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Sphingomonas sp. Hbc-6 alters
physiological metabolism and
recruits beneficial rhizosphere
bacteria to improve plant
growth and drought tolerance

Fang Wang1, Yali Wei2, Taozhe Yan1, Cuicui Wang1,
Yinghui Chao1, Mingyue Jia1, Lizhe An1,3*

and Hongmei Sheng1*

1Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life
Sciences, Lanzhou University, Lanzhou, China, 2Center for Terrestrial Biodiversity of the South
China Sea, Hainan University, Haikou, China, 3The College of Forestry, Beijing Forestry University,
Beijing, China
Drought poses a serious threat to plant growth. Plant growth-promoting

bacteria (PGPB) have great potential to improve plant nutrition, yield, and

drought tolerance. Sphingomonas is an important microbiota genus that is

extensively distributed in the plant or rhizosphere. However, the knowledge of

its plant growth-promoting function in dry regions is extremely limited. In this

study, we investigated the effects of PGPB Sphingomonas sp. Hbc-6 on maize

under normal conditions and drought stress. We found that Hbc-6 increased

the biomass of maize under normal conditions and drought stress. For

instance, the root fresh weight and shoot dry weight of inoculated maize

increased by 39.1% and 34.8% respectively compared with non-inoculated

plant, while they increased by 61.3% and 96.3% respectively under drought

conditions. Hbc-6 also promoted seed germination, maintained stomatal

morphology and increased chlorophyll content so as to enhance

photosynthesis of plants. Hbc-6 increased antioxidant enzyme (catalase,

superoxide, peroxidase) activities and osmoregulation substances (proline,

soluble sugar) and up-regulated the level of beneficial metabolites

(resveratrol, etc.). Moreover, Hbc-6 reshaped the maize rhizosphere bacterial

community, increased its richness and diversity, and made the rhizosphere

bacterial community more complex to resist stress; Hbc-6 could also recruit

more potentially rhizosphere beneficial bacteria which might promote plant

growth together with Hbc-6 both under normal and drought stress. In short,

Hbc-6 increased maize biomass and drought tolerance through the above

ways. Our findings lay a foundation for exploring the complex mechanisms of
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interactions between Sphingomonas and plants, and it is important that

Sphingomonas sp. Hbc-6 can be used as a potential biofertilizer in

agricultural production, which will assist finding new solutions for improving

the growth and yield of crops in arid areas.
KEYWORDS

plant growth-promoting bacteria, Sphingomonas sp. Hbc-6, drought stress, widely
targeted metabolomics, rhizosphere bacterial community
Introduction

Drought is one of the most common abiotic stresses that

seriously threatens the growth and development of plants

(Kumar et al., 2021; Mukarram et al., 2021). Generally, water

scarcity leads to a series of physiological and metabolic changes

in plants, such as limiting photosynthesis and increasing levels of

superoxide radicals (O2– or H2O2) and malondialdehyde (MDA)

which threaten plant health (Ma et al., 2020; Yang et al., 2021)

and lead to wilting, dwarfing, and reduction of biomass in plants

(Li et al., 2020; Yang et al., 2021). Therefore, drought is a primary

factor restricting crop yield (Gupta et al., 2020).

Maize is not only one of the widely cultivated food crops in

the world but also an important part of the global grain supply

and food security (Hussain et al., 2020; Li Z. et al., 2021). With

global warming, drought has caused aggravated damage to

agriculture, resulting in a substantial decrease in maize

production (Zhang et al., 2019; Ao et al., 2020). Therefore,

there is an urgent need for alternative, cheap, natural, and

ecofriendly approaches to help maize adapt to drought and

reduce crop loss. There is increasing evidence that the utilization

of plant growth-promoting bacteria (PGPB) and plant

microbiome provides a new perspective in this regard (Liu

et al., 2020; Gao et al., 2021; Orozco-Mosqueda et al., 2021).

PGPB play an important role in promoting plant growth and

improving plant stress resistance and have increasingly attracted

attention, especially with regard to drought stress (Kang et al.,

2012; Moreno-Galvan et al., 2020; Abdelaal et al., 2021; Fiodor

et al., 2021). PGPB alleviate drought by inducing the accumulation

of osmotic regulatory substances in the host plants, reducing leaf

conductance and transpiration under drought stress (Malinowski

and Belesky, 2000), and promoting root development, thereby

increasing the ability of plants to absorb water (Marasco et al.,

2013). Certain PGPB protect the cells from oxidative stress by

scavenging free radicals and modulating lipid peroxide levels

(Mastouri et al., 2010; Lata et al., 2018; Tiepo et al., 2020).

Some PGPB regulate primary metabolites (amino acids, etc.) to

promote plant growth (Curzi et al., 2008; Hardoim et al., 2008;
02
Aguiar et al., 2016), and improve plant stress resistance by

regulating secondary metabolites, such as phenolic compounds,

alkaloids, and terpenoids (Planchamp et al., 2015; Xie et al., 2019;

Cappellari et al., 2020; Kousar et al., 2020). Moreover, the

application of PGPB could affect the rhizosphere microbiome of

plants (Zuluaga et al., 2021); however, the PGPB-mediated

interaction between plants and their rhizosphere microbiome is

still unclear.

The rhizosphere microbiome is crucial for plant productivity

due to its essential functions in improving plant nutrient

acquisition, disease suppression, and stress tolerance (Santos

et al., 2021; Shao et al., 2021). Some plants attract beneficial

microorganisms by regulating the synthesis and secretion of

specific root exudates, such as triterpenoids (Huang et al., 2019)

and benzoxazines (Kudjordjie et al., 2019), to protect the plant

under stress conditions, especially pathogen infection (i.e., “cry

for help” strategy) (Berendsen et al., 2018; Gao et al., 2021; Liu

et al., 2021). Nevertheless, our understanding of the interactions

within the complex maize rhizosphere microbiome and how

PGPB mediate these relationships under drought still

remains unclear.

Most species of Sphingomonas possess the ability to degrade

a variety of aromatic compounds and industrial pollutants (Leys

et al., 2004; Gong et al., 2016; Liu et al., 2017), thus contributing

significantly to environmental remediation and industrial

production. Recent studies have found that some strains of

Sphingomonas have the capacity to promote plant growth

(Sukweenadhi et al., 2015) and alleviate abiotic stresses (Chen

et al., 2014; Khan et al., 2014; Asaf et al., 2018; Luo et al., 2019).

However, the knowledge of the interaction between

Sphingomonas and plants, metabolites, and the rhizosphere

microbiome under drought stress is limited.

Sphingomonas sp. Hbc-6, isolated from Nitraria tangutorum

in the desert area of Minqin, Northwest China, is an endophytic

bacterium with plant growth-promoting properties and

promoting the root development of Arabidopsis thaliana. To

further explore the mechanism by which Hbc-6 promoted crops

growth and improved its drought resistance, we selected maize
frontiersin.org

https://doi.org/10.3389/fpls.2022.1002772
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2022.1002772
for subsequent experiments. In this study, we investigated the

effects of Hbc-6 on maize phenotype, biomass, physiological

metabolism, the rhizosphere bacterial communities and the

correlation between metabolome and microbiome under

normal conditions and drought stress. We found that

Sphingomonas sp. Hbc-6 could regulate physiological

metabolism, recruit beneficial rhizosphere bacteria, promote

plant growth, and ultimately increase plant biomass and

drought tolerance.
Material and methods

Cultivation of bacteria

Sphingomonas sp. Hbc-6 was isolated from the leaves of N.

tangutorum, a desert plant in Minqin, Gansu, China. The

bacterial strains were cultured on R2A agar medium at 28°C.

After 60 h of growth, a single colony was picked out and cultured

in R2A liquid medium in a rotary shaker (150 rpm) at 28°C for

16 h. Subsequently, bacterial cells were collected via

centrifugation. Preliminary work found that the inoculation

concentration of 1.0~1.5×108 CFU mL-1 has the best effect on

promoting plant growth, and in order to maintain a consistent

inoculation amount each time, the bacterial cells were

resuspended in sterile water and adjusted to 1.0~1.5×108 CFU

mL-1 for using.
Maize seed germination

The washed maize seeds were sequentially disinfected with

75% ethanol for 3 min and 0.5% sodium hypochlorite solution

for 15 min and then washed five times with sterile water. The

sterilized seeds were immersed in bacterial solution, and the

control was replaced with R2A liquid medium and placed in

the incubator (temperature: 26 ± 1°C). After 8 h of cultivation,

the seeds were sterilized and washed. The sterilized seeds were

then placed in a Petri dish with two layers of filter paper (100

seeds per dish). Sterile water, 5% PEG 6000, 10% PEG 6000, and

15% PEG 6000 solutions were added, in order, which was

followed by incubation under a light cycle of 16 h light/8 h

darkness at 26 ± 1°C, with light intensity of 5500 lx. The

germination rate (GR) was measured for 8 days at an interval

of one day. The calculation of GR and germination energy (GE)

was done using Chen’s (Chen et al., 2021) method as follows:
Fron
GR (%) = number of germinated seeds on day 8/number of

all tested seeds × 100

GE (%) = number of germinated seeds on day 3/number of

all tested seeds × 100
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Pot experiment

The washed maize seeds were sequentially disinfected with

75% ethanol for 3 min and 0.5% sodium hypochlorite solution

for 15 min, washed with sterile water five times, sown on a Petri

dish with 2 layers offilter paper, kept wet by adding sterile water,

and placed in a light incubator for culture. The coincident

germinated seedlings were transplanted into the soil

[Pindstrup substrate: roseite (1:2, v/v)]. When the maize

seedlings developed three leaves, natural drought and the soil

water content was controlled as follows: 60–70% (normal

condition, WW), 50–60% (light drought, LD), 40–50%

(medium drought, MD), 30–40% (serious drought, HD). After

reaching adequate soil water conditions, the roots were irrigated

with bacterial solution. Each plant was inoculated with 1 mL of

bacterial suspension every day, for seven days, while the control

was irrigated with the same volume of sterile water.
Measurement of plant traits

After seven days of continuous inoculation, the first samples

were taken on the first day after inoculation. The leaves from

each treatment were observed every five days to determine their

physiological indices. The content of chlorophyll was

physiologically detected by the method described by Wellburn

(1994), and the permeability of the plasma membrane was

measured using a conductivity meter (Yang et al., 2011). The

content of MDA was determined according to the reactants of

thiobarbituric acid (Heath and Packer, 1968). The content of

soluble sugar was determined according to the method described

by Behrooz et al. (2019). The activities of catalase (CAT),

peroxidase (POD), and superoxide dismutase (SOD) were

determined according to the methods described by Liang et al.

(1982), Amako et al. (1994), and Luo et al. (2019). The 26th day

after inoculation, plants were carefully separated from the soil

and gently washed with deionized water to remove the attached

soil. Then the plant height, root length, fresh weight and dry

weight of the aboveground and underground parts were

measured. The third leaf from the top of the maize plant was

used for observing stomatal morphology according to the

method described by Wu et al. (2018).
Widely targeted metabolism analysis

Whole plants under normal conditions (normal condition

with non-inoculation, MC; normal condition with inoculation,

WH) and medium drought conditions (medium drought with

non-inoculation, DMC; medium drought with inoculation, MH)

were collected on the 26th day after inoculation for widely
frontiersin.org
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targeted metabolomics evaluation. Maize plants were weighed,

divided into 15-mL sterile centrifuge tubes, and stored at -80°C

for subsequent experiments. The four groups of samples were

crushed using a mixer mill (MM 400, Retsch) with a zirconia

bead for 1.5 min at 30 Hz, and 100 mg powder was weighed and

extracted overnight at 4°C with 0.6 mL 70% aqueous methanol.

Following centrifugation at 10000 ×g for 10 min, the extracts

were absorbed (CNWBOND Carbon-GCB SPE Cartridge, 250

mg, 3 mL; ANPEL, Shanghai, China, www.anpel.com.cn/cnw)

and filtered (SCAA-104, 0.22 mm pore size; ANPEL, Shanghai,

China, http://www.anpel.com.cn/) before UPLC-MS/MS

analysis. The sample extracts were analyzed using a UPLC-

ESI-MS/MS system (UPLC, Shim-pack UFLC SHIMADZU

CBM30A system, www.shimadzu.com.cn/; MS, Applied

Biosystems). The effluent was alternatively connected to an

ESI-triple quadrupole-linear ion trap (QTRAP)-MS. LIT and

triple quadrupole (QQQ) scans were acquired on a triple

quadrupole-linear ion trap mass spectrometer (Q TRAP), API

4500 Q TRAP UPLC/MS/MS System, equipped with an ESI

Turbo Ion-Spray interface, operating in positive and negative

ion modes and controlled by Analyst 1.6.3 software (AB Sciex).

Instrument tuning and mass calibration were performed with 10

and 100 mmol L-1 polypropylene glycol solutions in QQQ and

LIT modes, respectively. QQQ scans were acquired as MRM

experiments with collision gas (nitrogen) set to 5 psi. DP and CE

for individual MRM transitions were performed with further DP

and CE optimization. A specific set of MRM transitions was

monitored for each period according to the metabolites eluted

within this period.
Bacterial DNA extraction and
MiSeq sequencing

The maize rhizosphere soil from normal conditions and

medium drought treatment on the 26th day after inoculation

were collected and used for high-throughput sequencing. After

extracting the DNA of each sample, it was subjected to 1%

agarose gel electrophoresis. Specific primers 338F (5′-
ACTCCTACGGGAGGCAGCAG-3 ′ ) and 806R (5 ′ -
GGACTACHVGGGTWTCTAAT-3′) with barcodes were used

to amplify 16S rRNA of the bacterial V3-V4 region. The PCR

products were detected and quantified by QuantiFluor™-ST

Blue Fluorescence Quantification System (Promega), and then,

each sample was mixed in the corresponding proportion. The

following thermal program was used for amplification: pre-

denaturation at 95°C for 3 min, denaturation at 95°C for 30 s,

annealing at 50°C for 30 s, extension at 72°C for 45 s (a total of

30 cycles), and finally, extension at 72°C for 10 min. The reaction

products were detected using 2% agarose gel electrophoresis.

The Miseq library was constructed with TruSeq™ DNA Sample

Prep Kit reagents, and the data were optimized using

Trimmomatic and FLASH software after sequencing was
Frontiers in Plant Science 04
completed on the Illumina MiSeq sequencing platform

(Majorbio, Shanghai, China).
Statistical analysis

Graphpad Prism 8.0 software (Graphpad software Inc.,

California, USA) was used for statistical analysis of

experimental data (including biomass and physiological data),

and two-way analysis of variance (ANOVA) and one-way

analysis of variance was performed for significant difference

analysis. The differential metabolites were screened based on the

combination of fold change and variable importance in project

(VIP) value of the orthogonal partial least squares discriminant

analysis (OPLS-DA) model (fold change ≥ 2 and ≤ 0.5, VIP ≥ 1).

The metabolite spectrum data were analyzed by Analyst 1.6.3

and OPLS-DA. Kyoto Encyclopedia of Genes and Genomes

(KEGG) database and Origin 9.0 were employed to analyze the

experimental results. Usearch (version 7.1 http://drive5.com/

uparse/) was used for the analysis of bioinformatics data of the

operational taxonomic units (OTUs) at 97% similarity level.

Ribosomal Database Project classifier was used for taxonomic

analysis of 97% similar OTU representative sequences, and the

Silva database (Release128 http://www.arb-silva.de) was used for

bacterial database comparison. Finally, a filtered OTU table was

obtained for further analysis. The raw metagenome read data are

deposited in the National Center for Biotechnology Information

(NCBI) Short Read Archive (BioProject ID: PRJNA816337).

Mothur software was used for index analysis, and finally, R

language was used to analyze and draw the principal

coordinates, flora structure, and community heat map.
Results

Hbc-6 improved seed germination,
maintained leaf stomatal morphology
and increased biomass of maize

Different concentrations of PEG 6000 were applied to

simulate drought gradient for exploring the effect of Hbc-6 on

seed germination. Plants inoculated with Hbc-6 exhibited

significantly higher GR than non-inoculated seeds under 10%

PEG 6000 and 15% PEG 6000 treatments, and the GE of

inoculated plants was higher than that of non- inoculated

plants under no stress and drought stress (Table S1). In the

pot experiment, our results showed that Hbc-6 alleviated the

impact of drought on maize and kept the plants in good health.

Here, we observed the stomatal morphology of maize leaves,

wherein both ends of the stomatal subsidiary cells began to

sharpen after drought treatment (Figure 1A), the more severe

the drought, the more serious the sharpening of guard cells

(Figure S1A). Stomatal invagination appeared, stomatal aperture
frontiersin.org
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and length significantly decreased, but the stomatal density

increased. However, after inoculation with Hbc-6, the stomatal

morphology of leaves was restored, the sharpening degree was

reduced, and the stomatal aperture was moderately increased

(Figures 1A, B; S1). The fresh weight, dry weight, and plant

height of maize significantly decreased under drought stress, but

Hbc-6-inoculated maize had significantly higher biomass

compared with the non-inoculated plants (Figures 1C–E). For

example, compared with non inoculation, the root fresh weight,

shoot dry weight and plant height of inoculated maize were

increased by 61.3%, 96.3% and 27.7% respectively under drought

stress (Figures 1C–E). In addition, Hbc-6 also significantly

increased the biomass of maize under light and severe drought

stress (Figure S1).
Frontiers in Plant Science 05
Hbc-6 improved the drought tolerance
of maize by affecting the plant’s
physiology and metabolism

The results of physiological and biochemical examination of

maize leaves showed that MDA content and conductivity

increased under normal conditions and drought stress, but

compared with the control, inoculation with Hbc-6 effectively

reduced the MDA content and conductivity at each time point

(Figures 2A–D). After inoculation, the content of chlorophyll,

soluble sugar, and the activities of three antioxidant enzymes of

leaves increased at each time point under normal conditions and

drought stress (Figures 2E–K). For example, after 11 days of

inoculation, soluble sugar content and POD activity increased by
frontiersin.or
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FIGURE 1

Effects of Sphingomonas sp. Hbc-6 inoculation on the stomatal morphology and above- and below-ground biomass of maize under four
different treatments, on the 26th day after inoculation with Hbc-6. Representative images of maize stomas (A) on the 26th day after inoculation
with Hbc-6 under four different treatments. Scale bars represent 100 mm. The blue arrow represent the subsidiary cell of maize. (B) Stomatal
length and stomatal aperture, (C) shoot/root fresh weight, (D) shoot/root dry weight, and (E) shoot/root length of plants inoculated with Hbc-6
and non-inoculated (control) plants under four different treatments. MC, non-inoculated (control) plants under normal conditions; WH, plants
inoculated with Hbc-6 under normal conditions; DMC, non-inoculated (control) plants under medium drought; MH, plants inoculated with
Hbc-6 under medium drought. D, drought as factor; H, Sphingomonas sp. Hbc-6 as factor; D*H, Interaction between drought and Hbc-6. Data
are presented as mean ± standard deviation (SD) of three independent experiments (leaves from three plants). Different letters indicate
statistically significant differences (two-way analysis of variance, ANOVA; Tukey test; p < 0.05).
g
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34% and 55.2% respectively compared with that non inoculation

under drought stress (Figures 2F, I). Similar results were

obtained under two other degrees of drought (Figure S2).

To further analyze the effects of Hbc-6 on maize growth and

drought tolerance, we applied widely targeted metabolomics

technology to detect the metabolites of maize under normal

and medium drought stress conditions. A total of 830

metabolites were detected. The method of combining the VIP

value of fold change and the OPLS-DA model (fold change ≥ 2

and fold change ≤ 0.5, VIP ≥ 1) was applied to screen differential

metabolites. The results showed that there were 6 upregulated

differential metabolites and 37 downregulated substances under

normal conditions (MC vs. WH) (Figure 3A; Table S2), while

there were 16 upregulated differential metabolites and 29

downregulated substances in the drought groups (DMC vs.

MH) (Figure 3B; Table S3). KEGG metabolite pathway

enrichment analysis revealed that flavonoid biosynthesis,

isoflavonoid biosynthesis, and glutathione metabolism were
Frontiers in Plant Science 06
the main metabolic pathways of maize under normal

conditions (Figure 3C).The enrichment pathway of maize

growing in drought were flavonoid biosynthesis, isoflavonoid

biosynthesis, flavone and flavonol biosynthesis, and glutathione

metabolism (Figure 3D). Metabolites such as flavonoids, organic

acids and derivatives, amino acids and derivatives, nucleotides

and derivatives, vitamins and derivatives, lipids, alkaloids,

phenylpropanoids, terpenes, polyphenols, phenolic amines,

and quinones were the main differential metabolites both

under two conditions (Tables S2, S3). Compared with non-

inoculated plant, Hbc-6 was significantly up-regulated

resveratrol and down-regulated beta-zearalanol and other

substances under normal conditions (Figure 3E; Table S3). In

addition, resveratrol, putrescine, maleic acid, glutathione,

citraconic acid, vestitol and other substances were also

upregulated after inoculation compared with the control

treatment under drought stress (Figure 3F; Table S3).

Interestingly, resveratrol was upregulated and zeranol was
A B D

E F G

I

H

J K

C

FIGURE 2

Physiological and antioxidant system responses of maize to Sphingomonas sp. Hbc-6 on the 26th day after inoculation under four different
treatments. Changes in (A, B) MDA content, (C, D) relative conductivity, (E, F) soluble sugar levels, and (G, H) chlorophyll content in maize
during the following treatments: MC, WH, DMC, and MH. Time course of (I) POD, (J) SOD, and (K) CAT in response to Hbc-6. MC, non-
inoculated (control) plants under normal conditions; WH, plants inoculated with Hbc-6 under normal conditions; DMC, non-inoculated (control)
plants under medium drought; MH, plants inoculated with Hbc-6 under medium drought. Data are presented as mean ± standard deviation (SD)
of three independent experiments (leaves from three plants). Different letters/asterisks indicate statistically significant differences (one-way
analysis of variance, ANOVA; Duncan’s test; p < 0.05). *p < 0.05; **p < 0.01; ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1002772
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2022.1002772
downregulated after inoculation with Hbc-6 both under two

conditions (Figures 3E, F).
Hbc-6 altered bacterial community
structure of rhizosphere soil and
recruited beneficial bacteria

Bacterial communities in the rhizosphere soil were monitored

to investigate the effect of the Hbc-6 on the maize microbiome

structure under normal conditions and medium drought stress.

The OTUs of rhizosphere soil increased after inoculation with

Hbc-6 compared with non-inoculated plants (Figure 4C). In

particular, the richness and diversity of bacterial communities

was significantly lower in non-inoculated rhizosphere soil than in
Frontiers in Plant Science 07
inoculated soil under normal conditions, whereas the richness of

bacterial communities significantly increased after inoculation

with Hbc-6 under drought stress (Figures 4A, B; S3A, B).

Additionally, inoculation affected the relative abundance of

dominant microflora in the rhizosphere soil. The proportions of

Actinobacteria and Acidobacteria in the two inoculated groups

(WH and MH) were higher than those in the non-inoculated

groups (MC and DMC), while the relative abundance of

Proteobacteria in the WH and MH groups was lower than that

in the non- inoculated groups at phylum level (Figure 4D). The

abundances of Actinobacteria, Chloroflexi, and Parcubacteria

were significantly enhanced after inoculation with Hbc-6

(Figure 4D). Analysis of bacterial differential abundance showed

that Streptomyces and Cellulomonas were significantly enriched in

inoculated rhizosphere soil under normal conditions
A B

D

E

F

C

FIGURE 3

Response of maize metabolites to Sphingomonas sp. Hbc-6 on the 26th day after inoculation under four different treatments.
(A) Volcano plot on differential metabolites in maize of normal group (MC vs. WH) and (B) drought group (DMC vs. MH) of medium drought
treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) classification of differential metabolites under normal (C) and medium drought
(D) conditions. The abscissa represents the rich factor corresponding to each path, the ordinate is the pathname, and the color of the point is
the p value. The red indicates that the enrichment is more significant. The size of the point represents the number of differential metabolites
enriched: differential multiples of differentially expressed metabolites on normal (E) and medium drought (F) conditions. The abscissa represents
the log2 (fold change), and the ordinate represents the name of metabolite. Red represents upregulated metabolites and green represents
downregulated metabolites.
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(Figures 4E, S3C), while Streptomyces, Sphingomonas,

Burkholderia-Paraburkholderia, Saccharibacteria, Pseudomonas,

Methylobacterium, Variovorax, Pedobacter, and Comamonas

were enriched more under drought stress compared with DMC

(Figures 4E, 5). Interestingly, abundance of unclassified

Xanthomonadaceae members was effectively reduced by

inoculation under normal conditions and drought stress.
Correlations between bacterial
communities and metabolites

We further performed Spearman correlation analysis to assess

the impact of Hbc-6 on rhizosphere bacterial interactions with the

maize plant metabolites. The data showed a significant correlation
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between different metabolites of maize and some bacteria in the

rhizosphere. For example, resveratrol was significantly positively

correlated with Actinocatenispora, Cytophaga, Dactylosporangium,

and Geobacter (p< 0.05) in the inoculated group under normal

conditions (Figure 6A), while resveratrol was significantly

positively correlated with beneficial bacteria Pedobacter (p< 0.05),

Pseudoclavibacter, and TM6-Dependentiae under drought stress

(Figure 6B). Glutathione was negatively correlated with Labiltrix,

Chitinophagaceae, Sphingomonadaceae, and other bacteria (p<

0.05) under normal conditions, while glutathione was only

significantly positively correlated with Cellulomonas (p< 0.05)

under drought stress (Figure 6). Citraconic acid was significantly

positively correlated with the beneficial bacterium Variovorax;

vestitol was significantly positively correlated with Comamonas

and Methylobacterium but significantly negatively correlated with
A B

D
E

C

FIGURE 4

Effects of Sphingomonas sp. Hbc-6 on rhizosphere soil bacterial community diversity and composition. (A) Shannon index, (B) Chao index, and
(C) Venn diagram of OTU level of rhizosphere bacterial community under normal and medium drought conditions. Relative abundance of
rhizosphere soil bacterial community at (D) phylum level and (E) genus level. Different asterisks indicate significant differences following
Student’s t-test (*p < 0.05; **p < 0.01; ***p < 0.001).
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Xanthomonadaceae under drought stress (Figure 6). These

observations were consistent with the amplicon sequencing data

and differential metabolite data (Figures 4, 5; Tables S2, S3).

Collectively, these results suggested that Hbc-6 mediated the

interactions between rhizosphere microorganisms and

maize metabolites.
Discussion

It was confirmed that inoculation with PGPB regulated plant

physiological metabolism and improved plant growth and

development (Marasco et al., 2013; Etesami and Maheshwari,

2018). Our study demonstrated that the phenotype, physiology,

metabolism, and rhizosphere microbial community of maize

significantly changed after inoculation with Sphingomonas sp.

Hbc-6 and that the biomass and drought tolerance of the plants

increased compared with that of non-inoculated plants.
Physiological and metabolic response
mechanism of maize to Hbc-6

Drought is a major threat to crop growth, leading to changes

in plant physiological metabolism. For example, drought induces

an increase in MDA content and free radical levels in plants

which intensifies the damage to the plasma membrane, leads to
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oxidative stress and endangers the healthy growth of plants

(Tsikas, 2017). Additionally, MDA content and cell membrane

permeability increase gradually with an increase in the degree

and duration of drought stress (Figures 2; S2). However, the

inoculation of Hbc-6 was found to reduce MDA content and cell

membrane permeability under drought stress to alleviate the

drought-induced damage on plants. The increase of antioxidant

enzyme activity and osmotic substance content can promote the

growth of plants under drought stress (Scandalios, 1993; Zhang

S. H. et al., 2018; Yang et al., 2021). Here, Hbc-6 also promoted

plant growth by increasing the activities of SOD, POD, CAT,

chlorophyll, soluble sugar, and other beneficial substances under

drought stress (Figures 2; S2).

Metabolites play a crucial role in plant-microbial interaction,

plant ecological adaptability, and disease and insect resistance

(Hartmann, 2007; Walker et al., 2011). Therefore, we explored

the effect of Hbc-6 on maize metabolites under different soil

water conditions. The results showed that the quantity of

different metabolites changed after inoculation under normal

conditions (MC vs. WH) and drought conditions (DMC vs.

MH) (Figures 3E, F; Tables S2, S3). This indicated that Hbc-6

affected the metabolites of maize under both soil conditions. For

example, resveratrol was upregulated after inoculation

compared with the control under the two soil moisture

conditions (Figures 3E, F). Resveratrol, as a natural plant

polyphenol, plays an important antioxidant role with utility in

scavenging free radicals, antagonizing pathogens and treating
FIGURE 5

Species difference abundance in rhizosphere soil of inoculated (with Hbc-6) and non-inoculated (control) plants under medium drought at the
genus level. The abscissa represents different groups, boxes of different colors represent different groups, and the ordinate represents the
average relative abundance of a species in different groups. Different asterisks indicate significant differences following Student’s t-test
(*p < 0.05; **p < 0.01; ***p < 0.001).
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human diseases (Hain et al., 1993; Aziz et al., 2003; Howitz et al.,

2003; Kiskova et al., 2020). In addition, putrescine, maleic acid,

citraconic acid, and vestitol were upregulated after inoculation

with Hbc-6 (Table S3) under drought stress. Putrescine is

involved in the biological processes of plant growth and

abiotic stress response (Evans and Malmberg, 1989) and

citraconic acid participates in the TCA cycle (Zhang et al.,

2016; Zhang H. L. et al., 2018). Maleic acid improves the metal

chelation and antioxidant metabolism of plants, thereby

promoting the healthy growth of plants (Al Mahmud et al.,

2017). Vestitol, as an antitoxin, effectively antagonizes pathogens

and pests (Ueda and Sugimoto, 2010). Hbc-6 inoculation

effectively downregulated zeranol (Figures 3E, F, Table S2, S3)

under the two different soil water conditions. Zeranol has strong

reproductive toxicity or teratogenicity and destroys the

mammalian reproductive system (Sun et al., 2017; Rogowska
Frontiers in Plant Science 10
et al., 2019). Therefore, we propose that Hbc-6 effectively

reduces the content of zeranol and provides a safe food source

for mammals with a far-reaching significance. Overall, the

results of physiology and metabolism suggested that Hbc-6

could improve the adaptability of plants to drought by

increasing levels of beneficial substances that promote plant

growth and resist stress or by decreasing levels of

harmful substances.
Hbc-6 increased bacterial diversity and
recruited more beneficial bacteria in
maize rhizosphere soil

Much attention has been drawn to PGPB affecting plant

root architecture and physiological metabolism. However, the
frontiersin.or
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FIGURE 6

Correlation network of microbiome and metabolome of maize. Correlation network under normal conditions (A) and medium drought (B). The
blue circle represents metabolites, and the yellow circle represents bacteria at the genus level. The red line represents a significant positive
correlation, and the green line represents a significant negative correlation. The thicker the line, the more significant the correlation; the larger
the circle, the greater the relative abundance or metabolite expression of microorganisms. We selected differential metabolites and metabolites
with correlation > 0.7 and significant correlation test with p-value ≤ 0.05.
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synergistic effects of PGPB and the rhizosphere microbiome on

plants have been rarely studied. Here, we studied the effects of

different treatments on the bacterial community structure of

the maize rhizosphere via high-throughput sequencing of 16S

rRNA amplicons. The results showed that the diversity and

richness of the bacterial community and OTUs increased after

inoculation with Hbc-6 under different soil water conditions

(Figures 4A–C), and the plants showed higher biomass and

healthy growth (Figure 1), compared to the growth noted

under control treatment. This finding suggested that Hbc-6

could make the bacterial community structure of the

rhizosphere more complex and diverse, in order to help

plants adapt to adversity and grow well. These observations

were consistent with those of other studies (Luo et al., 2019).

After being infected with pathogens, plants recruit

microorganisms for protection against disease (Gao et al., 2021;

Liu et al., 2021; Yin et al., 2021). Some studies showed that a “call

for help”mechanismmay also occur during abiotic stress (Santos-

Medellıń et al., 2017; Liu et al., 2021), which is consistent with our

results. Compared with the DMC group, the abundance of

Streptomyces in the MH group was significantly higher

(Figure 4E, Figure 5). It is known that some Streptomyces can

produce antibacterial compounds and spores with strong

resistance, and the increase in Streptomyces was related to the

improvement of drought tolerance (Yandigeri et al., 2012;

Fitzpatrick et al., 2018), exhibiting potential benefits for host

plants (Jones et al., 2017; Worsley et al., 2020). Some recent

researches attributed similar benefits to Sphingomonas, including

plant growth promotion and improvement of resistance to abiotic

stress (Asaf et al., 2017; Luo et al., 2019; Wang et al., 2020). After

inoculation with Hbc-6 under drought stress, the abundance of

Sphingomonas significantly increased compared with that in non-

inoculated controls. Contrary to previous study results (Qiao et al.,

2017), we found that Sphingomonas maintained high

abundance even after prolonged inoculation (Figure 4E, 5). We

propose that Hbc-6 continually plays a key role after

inoculation. Additionally, Hbc-6 inoculation significantly

increased the abundance of Burkholderia, Paraburkholderia,

Saccharibacteria, Pseudomonas, Methylobacterium, Variovorax

and Comamonas, compared to their abundances in non-

inoculated plants under drought stress (Figures 4E, 5). Most of

these bacteria have been proved to be beneficial for the healthy

growth of plants. For example, Variovorax is the core bacterial

genus that participates in the development of Arabidopsis root

system through its auxin degradation operon (Finkel et al., 2020),

and Pseudomonas and Methylobacterium are regarded as more

common PGPB (Jorge et al., 2019; Kumar et al., 2019; Liu et al.,

2019; Zhang et al., 2019). Moreover, Saccharibacteria and

Comamonas displayed potential for decontamination (Schulze-

Makuch et al., 2018) and degradation of chloronitroaromatic

pollutants (Liu et al., 2007). These results indicated that Hbc-6
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might promote plant growth and improve drought tolerance by

recruiting and enriching beneficial bacteria from the rhizosphere.
Hbc-6 mediated the interaction
between plant metabolites and
rhizosphere bacteria

Recent studies have focused on the interaction between plant-

related microorganisms and plant secondary metabolites

(Korenblum et al., 2020; Sun et al., 2021; Xia et al., 2021). An

observation confirmed that Bacillus in tomato leaf microbiota

caused systematic exudation of acylsugar secondary metabolites in

tomatoes (Korenblum et al., 2020). Some bacterial communities in

the leaf layer of Cunninghamia lanceolata were closely related to

some types of leaf metabolites, such as alkaloids, aldehydes,

vitamins, azoles, and phenols, as reported by Sun et al. (2021).

In this study, we found that Hbc-6 mediated the significant

correlation between some beneficial bacteria and metabolites

under both normal and drought stress conditions (Figure 6).

For example, an increase in citraconic acid level was significantly

positively correlated with Variovorax, and an increase in vestitol

level was significantly positively correlated with Comamonas and

Methylobacterium, while increases in citraconic acid and vestitol

levels were negatively correlated with Xanthonadaceae, after

inoculation with Hbc-6 under drought stress (Figure 6).

Citraconic acid was reported to be an intermediate key product

of TCA cycle (Zhang et al., 2018), and metabolites of TCA cycle

were proved to be able to recruit PGPB in the rhizosphere

(Rudrappa et al., 2008; Yuan et al., 2018). Consequently, we

speculated that the increased levels of citraconic acid led to the

recruitment of, and an increase in abundance of, the beneficial

bacterium Variovorax, in addition to antagonizing the potentially

harmful bacterium Xanthonadaceae (Abendroth et al., 2017;

Costa et al., 2021), according to the results of 16S amplicon

sequencing and differential metabolites (Figures 3, 5). These

results revealed the Hbc-6-mediated interaction between plant

metabolites and rhizosphere microorganisms. We proposed that

Hbc-6, in addition to cooperating with other beneficial bacteria to

regulate plant metabolism and improve plant growth ability,

directly affected plant metabolite levels to attract beneficial

bacteria or antagonize pathogens, thereby promoting plant

growth and improving plant drought resistance.

Based on the above, we found that the mechanism of

promoting plant growth and improving plant drought resistance

by Hbc-6 was a multi-faceted one (Figure 7). Specifically, on the

one hand, Hbc-6 promoted seed germination and root

development, improved plant photosynthesis (maintenance of

stomatal morphology and increase of chlorophyll content),

improved antioxidant enzyme activity (SOD, CAT and POD),

and increased beneficial osmotic substance content (proline,
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soluble sugar) under normal conditions and drought stress. In

addition, Hbc-6 regulated plant metabolites, upregulated

beneficial metabolites (resveratrol, etc.) and down-regulated

potentially harmful metabolite (zeranol). These differential

metabolites may attract potentially beneficial rhizosphere

bacteria, thus promoting plant growth. On the other hand, Hbc-

6 reshaped the rhizosphere bacterial community, increased the

OTUs and richness and recruited more potentially beneficial

bacteria. In a word, Hbc-6 jointly increased maize biomass and

improve drought tolerance through the above ways.
Conclusion

In this study, Sphingomonas sp. Hbc-6increased maize biomass,

maintained stomatal morphology and regulated physiological

metabolism both under normal conditions and drought stress.

Additionally, Hbc-6 altered the bacterial community structure of

rhizosphere soil, recruited potentially beneficial bacteria and may

cooperate with these beneficial bacteria to promote the growth of

maize and improve its drought tolerance. However, these potentially

beneficial rhizosphere bacteria need further screening and verification

of their functions. In a word, our findings provide a theoretical

foundation for further understanding of the interaction between

Sphingomonas and plants under drought stress. Hence, this

comprehensive assessment suggests that Sphingomonas sp. Hbc-6 is

an ecofriendly alternative to chemicals and has high potential to

enhance the growth and productivity of maize in arid agroecosystems.
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