at odds with their similar distributions of fitness effects (DFEs) observed here. One possible 

explanation is that the two DFEs are highly dissimilar in the range of absolute fitness effects 

undetectable by our method, which is generally below 5×10−3. For example, when beneficial 

mutations are ignored as in the neutral theory39, if the fraction of nonsynonymous mutations 

with deleterious fitness effects smaller than the sensitivity of natural selection in yeast 

(10−7) is 10% of the corresponding fraction of synonymous mutations, a dN/dS of ~0.1 will 

result. This hypothesis is, however, difficult to test because of the much lower sensitivity of 

experiments than natural selection.

We wondered whether the low dN/dS can also be caused by a difference 

between synonymous and nonsynonymous mutants in their fitness variation among 

environments40,41. Considering this variation is relevant because the fixation of a neutral 

mutation takes on average 4Ne generations42, during which the environment is highly 

likely to have changed many times. In addition to influencing the mRNA level and/or 

mRNA folding strength that can exert a fitness effect, nonsynonymous mutations also 

alter the protein sequence and potentially function, which synonymous mutations do 

not. Because each of the molecular phenotypic effects could be environment-dependent, 

nonsynonymous mutants may naturally have a larger across-environment fitness variance 

than synonymous mutants, especially given recent reports that amino acid substitutions 

often show environment-specific fitness effects43–45. Under the most extreme scenario, the 

fraction of deleterious mutations is identical between synonymous and nonsynonymous 

mutations in each environment, but the specific deleterious mutations vary across 

environments for nonsynonymous but not synonymous mutations. Consequently, when the 

environment of a population fluctuates within the typical fixation time, some synonymous 

mutations are never deleterious so may be fixed, while virtually every nonsynonymous 

mutation is deleterious under some environments so cannot be fixed, resulting in dN/dS <<1. 

We quantitatively investigated this model using computer simulation. Assuming the YPD-

based DFEs in each environment, we varied the fitness of a mutant among environments 

with the coefficient of variation (CV) greater for nonsynonymous than synonymous mutants. 

A mutant is selectively purged if its fitness is lower than a preset cutoff (e.g., 0.99 given 

the fitness estimation error in our experiments) in any environment, and dN/dS is inferred 

from the fraction of nonsynonymous mutants unpurged relative to that of synonymous 
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mutants unpurged. As predicted, dN/dS drops precipitously with the number of different 

environments experienced by the population (Fig. 4a, Extended Data Fig. 6).

To verify the key assumption on CV in the above model, we measured the DFEs of the same 

yeast synonymous and nonsynonymous mutations in three additional environments that 

differ in nutrient and stress, with three biological replicates per environment (Extended Data 

Fig. 7, Extended Data Fig. 8a–i, Data S3). As in YPD, in each of these three environments, 

the median fitness of synonymous mutants is much closer to that of nonsynonymous mutants 

than to 1 (Fig. 4b–d) and 52.9-62.2% of synonymous mutants are significantly nonneutral 

(Extended Data Fig. 8j–l). These fractions are lower than that in YPD likely because of the 

reduced sensitivity of our fitness measurement caused by the use of fewer replicates (see 

Methods). For each mutant, we computed its CV in fitness across the four environments. 

Indeed, CV is significantly greater for nonsynonymous than synonymous mutants with (P 
<10−5) or without (Fig. 4e) the control of the mean fitness in the four environments (see 

Methods). Additionally, the fraction of neutral mutations in one environment that become 

deleterious in any of the other three environments is greater for nonsynonymous than 

synonymous mutations (Extended Data Fig. 9). We then used the empirical DFEs and fitness 

estimation errors in the four environments to estimate the expected dN/dS after purging 

mutants whose fitness is lower than a cutoff in any of the environments. Indeed, comparing 

the four populations respectively staying in one of the four constant environments with the 

fifth population whose environment fluctuates among the four conditions (see Methods), we 

found that, in terms of dN/dS, the fifth population is either significantly lower than or is not 

statistically distinguishable from the lowest of the first four (Fig. 4f). It is expected from 

the simulation result (Fig. 4a) that dN/dS in the fifth population will further decline as the 

number of different environments experienced rises.

Discussion

Our characterization of the DFE of thousands of coding mutations in diverse yeast genes 

under four environments showed that, under any environment, most synonymous mutations 

are strongly nonneutral and that the DFEs of synonymous and nonsynonymous mutations 

are overall similar. There is no particular reason why our results would be restricted to yeast, 

but confirmations in diverse organisms are required to verify the generality of our findings. 

Because our experiments were performed in haploids, future studies should assess whether 

synonymous and nonsynonymous mutations also have similar DFEs in the heterozygous 

state.

Our results suggest a general mechanism through which coding mutations affect fitness—

disturbing the mRNA level of the mutated gene, but do not preclude other mechanisms 

such as impacting mRNA folding and translation. It is currently difficult to demonstrate 

and quantify the causal contributions of a coding mutation’s various molecular phenotypic 

effects to its fitness effect, because this would require the difficult experiment of mimicking 

each molecular phenotypic effect of a coding mutation without disturbing the cell in 

any other aspect that might influence fitness. For instance, to mimic coding mutations’ 

influences on the mRNA level of a gene, we could use an inducible promoter to drive 

gene expression and adjust the promoter activity by altering the concentration of the 
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inducer in the medium46, but this alteration disturbs the medium composition, which could 

affect fitness more than through the inducible promoter. Additionally, the induction of the 

promoter may influence the expressions of neighboring genes. Use of tunable degrons, short 

amino acid sequences that regulate protein degradation47, is another method, but degrons 

may also affect fitness by altering protein function or mRNA folding and tuning degrons 

could disturb the medium.

The mRNA level of a gene has a strong influence on the evolutionary rate of its protein 

sequence, and several mechanisms of this influence have been demonstrated48,49. Our 

finding that the fraction of nonsynonymous mutations reducing the mRNA level rises with 

the mRNA level of the gene (Extended Data Fig. 5h) and the fitness ramification of this 

trend (Extended Data Fig. 5j) suggest an additional mechanism (Extended Data Fig. 10).

Because many biological conclusions rely on the presumption that synonymous mutations 

are (nearly) neutral3–5, its invalidation has broad implications. For example, many tests 

infer selection on a gene by comparing its synonymous and nonsynonymous polymorphisms 

and/or substitutions. Given that most synonymous mutations are deleterious, making the 

same inference would require assuming that synonymous and nonsynonymous mutations 

are subject to equal selections that are unrelated to protein sequence and function. 

While seemingly reasonable, this assumption may not always hold11, so further empirical 

verifications are needed. That most synonymous mutations are strongly nonneutral means 

that mutation rate, pattern, and mechanism inferred from synonymous polymorphisms or 

substitutions may have been distorted. For the same reason, Ne inferred from synonymous 

polymorphisms in natural populations is likely substantially underestimated, impacting 

evolutionary studies and certain conservation-related decisions. Similarly, synonymous 

substitution-based dating of evolutionary divergences may be unjustifiable in some 

cases. Our results also imply that synonymous mutations are nearly as important as 

nonsynonymous mutations in causing disease and call for strengthened effort in predicting 

and identifying pathogenic synonymous mutations50. Given that gene expression anomaly 

can cause disease51, our results further suggest the disturbance of the mRNA level as a 

potentially common disease mechanism of coding mutations.

METHODS

Data source

The mRNA expression levels of yeast genes in YPD (Fig. 1a) were from Chou et al.52. 

The fitness values of yeast gene deletion strains under YPD (Data S1) were from Qian 

et al.28. Yeast gene functions (Data S1) were based on Saccharomyces Genome Database 

(https://www.yeastgenome.org/).

Media

Standard media of YPD (1% yeast extract, 2% peptone, and 2% glucose), YPD + 0.375 mM 

H2O2, YPE (1% yeast extract, 2% peptone, and 2% ethanol), and YPG (1% yeast extract, 

2% peptone, and 2% glycerol) were used. Synthetic complete (SC) media contained 0.017% 

yeast nitrogen base without amino acids, 0.5% sulfate, and 2% glucose, with the addition 
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of appropriate SC mix or SC drop-out mix. 5-FOA (5-fluoroorotic acid) plates contained 

0.017% yeast nitrogen base without amino acids, 0.5% sulfate, 2% glucose, SC mix, and 

0.15% 5-FOA.

Construction of yeast gene deletion strains

We had three primary considerations in choosing the genes for study. First, because a 

previous study of DFEs of synonymous and nonsynonymous mutations analyzed only two 

ribosomal protein genes25, we wanted to include genes with a larger array of functions to 

complement that study. Second, knowing that synonymous mutations’ fitness effects may 

depend on the gene expression level8, we wanted to choose genes with a wide range of 

expression levels to gain a broad picture. Third, because our experiment involved deleting 

the gene of choice, we must study nonessential genes. Furthermore, the deletions must alter 

the fitness by detectable amounts such that the mutational fitness effects are quantifiable. 

The decision of using a 150-nucleotide region per gene was based on the read length of 

paired-end Illumina sequencing. The starting site of the 150-nucleotide region was randomly 

chosen in the first half of the coding sequence of a gene as long as the chosen 150 

nucleotides are entirely within the coding region. Two exceptions were RPL39 and RPS7A, 

where 147 nucleotides and 141 nucleotides were respectively studied because of these 

genes’ short coding sequences.

For each chosen gene, we used CRISPR/Cas9 to delete from the genome of wild-type 

(BY4742) cells the 150-nucletide target sequence and its 25-nucleotide downstream 

sequence that would be used as a primer binding site to amplify the gene (see Data S5 

for all primer sequences). In the deletion step, the wild-type sequence was replaced by 

a 23-nucleotide designed sequence (20-nucleotide Cas9 target sequence plus 3-nucleotide 

PAM site) that would be used as the CRISPR/Cas9 recognition site in the mutant sequence 

insertion step. The deletion was then verified by Sanger sequencing.

Chemical synthesis of gene variants

For each gene, we had GENEWIZ (https://www.genewiz.com/en) synthesize in an oligo-mix 

format all 450 variants that each deviate from the wild-type by a single point mutation 

(except for RPL39 that had 441 variants and RPS7A that had 423 variants due to their 

shorter sequences). With the exception of oligos for RPL39 and RPS7A, each oligo has 200 

nucleotides, including the 150-nucleotide target sequence and its 25-nucleotide upstream 

and 25-nucleotide downstream flanking sequences. The flanking sequences would serve as 

primer binding sites for the amplification of the variant sequences. The guaranteed amount 

of each oligo was 3 nmol, more than enough as the DNA template for polymerase chain 

reaction (PCR) amplification.

Construction of mutant libraries

The pool of the synthesized single-strand variant oligos of each gene was amplified from the 

oligo-mix by PCR. High-fidelity Q5 polymerase (NEB) was used in all PCR reactions. The 

PCR-amplified double-stranded mutant sequences were transformed along with a CRISPR/

Cas9 plasmid (pML104-URA3)53 into the strain with the wild-type gene deleted. The 

Cas9 protein would recognize the aforementioned 23-nucleotide sequence and cause double-
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stranded breaks. The variant sequences were inserted into the genome at the native genomic 

location of the focal gene via homologous recombination repair. For each gene, over 10,000 

colonies were collected on SC minus uracil plates by washing with sterile water. The large 

number of colonies collected ensured the inclusion of most mutational variants of each gene. 

The variant cells were then counter-selected on the 5-FOA plates to get rid of the CRISPR/

Cas9 plasmid. The cells were then stored in 30% glycerol at −80°C.

Construction of the wild-type control

We amplified the wild-type ASC1 gene from the genome of the haploid strain BY4742 

by PCR and inserted it into the ΔASC1 cell using CRISPR/Cas9. Three colonies were 

picked and the insertion was confirmed by Sanger sequencing. The cells were then counter-

selected on 5-FOA plates to remove the CRISPR/Cas9 plasmid. These three independently 

reconstituted wild-type strains (WT1, WT2, and WT3) were then stored in 30% glycerol at 

−80°C.

We measured the maximum growth rate of BY4742 and each of the three reconstituted wild-

type strains using Biotek Gen5™ Microplate Reader. The cells were first grown overnight. 

About 5000 cells were added into 0.1 mL YPD in a well of a Costar™ 96-well plate, 

which was in continuous shaking at 30°C. Sixteen replicate growth curves were collected 

per strain, except that one replicate of BY4742 was contaminated so was discarded. The 

maximum growth rate was calculated following a previous protocol54. The maximum 

growth rate was not significantly variable among the four strains (Extended Data Fig. 1c). 

For instance, the maximum growth rate of WT1 was not significantly different from that of 

WT2, WT3, or BY4742 (Extended Data Fig. 1c). WT1 was used as the wild-type control in 

en masse competitions and mutant fitness estimation. Our results would remain virtually the 

same should the growth rate of WT2 or WT3 be used in mutant fitness calculation.

En masse competitions in YPD

A frozen sample of cells carrying the variants of a gene and a frozen sample of the wild-type 

control cells were revived at 30°C in YPD (with shaking at 250 RPM) for 3 hrs. These 

cells were then mixed in an approximately 1:50 ratio of wild-type control cells to all mutant 

cells combined (i.e., the population should contain about 2% wild-type control cells). Four 

replicate competitions were then started by dilution of this common starting population 

into four 14 mL Falcon tubes, each containing 6 mL of YPD medium. Upon dilution, the 

cell density of the starting population was 1×105 cells/mL. The competition was performed 

in a shaking incubator (250 RPM) at 30°C. Every 12 hrs, the cell culture was diluted to 

1×105 cells/mL by transferring to 6 mL fresh YPD. The competition lasted for 48 hrs. The 

population aliquots at 0 (T0), 12 (T12), and 48 (T48) hrs were stored in 30% glycerol at 

−80°C. We performed a total of 84 competitions for the 21 genes (4 × 21).

Library preparation and Illumina sequencing

Genomic DNA was extracted from population aliquots (Masterpure™ Yeast DNA 

Purification Kit), followed by amplification of gene variants by PCR. One primer was 

targeted at the 25-nucleotide sequence immediately downstream of the mutated region while 

the other primer was annealed upstream of the mutated region beyond the homologous 
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recombination repair sequence. This design ensured that only those variant sequences that 

were inserted at the native genomic location of the focal gene were amplified. The primers 

included Illumina sequencing adapter and i5/i7 index sequences. The amplicons were 

sequenced by 250-nucleotide paired-end Illumina sequencing (HiSeq2500). Paired reads 

for variant sequences were required to be identical to be counted. To ensure relative accuracy 

in fitness estimation, we considered only those genotypes with at least 50 read pairs in T0.

Sequencing-based fitness estimation

We estimated the fitness of each mutant relative to the wild-type control by (P’MTPWT)/

(PMTP’WT)(1/G), where PMT and PWT are the respective frequencies of the mutant and 

wild-type control at the beginning of the competition, P’MT and P’WT are the corresponding 

frequencies at the end of the competition, and G is the number of generations of the wild-

type control in the competition and equals 7.25 for 12 hrs and 29 for 48 hrs. In theory, the 

above formula works in an en masse competition under the assumption of no strain-strain 

interaction, as was confirmed by our computer simulation. The strong correlation between 

mutant fitness estimated from en masse competition and that estimated from monoculture 

growth (Fig. 1d) supports the assumption of no strain-strain interaction. To estimate G, we 

first allowed a frozen sample of wild-type control cells to revive at 30°C in YPD at 250 

RPM for 3 hrs. We then started a monoculture of the wild-type control at 1×105 cells/mL 

in 6 mL of YPD. The growth continued for 12 hrs in a shaking incubator (250 RPM) at 

30°C. We then estimated G in the 12 hrs based on the culture’s optical density change. G 
in 48 hrs is 4 times G in 12 hrs. Mutant fitness is estimated more accurately with longer 

competitions. However, if the fitness of a mutant was so low that the strain disappeared 

in T48, we calculated the fitness using T0 and T12; otherwise, we used T0 and T48. Note 

that only for 36 mutants were the fitness estimated using T12 instead of T48. Based on 

four biological replicates, we used a t-test to determine if the fitness of a mutant deviates 

from 1 at the nominal P-value of 5%. The average standard error of the estimated mutant 

fitness was 0.005, considered as the mean detection limit of our fitness measurement. The 

absolute value of the smallest fitness effect with nominal P < 0.05 was 0.001. It has been 

estimated based on the level of synonymous polymorphism that Ne is approximately 107 

in S. cerevisiae30, suggesting that natural selection can detect a fitness effect of 10−7 or 

greater in yeast. However, if most synonymous mutations are deleterious, as the present 

study shows, the actual Ne would be greater than 107 and natural selection more sensitive 

than considered in this study.

Verifying the respiratory function of mutants

Cells from each mutant library were first serially diluted. Equal numbers of cells were then 

spread on YPD and YPG plates, where respiratory functions were respectively unneeded 

and needed for cell growth. We allowed cell growth for two days on YPD and three days 

on YPG, because of faster cell growth with glucose as the carbon source. Colonies were 

then counted on each plate. This experiment was repeated three times for the mutant library 

of each gene. BY4742 was used as a positive control in the respiratory function test. As 

a negative control, we simultaneously deleted TOM6 and TOM7 from BY4742, because 

TOM6 and TOM7 are components of the TOM (translocase of outer membrane) complex 
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that is responsible for import of mitochondrially directed proteins and is important for 

respiration55.

Quantifying ploidy after competition

One T48 population for each gene was randomly chosen and examined for ploidy. 

Approximately 107 cells were collected, washed with 1.5 mL of water, and fixed by a 

gentle addition of 3.5 mL of 95% ethanol and incubation for 2 hrs at room temperature. 

Fixed cells were collected by centrifugation for 15 s at 10,000g, followed by resuspension 

of the pellet in 1 mL water and transfer to a 1.5-mL microcentrifuge tube. After a brief 

centrifugation, we re-suspended cells in 0.5 mL RNase solution (2 mg/mL RNase A in 50 

mM Tris pH 8.0, 15 mM NaCl, boiled for 15 min and then cooled to room temperature) 

and incubated the cells for at least 2 hrs at 37°C. We then collected cells from the RNase 

solution by centrifugation for 15 s at 10,000g. Cells were incubated in 0.2 mL protease 

solution (5 mg/mL pepsin and 4.5 μl/mL concentrated HCl in H2O) for 20 min at 37°C and 

then collected by centrifugation. Cells were re-suspended in 0.5 mL 50 mM Tris pH 7.5, and 

were either stored at 4°C for a few days or analyzed immediately. For analysis, 50 μl of cell 

suspension was transferred to 1 mL of 1 μM SYTOX Green staining solution. All samples 

were analyzed using iQue Screener Plus flow cytometry. First, we used the forward scatter 

area and side scatter area with a clustering package to remove non-cell particles. Second, we 

used forward scatter area and forward scatter height to remove doublets. Third, we plotted 

DNA content histograms of the distribution of the amount of DNA per cell. We used haploid 

(BY4742) and diploid (BY4743) yeast cells as controls to determine ploidy. In each of these 

two control profiles, there are two peaks, respectively representing cells in the G1 and G2/M 

cell-cycle stages (1C and 2C DNA content for haploids and 2C and 4C for diploids).

Impact of PCR and sequencing errors

The following error analysis followed Li et al.29. The error rate for Illumina 

sequencing is 3×10−4 per site per read (http://www.illumina.com/documents/products/

technotes/technote_Q-Scores.pdf). Thus, due to sequencing error, a genotype is expected 

to lose U = [1-(1–3×10−4)2×150]M0 read pairs, where M0 is the true number of read pairs of 

the genotype and 150 is the sequence length considered. Because the fractional loss U/M0 = 

0.086 is a constant for all genotypes including the wild-type in each sample, the loss of reads 

due to sequencing error does not affect fitness estimation. Sequencing error also causes the 

genotype to gain on average V = (3×10−4/3)2M1 = 10−8M1 read pairs, where M1 is the total 

number of read pairs for all neighbors of the focal genotype (i.e., the genotypes that differ 

from the focal genotype by one nucleotide). Thus, the fractional gain of read pairs for the 

genotype is expected to be V/M0 = 10−8M1/M0, which has virtually no impact on fitness 

estimation in our study. For instance, at T0, M1/M0 is expected to be 50 for the wild-type 

and 11 for any mutant. Hence, the fractional gain of read pairs is <10−6 for any genotype.

We similarly estimated the impact of PCR error. Q5 DNA polymerase used in PCR has a 

very low error rate of 5.3×10−7 per nucleotide incorporated56. The PCR used in sequencing 

library preparation had 25 cycles. Thus, due to PCR error, a genotype is expected to lose U 
= (5.3×10−7×150×25)M0 molecules, where M0 is the true number of DNA molecules of the 

genotype, 150 is the sequence length in nucleotides, and 25 is the number of PCR cycles. 
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Because the fractional loss U/M0 = 0.002 is a constant for all genotypes in each sample, 

the loss of molecules due to PCR error does not affect fitness estimation. PCR error also 

causes the genotype to gain on average V = (5.3×10−7×25/3)M1 = 4.4×10−6M1 molecules, 

where M1 is the total number of molecules for all neighbors of the focal genotype. Thus, 

the fractional gain of molecules for the genotype is expected to be V/M0 = 4.4×10−6M1/M0, 

which has little impact on fitness estimation in our study. As mentioned, at T0, M1/M0 is 

expected to be 50 for the wild-type and 11 for any mutant. Hence, the fractional gain in the 

number of molecules is 2.2×10−4 for the wild-type and 4.9×10−5 for any mutant.

Growth curve-based fitness estimation of reconstructed mutants

We used maximum growth rates estimated from monoculture growth curves to verify the 

mutant fitness estimated by en masse competition followed by sequencing. We chose nine 

synonymous mutants of RPL29, RAD6, or RPS7A and 15 nonsynonymous mutants of 

TSR2, RAD6, RPS7A, or BUD23 with relatively large ranges of sequencing-based fitness 

estimates. We resynthesized these gene variants and remade the corresponding mutant 

strains. Using the method described earlier for measuring the growths of reconstituted 

wild-type strains, we measured the growth curves of each of these mutants as well as the 

wild-type control on the same 96-well plate, with eight replicates per strain. The relative 

fitness of a mutant was calculated by F = 2relative growth rate−1, where the relative growth rate 

is the maximum growth rate of the mutant divided by that of the wild-type control. The 

maximum growth rate was calculated following a previous protocol54. The above formula 

of F is derived as follows. Let r be the mutant growth rate and R be the wild-type growth 

rate. Let T be the wild-type generation time. By definition, mutant fitness relative to the 

wild-type (per generation) is F = erT/eRT. Hence, lnF = (r-R)T. Because by definition 

eRT = 2, T = (ln2)/R. Combining the above two equations yielded lnF = (r-R)(ln2)/R = 

(r/R-1)ln2. Therefore, F = 2r/R−1 = 2relative growth rate−1. If mutant cells do not divide so that 

its population growth rate is 0, the mutant fitness relative to the WT is 0.5. If the mutation 

kills cells in addition to preventing mitosis, the mutant population growth rate is negative 

(i.e., the population shrinks), which would lead to a mutant fitness that is lower than 0.5.

CRISPR/Cas9 could generate off-target mutations. However, the high fitness correlation 

(Fig. 1d) between two independently constructed sets of 24 mutants suggests that this 

potential off-target effect did not influence our result.

Identifying orthologs of the 21 S. cerevisiae genes in five other yeast species

To examine whether a mutation examined in S. cerevisiae is present in the genomes of 

other yeast species, we attempted to identify the orthologs of the 21 genes studied in our 

experiment in S. paradoxus, S. mikatae, S. uvarum, S. castellii, and Candida glabrata, all 

of which diverged from S. cerevisiae after the whole-genome duplication in yeast. We 

retrieved genomic coding sequence (CDS) data from the NCBI genome assembly database 

(https://www.ncbi.nlm.nih.gov/assembly/) if they are available (S. paradoxus, C. glabrata, 
and S. castellii); otherwise, we retrieved genomic DNA data (S. mikatae and S. uvarum) 

from the same database. For species with CDS data, we built a local blast library and 

performed tblastn using protein sequences of the 21 genes from S. cerevisiae as query 

sequences. The E-value threshold was set at 10−10. If there was a full-length-query match, 
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the matched subject was recorded as an ortholog. If the query was partially matched to the 

subject, the subject was inspected manually to ensure the orthologous relationship. For each 

species and gene, only the hit with the lowest E-value was examined to prevent the inclusion 

of paralogs. For species with genomic DNA data, we similarly built a local blast library 

and performed tblastn under the same E-value threshold. If there was a full-length-query 

match, the matched subject sequence was recorded as an ortholog. If the query was partially 

matched to the subject (likely due to introns), the matched subject sequence was extended 

100-2000 bp upstream and downstream to ensure that it included all exons of the gene; the 

exact length of the extension was determined manually based on the length of the unmatched 

part of the query as well as genomic structure. We then used AUGUSTUS57 to predict 

the coding region of the gene in the extended subject sequence, and manually inspected 

the sequence to ensure the orthologous relationship. We successfully identified almost all 

orthologs of the 21 genes in the five yeast species, except for EST1, for which we only 

identified an ortholog in S. paradoxus. We therefore excluded EST1 from the downstream 

analysis. We also failed to identify the EOS1 ortholog in S. castellii and IES6 ortholog in 

S. mikatae, but decided to include these two genes in downstream analysis except for the 

missing species. The orthologous coding sequences of the six yeasts were then aligned using 

MACSE v2 58. A mutation examined in S. cerevisiae is considered observed in the other 

yeasts if it appears in the genome of any of the other five yeasts and if no other nucleotide 

difference from S. cerevisiae exists in that genome in the codon harboring the mutation; 

otherwise, it is considered unobserved.

Estimating the mRNA levels of mutated genes

A frozen sample of cells carrying the variants of a focal gene and a frozen sample of 

the wild-type control cells were revived at 30°C in YPD with shaking at 250 RPM for 

3 hrs. These cells were then mixed in an approximately 1:50 ratio of wild-type control 

cells to all mutant cells combined. Four replicate cultures were then started by diluting this 

common starting population into four 14 mL Falcon tubes, each containing 6 mL of YPD 

medium. The cell density of the starting population was 1×105 cells/mL. When the cells 

were in the log phase after 12 hrs of growth at 30°C in a shaking incubator (250 RPM), we 

extracted DNA and RNA from the cell cultures (Masterpure™ Yeast DNA Purification Kit 

and RNeasy Mini Kit, respectively). The mRNA of the focal gene was reverse transcribed 

(SuperScript® III First-Strand Synthesis System for RT-PCR) using about 20 nucleotides 

within the 25-nucleotide sequence immediately downstream of the variant sequence as the 

gene-specific primer.

We amplified the mutant gene segments by 25 cycles of PCR from genomic DNA and 

cDNA, respectively. The cDNA libraries of EST1 were not successfully amplified, which 

may be because EST1 has the lowest expression level among the 21 genes studied (Fig. 1a). 

As described earlier, one primer was targeted within the 25-nucleotide sequence downstream 

of the variant sequence while the other primer was upstream of the variant sequence and 

beyond the homologous recombination repair sequence. There were Illumina-adapter and 

i5/i7 index sequences on the primers. The amplicons were subjected to 250-nucleotide 

paired-end Illumina sequencing (NovaSeq). Paired reads for variant gene sequences must be 
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identical to be counted. To ensure accuracy in expression estimation, we excluded genotypes 

with fewer than 50 read pairs from the genomic DNA.

The relative mRNA expression level (REL) of a mutant is the number of cDNA-derived 

read pairs divided by the number of DNA-derived read pairs for the mutant, relative to the 

corresponding value of the wild-type control. We estimated the REL for 7,795 mutants with 

fitness estimates in YPD. With the four replicates in REL estimation, we used a t-test to 

determine if the REL of a mutant significantly deviates from 1 at a nominal P-value of 

5%. Virtually identical results were obtained when REL was first log-transformed before the 

t-test.

Following the sequencing and PCR error analyses presented earlier, we estimated the 

impact of reverse transcription errors on REL estimation. The reverse transcriptase used 

is a version of M-MLV RT, with an error rate of 4×10−5 per nucleotide incorporated (https://

www.thermofisher.com/us/en/home/life-science/cloning/cloning-learning-center/invitrogen-

school-of-molecular-biology/rt-education/reverse-transcriptase-attributes.html). Due to 

reverse transcription error, a genotype is expected to lose U = (4×10−5×150)M0 molecules, 

where M0 is the expected number of cDNA molecules of the genotype and 150 is the 

sequence length. Because the fractional loss U/M0 = 0.006 is a constant for all genotypes 

in each sample, the loss of molecules due to reverse transcription error does not affect 

expression estimation. Reverse transcription error also causes the genotype to gain on 

average V = 4×10−5/3 M1 = 1.3×10−5M1 molecules, where M1 is the expected total number 

of cDNA molecules for all neighbors of the focal genotype. Thus, the fractional gain of 

molecules for the genotype is expected to be V/M0 = 1.3×10−5M1/M0, which has little 

impact on expression estimation in our study. M1/M0 is expected to be about 50 for the 

wild-type and 11 for mutants whose expression levels are comparable with that of the 

wild-type. The corresponding fractional gains of molecules are 6.5×10−4 and 1.4×10−4, 

respectively. Even if a mutant has a REL as low as 0.1, M1/M0 is 110 and the fractional 

gain of the number of molecules is 1.4×10−3. As described, PCR and sequencing errors had 

virtually no effect. Hence, the overall error from reverse transcription, PCR, and sequencing 

is negligible in expression estimation.

In addition to correlating mutant REL with rescaled fitness (Fig. 3c), we used a linear 

mixed model to assess the relative importance of REL and mutation type (synonymous 

vs. nonsynonymous) to rescaled fitness, with gene identity added as a random effect. 

We separately analyzed mutants with REL <1 and those with REL >1, because of their 

apparently different relationships with rescaled fitness (Fig. 3c). For mutants with REL <1, 

the fraction of variance of rescaled fitness explained by REL is 61.5% (P < 2.2×10−16), 

while that explained by mutation type is only 0.2% (P = 0.0002). For mutants with REL >1, 

the fraction of variance of rescaled fitness explained by REL is 7.4% (P < 2.2×10−16), while 

that explained by mutation type is only 0.4% (P = 1.5×10−7). These results demonstrate 

that REL explains a substantially larger fraction of variance of rescaled fitness than does 

mutation type.

Additionally, after accounting for gene-specific effects using a mixed-effect model, we 

found the positive correlation between the rescaled fitness and REL to remain significant 

Shen et al. Page 14

Nature. Author manuscript; available in PMC 2022 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.thermofisher.com/us/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/rt-education/reverse-transcriptase-attributes.html
https://www.thermofisher.com/us/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/rt-education/reverse-transcriptase-attributes.html
https://www.thermofisher.com/us/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/rt-education/reverse-transcriptase-attributes.html


when REL <1 (P = 2.3×10−47). There is a marginally significant negative correlation 

between the rescaled fitness and REL when REL >1 (P = 0.048). We also attempted to fit 

a quadratic model using log2(REL) as an independent variable and accounted for a random 

effect of gene identity. Indeed, the hypothesis that the fitness peak is at REL = 1 could not be 

rejected.

Codon adaption index (CAI)

We computed CAI for the entire coding sequence of each wild-type or mutant gene, using 

previously reported yeast relative synonymous codon usage (RSCU) estimates34, which are 

highly correlated with those derived from the 200 most highly expressed genes (r = 0.995) 
15.

mRNA folding strength (MFS)

The minimum free energy at 30°C was calculated for each wild-type or mutant mRNA 

sequence using RNAfold in ViennaRNA (2.4.17) with default parameters except for the 

temperature59. We define mRNA folding strength (MFS) as the absolute value of the 

minimum free energy.

TF-binding sites

TF-binding sites were searched in the wild-type for the 150-nucleotide target sequence plus 

the 20-nucleotide flanking sequence on each side using the database Yeastract33.

DFE estimation in SC + 37°C, YPD + 0.375mM H2O2, and YPE

The experiment followed that in DFE estimation in YPD, except that the competitions 

lasted for 20 generations (cells were transferred 6.5 and 13 generations after the start of 

the competition) and had three replicates per environment. Sequencing library preparation 

was unsuccessful for mutants of EST1 and PAF1 likely because of primer degradations. 

Therefore, we acquired the fitness data of mutants of 19 genes in these three additional 

environments. The fraction of mutants whose fitness is significantly different from 1 is 

lower here than in YPD, likely because of the reduced statistical power due to the lowered 

number of replications. Indeed, when we randomly sampled three of the four replicates 

from YPD, the fraction of mutants whose fitness is significantly different from 1 (nominal 

P <0.05) decreased to an average of 0.63 and 0.64 for synonymous and nonsynonymous 

mutants, respectively, similar to those observed in these three additional environments 

(Extended Data Fig. 8j–l). To examine whether the difference between synonymous and 

nonsynonymous mutants in fitness CV across the four environments is entirely due 

to a potential difference in mean fitness, we controlled the mean fitness in the four 

environments when comparing the across-environment fitness CV between synonymous and 

nonsynonymous mutants. Specifically, we used an identity index of 0 for each synonymous 

mutant and 1 for each nonsynonymous mutant. The partial Spearman’s correlation between 

the identity index and CV upon the control of the mean fitness in the four environments is 

0.052 (P = 7.7×10−6).
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Simulation of the impact of environmental changes on dN/dS

Our simulation assumed that the DFEs of synonymous and nonsynonymous mutations 

estimated from YPD hold in each environment, but the fitness effect of a mutation can vary 

across environments. We respectively constructed cumulative fitness distribution functions 

(CFDFs) of synonymous and nonsynonymous mutants from the corresponding fitness data 

collected in YPD. We started from all synonymous mutants with fitness measured in 

YPD, and ranked these mutants from low to high by their YPD fitness. We then added 

a random noise drawn from the normal distribution N(0, σ2) to each fitness value, and 

ranked the mutants by their new fitness values. Let us assume that, after the addition of 

noise, the mutant originally ranked i now had a rank of j. We then randomly sampled M 
synonymous mutants from the CFDF and ranked them by their fitness, where M is the 

number of synonymous mutants with fitness measured in YPD. We assigned the fitness of 

the mutant ranked the jth in these M sampled mutants to mutant i as its fitness in a new 

environment. The above procedure was repeated for each environment considered. Fitness 

CV among environments was controlled by adjusting σ2, with larger σ2 yielding greater 

CV. Many σ2 values were tried to achieve a target CV (difference between observed and 

target CV <0.0001). The same was done for nonsynonymous mutants. We set a higher CV 
for nonsynonymous than synonymous mutants. We set a fitness cutoff (0.98 or 0.99) and 

assumed that any mutant with fitness below the cutoff in any environment was purged. 

We then computed dN/dS by the fraction of unpurged nonsynonymous mutants divided by 

the fraction of unpurged synonymous mutants. Under each parameter set, we repeated the 

simulation 1000 times and reported the mean dN/dS and its 95% confidence interval.

Expected dN/dS in the four environments examined

To predict the expected dN/dS in long-term evolution in each of the four environments 

where DFEs were measured here, we considered all of the synonymous and nonsynonymous 

mutants with fitness measured in the environment. Because the fitness measures contained 

measurement errors, we added a random error term drawn from the normal distribution N(0, 

σse
2) to the measured fitness, where σse is the mutant-specific standard error of the measured 

fitness estimated from the experimental replicates in the environment. We set a fitness cutoff 

and assumed that any mutant with fitness in the environment below the cutoff was purged. 

We then computed dN/dS by the fraction of unpurged nonsynonymous mutants divided by 

the fraction of unpurged synonymous mutants. In an environment that varies among the 

four individual conditions, we assumed that any mutant with fitness below the cutoff in any 

condition was purged. Because of random measurement errors considered, we repeated the 

prediction 1000 times and presented the 95% confidence interval of the predicted dN/dS.

Data availability

Sequencing data generated in this study have been deposited into NCBI with the Bioproject 

ID of PRJNA750109. All other data are presented in the paper and associated supplementary 

materials. Source data are provided with this paper. Public data used include gene function 

annotations in the Saccharomyces Genome Database (https://www.yeastgenome.org/) and 

genomic coding sequences of S. paradoxus, C. glabrata, and S. castellii and genomic 
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sequences of S. mikatae and S. uvarum from the NCBI genome assembly database (https://

www.ncbi.nlm.nih.gov/assembly/).

Code availability

Custom code is available at https://github.com/song88180/Mutational-Fitness-Effects and 

https://doi.org/10.5281/zenodo.5908478 (DOI: 10.5281/zenodo.5908478).

Extended Data

Extended Data Fig. 1. Properties of wild-type and mutant strains analyzed.
a, Experimental procedure for testing cellular respiratory functions. Cells from each of the 

21 mutant libraries were spread on YPD and YPG plates, followed by colony counting 

after growth. Respiration is needed for cell growth on YPG but not on YPD. b, Mean ratio 

of YPD colony number to YPG colony number for each mutant library, based on three 

replicates per library. Error bars show the standard error of the mean. The negative control 

is deficient in respiration due to gene deletions (see Methods). c, Maximum growth rates of 

three reconstituted wild-type strains and BY4742. WT1 was used as the wild-type control 

in en masse competitions with mutants. The red error bar indicates the standard error of 

the mean based on 16 replicates each shown by a dot (15 for BY4742). P-values are from 
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two-tailed t-tests. The growth rate is not significantly different among the four strains (P = 

0.58, one-factor ANOVA test). d, Ploidy of one T48 population per mutant library assessed 

by flow cytometry. SYTOX Green fluorescence was analyzed using the BL2 detector that 

measured the output from the 488-nm laser (blue). In control flow cytometry profiles, the 

two peaks respectively represent cells in the G1 and G2/M cell-cycle stages (1C and 2C 

DNA content for haploids while 2C and 4C for diploids).

Extended Data Fig. 2. Mutant fitness quantification.
a, Fractions of synonymous (yellow) and nonsynonymous (blue) mutants among designed 

but unobserved mutants and those among observed mutants. Nonsense mutants are not 

considered. Numbers in the bars are numbers of mutants. The distributions of synonymous 

and nonsynonymous mutants among the unobserved and observed mutant groups are not 

significantly different (P > 0.05, Fisher’s exact test). b-f, Correlation between every two of 

the four replicates in estimated mutant fitness under YPD at 30°C. The correlation between 

replicate 1 and replicate 2 is presented in Fig. 1c. Each dot is a mutant and the dotted 

line indicates the diagonal. Pearson’s correlation r and its associated P-value are presented. 

Among-genotype sum of squares explains 93.8% of the total sum of squares (one-factor 

ANOVA).
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Extended Data Fig. 3. Mutant fitness distribution under YPD at 30°C.
a, Distribution of the fitness of 169 nonsense mutants. The peak around 0.94 is caused by 

26 nonsense mutants of GET1 that all have fitness of about 0.94. b, Cumulative frequency 

distributions of log10(mutant fitness) of nonsynonymous (blue) and synonymous (yellow) 

mutants. c, The full figure of Fig. 2c, including low-fitness mutants that are not shown in 

Fig. 2c. d, The full figure of Fig. 2e, including low-fitness and high-fitness mutants that are 

not shown in Fig. 2e.
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Extended Data Fig. 4. Coding mutations influence the mRNA level of the mutated gene.
a, Non-significant negative correlation between the mean fitness of synonymous mutants 

of a gene and the expression level of the gene. Each dot represents a gene. Spearman’s 

correlation ρ and associated P-value are presented. b-g, Correlation in mutant REL between 

replicates, which are indicated on the axes of each panel. Each dot is a mutant, and 

the dotted line indicates the diagonal. Pearson’s correlation r and its associated P-value 

are presented. Among-genotype sum of squares explains 89.7% of total sum of squares 

(one-factor ANOVA). h, Cumulative frequency distributions of REL of nonsynonymous and 
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synonymous mutants. i, Relative expression level (REL) distributions of nonsynonymous 

(blue) and synonymous (yellow) mutants of 20 individual genes shown by box plots. 

The lower and upper edges of a box represent the first (qu1) and third (qu3) quartiles, 

respectively, the horizontal line inside the box indicates the median (md), the whiskers 

extend to the most extreme values inside inner fences, md ± 1.5(qu3-qu1), and the dots show 

outliers. Nonsynonymous and synonymous distributions of each gene are compared by a 

two-tailed Wilcoxon rank-sum test, with FDR-adjusted P-values indicated as follows: *, P < 

0.05; ⁑, P < 0.01, ⁂, P < 0.001. j, Distribution of REL of nonsense mutants.

Extended Data Fig. 5. Mechanisms underlying coding mutations’ fitness effects.
a-b, Box plots showing similar absolute fractional changes in the mRNA level induced 

by nonsynonymous (a) or synonymous (b) mutations within and outside TF-binding sites. 

The lower and upper edges of a box represent the first (qu1) and third (qu3) quartiles, 

respectively, the horizontal line inside the box indicates the median (md), the whiskers 

Shen et al. Page 21

Nature. Author manuscript; available in PMC 2022 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



extend to the most extreme values inside inner fences, md ± 1.5(qu3-qu1), and the dots 

show outliers. P-values are from two-tailed Wilcoxon rank-sum test (n = 1191, 4736, 

367, and 1411, respectively, for the four bars from left to right). c-d. Positive correlation 

between rCAI and rescaled fitness among nonsynonymous (c) and synonymous (d) 

mutants, respectively. e, Fraction of synonymous mutations lowering CAI increases with the 

expression level of the gene. f, Fraction of synonymous mutations lowering the expression 

level increases with the expression level of the gene. g, Fraction of nonsynonymous 

mutations lowering CAI increases with the expression level of the gene. h, Fraction of 

nonsynonymous mutations lowering the expression level increases with the expression level 

of the gene. i, Mean rescaled fitness of synonymous mutants declines with the expression 

level of the gene. j, Mean rescaled fitness of nonsynonymous mutants declines with the 

expression level of the gene. Because deleting a more highly expressed gene tends to cause 

a greater fitness reduction60, the finding in panel j means that the mean fitness reduction 

caused by a nonsynonymous mutation should rise with the expression level of the gene. In 

e-j, each dot represents a gene. k-l, positive correlation between the relative mRNA folding 

strength (rMFS) of a nonsynonymous (k) or synonymous (l) mutant and its rescaled fitness 

when rMFS is below 1. The rMFS of a mutant is its mRNA folding strength (i.e., the 

absolute value of its minimal folding energy) divided by that of the wild-type. In each panel, 

the correlation is separately computed for mutants with rMFS <1 and those with rMFS >1. 

In c-l, rank correlations (ρ) and associated P-values are shown.

Extended Data Fig. 6. A higher coefficient of variation (CV) of fitness across environments 
for nonsynonymous than synonymous mutants can create a nonsynonymous to synonymous 
substitution rate ratio (dN/dS) that is substantially below 1 despite similar fitness effects of 
synonymous and nonsynonymous mutations in each environment.
a, Mean expected dN/dS from 1000 simulations of a population that experiences multiple 

different environments. A mutant is purged if its fitness is lower than a preset cutoff such 
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as 0.98 or 0.99 in any environment. Shaded areas represent 95% confidence intervals. 

a. Results with CV = 0.004 for synonymous mutants. b, Results with CV = 0.005 for 

synonymous mutants. Note that, under the fitness cutoff of 0.99, dN/dS starts to increase 

with the number (m) of environments when m is large. Raising m reduces the fraction 

of synonymous mutations that are always neutral (FANS) as well as the fraction of 

nonsynonymous mutations that are always neural (FANN). Because the fitness CV is larger 

for nonsynonymous than synonymous mutants in the simulation, FANN decreases with m 
more quickly than does FANS when m is small. When m is large, FANN is small, making 

it possible for FANS to decrease with m more quickly than FANN. As a result, dN/dS might 

increase with m when m is large.
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Extended Data Fig. 7. Pairwise correlation between replicates in estimated mutant fitness in each 
of the three additional environments used.
a-c, Correlation between every two of the three replicates in estimated mutant fitness under 

SC at 37°C. Each dot is a mutant and the dotted line indicates the diagonal. Pearson’s 

correlation r and its associated P-value are presented. Among-genotype sum of squares 

explains 96.1% of the total sum of squares (one-factor ANOVA). d-f, Correlation between 

every two of the three replicates in estimated mutant fitness under YPD + 0.375 mM 

H2O2. Among-genotype sum of squares explains 94.4% of the total sum of squares. g-i, 
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Correlation between every two of the three replicates in estimated mutant fitness under YPE. 

j, Correlation between replicates 1 and 3 in estimated mutant fitness under YPE after the 

exclusion of SNF6 mutants. k, Correlation between replicates 2 and 3 in estimated mutant 

fitness under YPE after exclusion of SNF6 mutants. Panels g-k suggest that the fitness 

estimates of SNF6 mutants in replicate 3 under YPE are unreliable, so are unused in fitness 

estimation in YPE. When SNF6 is excluded, among-genotype sum of squares explains 

91.0% of the total sum of squares in YPE.
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Extended Data Fig. 8. Mutant fitness in the three additional environments used.
a-c, Fractions of synonymous (yellow) and nonsynonymous (blue) mutants among designed 

but unobserved mutants and those among observed mutants in each environment. Nonsense 

mutants are not considered. Numbers in the bars are numbers of mutants. The distributions 

of synonymous and nonsynonymous mutants among the unobserved and observed mutant 

groups are not significantly different in each environment (P >0.05, Fisher’s exact test). d-f, 
Cumulative frequency distributions of fitness of nonsynonymous and synonymous mutants 

in each environment. g-i, Fitness distributions of nonsynonymous and synonymous mutants 

of 19 individual genes shown by box plots in each environment. The lower and upper 

edges of a box represent the first (qu1) and third (qu3) quartiles, respectively, the horizontal 

line inside the box indicates the median (md), the whiskers extend to the most extreme 

values inside inner fences, md ± 1.5(qu3-qu1), and the dots show outliers. Nonsynonymous 

and synonymous distributions for each gene are compared by a two-tailed Wilcoxon sum-

rank test, with the FDR-adjusted P-value indicated as follows: *, P < 0.05; ⁑, P < 0.01, 

⁂, P < 0.001. j-l, Fractions of mutants with fitness significantly below 1 (P <0.05), 

significantly above 1, and neither, respectively, in each environment. The error bar shows 

one standard error. The distributional difference between synonymous and nonsynonymous 

mutants among the three bins is tested by two-tailed Fisher’s exact test, with the P-value 

indicated. At FDR = 0.05, 40.7% and 0.7% of nonsynonymous mutations and 34.8% and 

0.5% of synonymous mutations are significantly deleterious and beneficial, respectively, in 

SC+37°C. These values become 35.5%, 1.7%, 31.9% and 1.6% in YPD+H2O2, and 47.6%, 

1.4%, 45.6%, and 1.0% in YPE.
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Extended Data Fig. 9. Fractions of nonsynonymous (blue) and synonymous (yellow) neutral 
mutations in one environment (indicated on the X-axis) that become deleterious in any of the 
other three environments.
The fractions are higher for nonsynonymous than synonymous mutations (P <0.05, paired 

t-test). A mutation is considered deleterious if its fitness is significantly lower than 1 (P 
<0.05) and neutral if its fitness is not significantly different from 1.
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Extended Data Fig. 10. A new model explaining the widespread negative correlation between the 
mRNA level of a gene and its evolutionary rate measured by the nonsynonymous or amino acid 
substitution rate.
Compared with nonsynonymous mutations in lowly expressed genes, those in highly 

expressed genes tend to reduce the gene expression level and hence tend to be deleterious. 

As a result, the evolutionary rate of a gene measured by the nonsynonymous or amino acid 

substitution rate is negatively correlated with the gene expression level. The height of a 

symbol represents the quantity considered.
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Fig. 1. Estimating the fitness effects of coding mutations in 21 yeast genes.
a, The mRNA expression levels in YPD of the 21 genes (dots) measured by RPKM (Reads 

Per Kilobase of transcript per Million mapped reads) and their ranks among all yeast genes. 

b, Experimental procedure. WT, wild-type. T0, T12, and T48 respectively refer to 0, 12, 

and 48 hrs after competition. c, Mutant fitness estimated in the first two of four biological 

replicates. Each dot is a mutant (n = 8,341 mutants) and the dotted line indicates the 

diagonal. Pearson’s correlation (r) and its associated P-value are presented. d, Sequencing-

based and growth rate-based fitness estimates are highly correlated. Each dot represents 

a synonymous (yellow) or nonsynonymous (blue) mutant. Mutants used in monoculture 

growth rate-based fitness estimation and those used in en masse competition followed by 

sequencing-based fitness estimation are independently constructed. Error bars show the 

standard error of the mean. Pearson’s correlation r and its associated P-value are presented (r 
= 0.89 and 0.90 for the 9 synonymous and 15 nonsynonymous mutants, respectively).
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Fig. 2. Mutant fitness in YPD.
a, Distributions of the fitness of 6,306 nonsynonymous (blue) and 1,866 synonymous 

(yellow) mutants. The two distributions are significantly different (P = 6.1×10−5, two-

tailed Wilcoxon rank-sum test; P = 1.3×10−6, Kolmogorov–Smirnov test). b, Cumulative 

frequency distributions of fitness of nonsynonymous and synonymous mutants. c, Fitness 

distributions of nonsynonymous and synonymous mutants of 21 individual genes shown 

by box plots. Nonsynonymous and synonymous distributions of each gene are compared 

by a two-tailed Wilcoxon rank-sum test followed by FDR correction (*, P < 0.05; ⁑, P 
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< 0.01, ⁂, P < 0.001). Mutants with fitness <0.9 are not shown (see Extended Data 

Fig. 3c for the complete figure). d, Fractions of nonsynonymous and synonymous mutants 

with fitness significantly below 1 (nominal P <0.05), significantly above 1, and neither, 

respectively. Error bars show one standard error. Nonsynonymous and synonymous mutants 

are not significantly differentially distributed among the three bins (two-tailed Fisher’s exact 

test). Under FDR = 0.05, 72.7% and 1.5% of nonsynonymous mutations are significantly 

deleterious and beneficial, respectively. The corresponding values are 72.5% and 1.1% for 

synonymous mutations. e, Mutant fitness is lower when the mutation is not observed than 

when it is observed in the genomes of five related yeast species. There are 5839, 169, 1087, 

714 mutants in the four bins, respectively. P-values are from two-tailed Wilcoxon rank-sum 

test. Mutants with fitness <0.95 or >1.025 are not shown (see Extended Data Fig. 3d for the 

complete figure). In c and e, each data point is a mutant. The lower and upper edges of a box 

represent the first (qu1) and third (qu3) quartiles, respectively, the horizontal line inside the 

box indicates the median (md), the whiskers extend to the most extreme values inside inner 

fences, md ± 1.5(qu3-qu1), and the dots show outliers.
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Fig. 3. Coding mutations alter the mRNA level of the mutated gene.
a, High-throughput quantification of the mRNA levels of a focal gene in all mutants 

of the gene. WT, wild-type. REL, the mRNA level in a mutant relative to that in the 

WT, is estimated from the number of cDNA-derived sequencing reads divided by the 

number of DNA-derived reads for the mutant, relative to that for the WT. b, Frequency 

distributions of REL for 5927 nonsynonymous (blue) and 1783 synonymous (yellow) 

mutants, respectively. The two distributions are not significantly different (P = 0.11, two-

tailed Wilcoxon rank-sum test). c, Correlation between REL and rescaled fitness among 

mutants. The correlation is significantly different between mutants with REL <1 and >1 (P 
<0.0001 for both nonsynonymous and synonymous mutants based on z-test after Fisher’s 

r-to-z transformation). d, Positive correlation between rCAI, the CAI of a mutant relative to 

that of the wild-type, and REL among mutants. For visualization, in c and d, we group all 

mutants into 10 equal-size bins by their X-values and present the mean X- and Y-values of 

each bin (red dot) and the standard error of the mean Y-value (error bar).
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Fig. 4. A higher fitness CV across environments for nonsynonymous than synonymous mutants 
can create dN/dS <<1 despite similar DFEs of synonymous and nonsynonymous mutations in 
each environment.
a, Expected dN/dS from 1000 simulations of a population that experiences multiple different 

environments. A mutant is purged if its fitness is below a preset cutoff such as 0.98 or 0.99 

in any environment. Shaded areas represent 95% confidence intervals. b-d, Distributions of 

nonsynonymous and synonymous mutant fitness are significantly different in SC + 37°C 

(P = 1.8×10−12, two-tailed Wilcoxon rank-sum test; P = 1.5×10−9, Kolmogorov–Smirnov 

test; b), YPD + 0.375 mM H2O2 (P = 1.9×10−7 and 7.0×10−8, respectively; c), and YPE 

(P = 9.9×10−5 and 2.9×10−9, respectively; d). e, Box plots showing distributions of fitness 

CV across the four environments for 5,671 nonsynonymous and 1,696 synonymous mutants. 

Box plot symbols follow those in Fig. 2e. The mean CV is 0.0163 for nonsynonymous 

and 0.0124 for synonymous mutants. The two distributions are significantly different (two-

tailed Wilcoxon rank-sum test). f, Expected dN/dS when the population stays in a constant 

environment or a changing environment. Actual DFEs in the four individual environments 

are used and various fitness cutoffs as in panel a are considered. Fitness measurement error 

is considered through 1000 random samples of error per mutant. The mean expected dN/dS 

and the 95% confidence interval of the expected dN/dS are presented. Dots and error bars 

are slightly shifted horizontally to help visualization. * indicates that dN/dS is significantly 

lower in the fifth population, whose environment fluctuates among the four conditions, 

than in each of the four constant-environment populations (P <0.05). For the cutoffs where 

no * is shown, dN/dS is not significantly different between the fifth population and the 

constant-environment population with the lowest dN/dS.
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