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Abstract

Sepsis, an amplified immune response to systemic infection that leads to life-threatening organ 

dysfunction, affects >125,000 people/day worldwide with 20% mortality. Modest therapeutic 

progress for sepsis has been made, in part because of the lack of therapeutic translatability 

between mouse-based experimental models and humans. One potential reason for this difference 

stems from the extensive use of immunologically naive specific pathogen-free mice in preclinical 

research. To address this issue, we used sequential infections with well-defined BSL-2 pathogens 

to establish a novel immune-experienced mouse model (specific pathogen experienced [SPexp]) 

to determine the extent to which immunological experience and/or inflammation influences 

the host capacity to respond to subsequent infections, including sepsis. Consistent with their 

immunological experience, SPexp inbred or outbred mice had significant changes in the 

composition and activation status of multiple leukocyte populations known to influence the 

severity of cecal ligation and puncture–induced sepsis. Importantly, by varying the timing of 

sepsis induction, we found the level of basal inflammation controls sepsis-induced morbidity 

and mortality in SPexp mice. In addition, although a beneficial role of NK cells in sepsis 

was recently demonstrated in specific pathogen-free mice, NK cell depletion before cecal 

ligation and puncture induction in SPexp mice lead to diminished mortality, suggesting NK 

cells may have beneficial or detrimental roles in the response to septic insult dependent on host 

immune status. Thus, data highlight the importance of utilizing immune-experienced models for 

preclinical studies to interrogate the cellular/molecular mechanism(s) that could be therapeutically 

exploited during severe and dysregulated infection-induced inflammatory responses, such as 

sepsis. ImmunoHorizons, 2022, 6: 528–542.
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INTRODUCTION

Sepsis is an amplified immune response to systemic infection, leading to life-threatening 

organ dysfunction, characterized by an initial transient cytokine storm composed of 

proinflammatory and anti-inflammatory cytokines. Once the cytokine storm subsides, a 

chronic state of immune dysfunction, termed immunoparalysis, develops and can persist for 

months to years (1, 2). Current clinical data suggest nine people develop sepsis every 6 s 

globally, and two of those people succumb as a result of the overactive immune system and 

poorly controlled cytokine storm (3). Although the sepsis mortality rate has decreased in 

recent decades, this improvement reflects more on the significant advancements in critical 

care, with substantial effort and little progress (>100 failed phase II and III clinical trials) 

made in modulating the cytokine storm itself (4). A major unresolved issue in the field is 

the impact that “baseline” level of inflammation has on the acute immune response during 

a septic event. For example, TNF-α neutralization enhances survival in LPS-challenged 

specific pathogen-free (SPfree) mice, but this potential therapy failed to improve survival 

in laboratory mice born to wild mice or translate to improvements in septic patients (5, 6). 

Lack of therapeutic translatability between mice and humans is thought to arise, in part, 

from the extensive use of SPfree mice in preclinical sepsis research.

SPfree mice have been instrumental in our understanding of immunology and human 

disease because of their experimental reproducibility, ease of genetic manipulation, and 

highly refined systems of immunological interrogation (e.g., adoptive cell transfer) (7–10). 

Although mice and humans share >90% genetic homology (7, 11) the human immune 

system is shaped by daily exposure to pathogenic and commensal microbes, creating an 

immunologically experienced host—something that is not observed in SPfree mice. Thus, an 

adult SPfree mouse is immunologically more similar to a neonatal human, rather than adult 

and elderly humans (a substantial patient cohort susceptible to sepsis or other infections) 

(12–14). Thus, it is pertinent to understand how we can better bridge the immunological 

gap between mice and humans. One approach to mimic the complexity of immunological 

experience in adult humans is the use of “dirty” mice, generated through natural pathogen 

transfer that results in a host that immunologically resembles adult humans (7, 12, 14, 

15). Notably, we recently demonstrated these dirty mice have increased susceptibility to 

a sepsis-induced cytokine storm (16). As such, altered responses in dirty mice highlight 

the importance of utilizing immunologically experienced murine models in translational 

research.

Although dirty mice are closing the gap between mice and humans, their utilization comes 

at an experimental and fiscal cost. When generating dirty laboratory mice by cohousing 

with pet store mice, the laboratory mice receive a continual undefined bolus of pathogens 

resulting in variable cohorts with prolonged inflammation (9, 12, 16). Cohousing SPfree 

mice with pet store mice can also lead to significant mortality (12), prompting the need 

for increased numbers of mice that increase experimental costs. Lastly, the utilization of 

dirty mice may not be achievable at all institutions because of additional institution-specific 

requirements (e.g., BSL-3 housing) used to prevent the spread of unknown pathogens in 

conventional facilities (7). As an alternative to the dirty mouse models using pet store/
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wild mice and special housing, we developed an immunologically experienced murine 

model (specific pathogen experienced [SPexp]) using sequential infections with well-

studied BSL-2 laboratory pathogens (i.e., influenza A virus [IAV], CMV, vaccinia virus, 

attenuated Listeria monocytogenes, and lymphocytic choriomeningitis virus–Armstrong 

[LCMV-Arm]). This infection strategy drives the expansion and maturation of multiple 

adaptive and innate immune cell populations to promote the interrogation of how immune 

experience results in altered responses to subsequent challenges. The generation of 

SPexp mice through controlled sequential infections enables fine-tuning of the level of 

“experience” and inflammation before interrogating how this immunological experience 

influences susceptibility to subsequent challenge, including sepsis. The sequential infection 

model we developed is similar to the one described by Reese et al. (13), who showed 

sequential infection generates immunologically experienced mice exhibiting immune traits 

seen in adult PBMCs. Finally, the use of known pathogens allows us to draw conclusions 

based on published data specific to each pathogen.

In this study, we demonstrate that sequential infection of mice led to a transient increase 

in inflammation and TLR expression and a long-term altered cellular composition and 

activation status of multiple leukocyte populations. In addition, the level of inflammation (or 

cytokines/chemokines produced) and TLR expression contributes to the rate of mortality 

after a septic event. Lastly, in contrast with SPfree hosts, NK cells exacerbate septic 

mortality in SPexp hosts. These results have direct implications for preclinical interrogation 

of therapeutic intervention during the cytokine storm.

MATERIALS AND METHODS

Ethics statement

Experimental procedures using SPfree and sequentially infected mice were approved 

by University of Iowa Animal Care and Use Committee under Animal Care and Use 

Review, protocol #9101915, and housed under BSL-1 and BSL-2 conditions, respectively. 

Experimental procedures using SPfree mice cohoused (CoH) with pet store mice were 

approved by the University of Minnesota Animal Care and Use Committee, protocol 

#1906–37113A, and housed under BSL-3 conditions. All experiments followed Office of 

Laboratory Animal Welfare guidelines and Public Health Service Policy on Human Care and 

Use of Laboratory Animals. Experimental animals were humanely euthanized by cervical 

dislocation.

Mice and infections

Inbred C57BL/6 mice (wild-type, Thy1.2/1.2) were bred at the University of Iowa, and 

outbred Swiss Webster mice were purchased from Charles River. Mice were maintained 

in the animal facilities at the University of Iowa at the appropriate biosafety level. Both 

male and female mice >6 wk old were used in experiments, yielding similar results in 

both sexes. Generation of SPexp mice was achieved through sequential infection of SPfree 

mice with 103 PFUs IAV/Puerto Rico/8/34 (PR8; H1N1) intranasally (17), followed by 105 

PFUs murine CMV (MCMV)-Smith (or MCMV-K181) i.p. (18), 106 PFUs vaccinia virus 

i.p. (19), 107 CFUs attenuated L. monocytogenes (strain DPL1942) i.v. (20), and 2 × 105 
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PFUs LCMV-Arm i.p. (21) in 5-d intervals (Fig. 1A). Age-matched SPfree mice served as 

controls. In indicated experiments, SPfree and SPexp (without L. monocytogenes infection) 

mice were challenged with 8 × 104 CFUs virulent L. monocytogenes (strain 10403s) i.v. (16) 

at indicated days after LCMV-Arm infection.

Cell isolation, fluorescent labeling, and flow cytometric analysis

Peripheral blood was collected retro-orbitally from isoflurane-anesthetized mice. The blood 

was treated with ACK lysis buffer for 5 min to remove RBCs, leaving the peripheral blood 

leukocytes (PBLs). To determine expression of cell surface molecules, we incubated PBLs 

with mAb at 4°C for 20–30 min, and cells were subsequently fixed for 10 min using 

Cytofix Solution (BD Biosciences). The following mAb clones were used to stain processed 

samples: CD11a (M17/4; eBioscience), TLR4 (SA15-21; BioLegend), CD3ε (145-2C11; 

BioLegend), NK1.1 (PK136; eBioscience), NKp46 (29A1.4; BioLegend), F4/80 (BM8; 

BioLegend), TLR2 (CB225; BD Bioscience), CD19 (6D5; BioLegend), CD11c (HL3; 

BD Biosciences), CD4 (GK1.5; BioLegend), Ly6G (1A8; BioLegend), CD127 (A7R34; 

BioLegend), Ly6C (HK1.4; BioLegend), and CD8α (53-6.7; BioLegend). Flow cytometry 

data were acquired on a Cytek Aurora (Cytek, Bethesda, MD) and analyzed with FlowJo 

software (Tree Star, Ashland, OR).

Cytokine analysis

Multiplex cytokine analysis was performed via Bio-Rad Laboratories Bio-plex Pro Mouse 

Cytokine 23-Plex according to the manufacturer’s instructions for plasma cytokine analysis. 

Samples were analyzed on a Bio-Rad Laboratories Bio-Plex (Luminex 200) analyzer in the 

University of Iowa Flow Cytometry Core Facility.

Cecal ligation and puncture model of sepsis

Sepsis was induced by cecal ligation and puncture (CLP) (22) at indicated times after 

LCMV-Arm infection or in age-matched SPfree mice. In brief, mice were anesthetized 

with ketamine/xylazine, the abdomen was disinfected with Betadine (Purdue Products), 

and a midline incision was made. Thereafter, the distal third of the cecum was ligated 

with Perma-Hand Silk (Ethicon), punctured once (for moderate septic insult with ~10–20% 

mortality [CLP20]) or twice (for severe septic insult with ~50% mortality [CLP50]) using a 

25-gauge needle (23), and a small amount of fecal matter was extruded out of each puncture. 

The cecum was then returned to the abdomen, and the peritoneum was closed with 641G 

Perma-Hand Silk (Ethicon). Bupivacaine (Hospira) was then administered at incision site, 

and skin was closed using surgical Vetbond (3M). Directly after surgery, 1 ml of PBS 

was administered s.c. to provide after surgery fluid resuscitation, and flunixin meglumine 

(Phoenix) was administered for postoperative analgesia. Sham mice underwent identical 

laparotomy surgical procedures, excluding CLP.

Disease severity evaluation

Clinical signs of disease were evaluated and used for scoring disease severity. Clinical scores 

were assessed by ascending morbidity scale (24)—grooming: 0, (normal); 1, fur that has lost 

shine/become matte (dusty); 2, fur becomes erect or bristling (ruffled); mobility: 0, mobile 
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without stimulation (normal); 1, mice are less responsive/mobile to stimuli (reduced); 2, 

mice are unresponsive to stimuli (immobile); body position: 0, body is fully extended 

(normal); 1, back is arched/curved (hunched); 2, laying on side at rest (on side); weight loss: 

0, due to minimal weight loss that occurs in Sham controls weight loss has been adjusted, 

to allow for surgery-specific weight loss to be mitigated (<10%); 1, moderate weight loss 

(10–15%); 2, severe weight loss (>15%). After giving one score for each category, the sum 

of all categories indicates disease score. Importantly, dead mice are given the highest score 

(8) on the day of death and thereafter removed from scoring. Healthy scores range from 0 to 

2, moderate disease scores range from 3 to 5, and severe disease scores range from 6 to 8.

Generation of microbially experienced ‘dirty’ mice and cytokine measurements

Female C57BL/6N mice were purchased from Charles River (Wilmington, MA) at 8–10 wk 

of age. Female pet store mice were purchased from local pet stores in the Minneapolis-St. 

Paul metropolitan area. All mice were housed in American Association of Laboratory 

Animal Care–approved BSL-3 animal facilities at the University of Minnesota. SPfree B6 

and pet store mice were CoH at a ratio of 8:1 in large rat cages for 60 d to facilitate 

microbe transfer (25). Blood was collected from the SPfree B6 mice before cohousing and 

at weeks 2, 4, 6, and 8 of cohousing. Serum was separated from the clotted blood, and the 

concentrations of IP-10 (CXCL10), IFN-γ, IL-1β, IL-6, IL-10, and TNF-α were quantitated 

with a custom Procarta-Plex assay using a Luminex 200 with Bio-plex Manager Software 

5.0 at the University of Minnesota Cytokine Reference Laboratory.

NK cell depletion

NK cell depletion was performed as previously described (26). In brief, mice were depleted 

of NK cells by administering 300 μg of anti-NK1.1–depleting Ab i.p. at indicated times. 

Control mice were given the same amount of rat IgG. Administration of Abs on days of 

surgery was done immediately after surgery (abdominal closure).

Statistical analysis

Data were analyzed with Prism 9 GraphPad software and Microsoft Excel software for 

serum radial graphs. Summary data generated are represented as mean ± SEM. Violin plots 

and bar graphs were analyzed using unpaired t test (if unequal variance, Mann–Whitney 

U test was used), stacked bar graphs and morbidity curves with two-way ANOVA with 

Bonferroni test, and Kaplan–Meier survival curves with log-rank (Mantel–Cox) tests (*p < 

0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

RESULTS

Sequential infection increases inflammation and alters cellular composition

In contrast with adult humans, >6-wk-old SPfree B6 mice contain low frequencies and 

numbers of Ag-experienced T cells (12, 27, 28), a key feature of an immunologically 

experienced host. Importantly, immunological experience can be achieved through natural 

pathogenic and commensal microbe transfer, as shown in laboratory mice CoH with pet 

store mice, implanting embryos into wild-caught mice, or maintaining mice in enclosed 

outdoor areas (5, 15, 16, 29, 30). Given the complexities of these housing conditions 
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(e.g., need for BSL-3 housing, wild mice, outdoor enclosures, and institutional approval to 

introduce mice carrying a multitude of microbes normally excluded from standard SPfree 

housing), we developed a sequential infection model to generate SPexp mice (Fig. 1A, with 

arrow indicating abbreviated experimental scheme). Specifically, we sequentially infected 

SPfree B6 mice with the commonly used experimental pathogens IAV-PR8, MCMV-

Smith, vaccinia virus, attenuated L. monocytogenes, and LCMV-Arm in 5-d intervals via 

prototypical infection route (17–21). Our familiarity with using these pathogens to stimulate 

multiple Ag-specific T cell populations, as well as being able to house these mice under 

BSL-2 conditions, served as justification for this model (18, 31–35). Twenty-five days 

after PR8-IAV infection (and 5 d after last infection with LCMV-Arm), SPexp mice have 

increased body weight compared with their starting weight (Fig. 1B), suggesting these 

mice are not chronically ill. Moreover, the doses used of IAV, L. monocytogenes, vaccinia, 

and LCMV-Arm result in acute infections because the mouse immune system can clear 

these pathogens within 7–10 d (17, 36, 37). MCMV-Smith, by contrast, establishes a latent 

infection (38). Together, this combination of bacterial and viral pathogens serves as a 

reproducible model of acute and chronic infection that may occur in humans.

As expected, sequential infection with these pathogens increased the frequency of Ag-

experienced CD4 and CD8 T cells by day 10 after the first infection (IAV), and these 

frequencies remained elevated 5 d after the last infection (LCMV-Arm, day 25; Fig. 1C, 

1D). Importantly, the numbers of Ag-experienced CD4 and CD8 T cells were significantly 

increased in SPexp 25 d after initial infection in the blood (Fig. 1E, 1F). To further 

characterize the immunological changes that occur after sequential infection, we bled SPexp 

and age-matched SPfree mice at day 5 after last infection to define the cellular and cytokine 

composition (Fig. 2A). Sequential infection significantly increased the concentration of 

proinflammatory cytokines IFN-γ, IL-6, and TNF-α, which were ≥280, 24, and 15 times 

higher than that seen in SPfree mice, respectively (Fig. 2B, 2C), clearly demonstrating 

that sequential infection with common experimental pathogens elevates the systemic 

inflammatory response. Interestingly, SPexp mice had decreased total cellularity within the 

PBLs, which was accompanied by decreases in neutrophils, macrophages, B cells, and NK 

cells (Fig. 2D). Notably, the observed cellular decrease in SPexp mice may be because of 

cell death or migration to infected tissues, which requires further interrogation. SPexp mice, 

as expected, had increased frequencies of circulating Ag-experienced CD4 and CD8 T cells 

5 d after the last infection (Fig. 2E, 2F). Laboratory mice CoH with pet store mice have 

increased TLR2 and TLR4 expression (16), and this increased expression contributes to 

increased or decreased susceptibility to subsequent challenges relative to immunologically 

naive controls. To determine the extent to which TLR2 and TLR4 expression are modulated 

in SPexp mice, TLR2- and TLR4-expressing leukocytes were assessed in the blood at day 

5 after last infection. Notably, SPexp mice had increased frequencies of TLR2+ and TLR4+ 

leukocytes, consistent with observations in microbially experienced laboratory mice CoH 

with pet store mice (16), cumulatively demonstrating that sequential infection alters the 

activation status of multiple cell types (Fig. 2G, 2H).

Although microbial exposure-induced immune experience is different between 

conventionally housed naive mice and humans, another difference is genetic diversity 

because a majority of preclinical experiments are performed using inbred mouse strains, 
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such as C57BL/6 (7, 39, 40). Therefore, SPexp outbred Swiss Webster mice were generated 

to determine whether genetically diverse hosts undergo similar cellular immunological 

changes after sequential infections (Supplemental Fig. 1A). Similar to their inbred 

counterparts, outbred SPexp mice had increased proinflammatory cytokines (IL-2, IL-6, 

TNF-α, and IFN-γ), decreased cellularity in the blood, and an increased frequency of 

Ag-experienced CD4 and CD8 T cells within PBL 5 d after last infection (Supplemental 

Fig. 1B–E), as seen in inbred SPexp mice (Fig. 2). In addition, sequential infections in 

outbred SPexp mice resulted in an increased prevalence of TLR2- and TLR4-expressing 

leukocytes (Supplemental Fig. 1F, 1G). Taken together, exposing inbred and outbred mice 

to sequential infections with well-defined BSL-2 experimental pathogens in a relatively 

short time frame (20+ days) generated immunologically experienced hosts characterized by 

increased inflammation and changes in the composition and activation status of multiple 

leukocyte populations relative to immunologically naive SPfree mice.

Immunological experience achieved by sequential infection alters host response to newly 
introduced infections

Microbially experienced CoH mice have altered responses to newly introduced infections 

compared with SPfree mice, including enhanced clearance of virulent L. monocytogenes, 

but decreased survival after polymicrobial sepsis (16). The potential for generalized 

microbial exposure to have either beneficial or detrimental consequences on subsequent 

microbial challenge prompted us to examine the magnitude of the systemic cytokine storm 

in SPexp mice after CLP-induced sepsis, as well as monitor morbidity and mortality, relative 

to age-matched SPfree mice (Fig. 3A). Although SPfree and SPexp mice had similar 

weights before surgery and lost similar weight after CLP, SPexp mice exhibited delayed 

weight recovery and enhanced mortality after the septic event (Fig. 3B–D). These findings 

were recapitulated in outbred SPexp mice, which had increased mortality when CLP was 

performed 5 d after the last infection with LCMV-Arm (Fig. 3H, 3I). Importantly, the 

enhanced morbidity and mortality in inbred SPexp mice was accompanied by increased 

proinflammatory and anti-inflammatory cytokines 12 h after CLP (Fig. 3E, 3F). Therefore, 

similar to the findings observed in CoH ‘dirty’ mice; the sepsis-induced cytokine storm and 

susceptibility (mortality) to septic insult are increased in SPexp mice compared with SPfree 

mice. The notion that the magnitude of basal inflammation present at the time of sepsis 

induction predetermines the outcome/susceptibility to CLP surgery was supported by serum 

IFN-γ concentrations before surgery. A trending increase in the concentration of IFN-γ was 

observed in SPexp mice that succumbed compared with the mice that survived CLP surgery 

(Fig. 3G), suggesting the extent of inflammation present at the time of sepsis induction 

influences susceptibility to sepsis.

The increased or decreased susceptibility observed in CoH mice relative to naive 

counterparts is dependent on the type of pathogen (16). To evaluate whether sequentially 

infected SPexp mice have pathogen-specific altered responses, we challenged SPexp and 

SPfree mice with virulent L. monocytogenes 5 d after the last infection. Bacterial clearance 

(spleen and liver) and morbidity/mortality were determined at indicated days after challenge 

(Fig. 4). Of note, the SPexp mice used in these experiments were generated without 

attenuated L. monocytogenes infection to prevent establishment of anti-Listeria immunity 
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that would abrogate a productive L. monocytogenes infection (Fig. 4A). Interestingly, SPexp 

mice had decreased morbidity, assessed by clinical scoring, and decreased splenic and liver 

Listeria CFUs at day 2 after virulent L. monocytogenes infection (Fig. 4B, 4C). In addition, 

SPexp mice had increased survival after virulent L. monocytogenes infection, relative to 

naive SPfree controls (Fig. 4D).

Thus, the data in Figs. 3 and 4 collectively demonstrate that immunological experience 

achieved by sequential pathogen exposure differentially alters host responses to newly 

introduced infections. In addition, it recapitulates findings observed in CoH ‘dirty’ mice, 

suggesting the pathogens used here (type, dose, route, and order) could be used as an 

alternative to generate immunologically experienced hosts to expand the existing models 

available for addressing the translational gap present between studies based on SPfree mouse 

models and humans.

Level of inflammation determines susceptibility to newly introduced infections in immune-
experienced mice

To elucidate potential mechanism(s) that influence the susceptibility of SPexp (and CoH) 

mice to newly introduced infections, including sepsis, we focused on the basal inflammation 

present in immunologically experienced and/or naive mice. IFN-γ and TNF-α are key 

cytokines involved in the anti-Listerial immunity and clearance of L. monocytogenes (41–

43), and both cytokines are increased in SPexp mice early after the last infection with 

LCMV-Arm (Fig. 2). In addition, elevated serum cytokines may contribute to the heightened 

cytokine storm in SPexp mice (Fig. 3); therefore, it is possible that the increased mortality 

to sepsis, but enhanced L. monocytogenes control, in SPexp mice is due to their heightened 

steady-state inflammation.

The contribution of heightened basal inflammation to subsequent infections observed in 

CoH mice cannot be easily interrogated because of the insufficient knowledge of the type 

of pathogens present/transmitted and timing of infection(s) (9). To define the duration of 

inflammation in CoH mice, we bled SPfree B6 mice before cohousing with pet store mice 

and then at weeks 2, 4, 6, and 8 of cohousing (Fig. 5A). Although all cytokines screened 

peaked after 2 wk of cohousing, the CoH mice still had heightened inflammation at 8 wk 

after initiation of the experiment (Fig. 5B, 5C). The cytokines/chemokines measured are 

involved in the control of L. monocytogenes and are present at high concentrations in the 

blood during the sepsis cytokine storm (16, 23, 33, 44, 45). Thus, long-lasting inflammation 

is observed in immune-experienced B6 mice generated by cohousing with pet store mice.

To test the contribution of the inflammatory milieu to differential responses observed in 

immunologically experienced mice, we returned to sequential infection model. Sera from 

SPfree and SPexp mice were evaluated before CLP performed 35 d after last infection 

(Fig. 6A). At this time point, SPfree and SPexp mice had equivalent basal inflammation 

(Fig 6B), demonstrating the SPexp mouse model enables us to “tune” the magnitude of 

inflammation before new infection. Importantly, when sepsis was induced 35 d after LCMV-

Arm infection, the susceptibility of SPexp mice did not differ from SPfree B6 mice (Fig. 

6C). Similar results were obtained in outbred Swiss Webster mice (Fig. 6D, 6E). The finding 

that immunological experience does not contribute to the increased susceptibility to sepsis at 
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a time when basal inflammation is similar in both groups of mice was also confirmed when 

the severity of the septic insult was increased (Supplemental Fig. 2A–C).

In a complementary approach addressing the contribution of basal inflammation to sepsis 

susceptibility of SPexp mice, we waited 90 d after the last infection before performing CLP 

(Fig. 7). As a control, SPexp mice that had seen their last infection 5 d before CLP were 

included (SPexp day 5). As expected, SPexp day 5 mice had heightened cytokine storm 

inflammation, clinical score, and mortality after CLP, compared with SPfree and SPexp d90 

mice (Fig. 7B–E). Importantly, SPfree and SPexp d90 mice had equivalent responses to CLP.

Finally, to establish whether enhanced anti-Listerial immunity in SPexp mice was dependent 

on the level of basal inflammation, we challenged SPexp mice with a high dose of 

virulent L. monocytogenes at day 5 or 35 after last infection together with SPfree mice 

(Supplemental Fig. 3A). Importantly, enhanced anti-Listerial immunity in SPexp day 5 mice 

(defined by the bacterial load in the spleen and liver 2 d after challenge or survival) was 

diminished in SPexp mice challenged with virulent L. monocytogenes 35 d after LCMV-

Arm infection (Supplemental Fig. 3B, 3C).

Overall, these data suggest differential susceptibility of immune-experienced hosts to 

new infections (sepsis or L. monocytogenes) correlates with the basal inflammation (or 

cytokines/chemokines) present at the time of challenge.

NK cells exacerbate mortality to sepsis in immune-experienced mice

To further understand the immune changes responsible for enhanced mortality to CLP in 

immune-experienced mice, we next queried the contribution of NK cells to sepsis-induced 

mortality. This interest in NK cells comes from our recent data showing IFN-γ–producing 

NK cells can become IL-10 producers in response to the IL-15 produced during a septic 

event, and this NK cell–derived IL-10 is critical to support the survival of SPfree septic mice 

(23). NK cells contribute to the magnitude of both basal and cytokine storm inflammation 

(18, 23) and have the capacity to form memory populations in response to vaccination or 

infection (46), suggesting our immunological experience model has the ability to influence 

the functional capabilities and activation state of NK cells. MCMV-specific memory 

NK cells have increased accumulation and killing capacity after MCMV infection (46). 

Importantly, MCMV is a pathogen within our infection regimen, and IFN-γ, IL-10, and 

IL-15 are produced during the sepsis-associated cytokine storm (Fig. 2E) (23). To address 

the role of NK cell responses during sepsis in infection-experienced hosts, we administered 

anti-NK1.1–depleting mAb 10 and 12 d after the last infection (Fig. 8A). It is important 

to note that the day 12 dose of anti-NK1.1 mAb was administered immediately after CLP 

was performed. The frequency of NK cells among PBLs was significantly reduced in the 

anti-NK1.1 mAb–treated mice, relative to IgG controls, 12 h before septic induction (Fig. 

8B). Consistent with our prior results (23), SPfree mice lacking NK cells had decreased 

survival after CLP (Fig. 8C). SPexp mice depleted of NK cells, in contrast, had enhanced 

survival to the septic event (Fig. 8D), suggesting NK cells foster unfavorable outcomes to 

sepsis in immune-experienced hosts. In a second experiment, we evaluated the contribution 

of NK cells to sepsis outcomes after three administrations of anti-NK1.1–depleting mAb, 

to induce an efficacious depletion strategy (Fig. 8E). Importantly, NK cells were now 
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sufficiently depleted in SPexp mice, compared with IgG controls (Fig. 8F). Similar to 

observations in Fig. 8A–D, SPexp hosts lacking NK cells had enhanced survival relative to 

SPexp IgG-treated mice (Fig. 8G). In addition, when survival curves from both experiments 

are combined, SPexp mice deficient in NK cells demonstrated a significant increase in 

survival compared with SPexp IgG mice (Fig. 8H).

To unravel the mechanism behind enhanced survival of SPexp mice lacking NK cells, 

we next queried the extent to which depleting NK cells changed the inflammatory profile 

before and 12 h after CLP (Supplemental Fig. 4A, 4B, respectively). Out of the cytokines 

screened, NK cell–depleted SPexp mice had decreased levels of IL-10, IL-12p70, and IL-2 

before and 12 h after septic insult (Supplemental Fig. 4A, 4B; respectively), suggesting NK 

cells contribute to the heightened inflammation observed in SPexp mice (before and after 

CLP). These data highlight how immunological experience, through sequential infection, 

alters NK cell status and responses that are detrimental to host survival during a septic 

event. Overall, NK-depleted SPexp mice have identified a cell type in part responsible for 

increased inflammation and susceptibility to sepsis in immune-experienced hosts. Lastly, 

these data elucidate a cell type to be therapeutically investigated in immune-experienced 

septic hosts, which was not revealed in conventionally used SPfree mice.

DISCUSSION

Sepsis remains a significant disease that affects >125,000 people per day with ~20% 

succumbing to the septic event (3). The immune response elicited by sepsis is characterized 

by an initial transient cytokine storm composed of proinflammatory and anti-inflammatory 

cytokines, followed by a chronic state of immunoparalysis (44). To add to the complexity 

of the biphasic response during sepsis, close investigation of cytokine storm has shown 

it consists of two phases; within the first several hours proinflammatory cytokines are 

produced, which are then followed by anti-inflammatory cytokines as a counterbalance (44, 

47). The cause of immunoparalysis is multifactorial, with decreased lymphocyte numbers, 

function, and changes in T cell repertoire (decreased T cell diversity) being some of the 

contributing features (48, 49). Lastly, the animal models used for preclinical interrogation 

often rely on SPfree mice that are immunologically more similar to a neonatal human, which 

may (inadvertently) exclude the large cohort of adult and elderly patients most commonly 

affected by sepsis. For these reasons many clinical trials targeting the cytokine storm have 

failed (4).

In this study, we demonstrate that in contrast with SPfree mice, the increased susceptibility 

of sequentially infected immunologically experienced (SPexp) mice to sepsis can be 

mitigated through NK cell depletion, which decreases the magnitude of basal and cytokine 

storm inflammation. The collective data presented in this article indicate our model of 

immune-experienced mice has the capacity to alter phenotype and function of various 

cellular compartments. Importantly, gene set enrichment analysis studies have shown 

that immune-experienced mice, generated by cohousing or sequential infection, have 

immune signatures similar to adult humans (12–14). Genes shared between experienced 

mice and adult humans are related to cytokine signaling, MHC regulation, and T cell 

activation. Our data, when combined with other studies using immune-experienced mice, 
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further demonstrate the power of including immune-experienced mice in current preclinical 

research, and it is tempting to speculate on the benefit of reinterrogating the efficacy of 

current/new sepsis therapeutics in immune-experienced hosts.

To bridge the gap between mice and humans, several groups have used microbial exposure 

approaches in recent years to elicit an experienced immune status that is similar to 

adult humans. These approaches consist of sequential infection, cohousing with pet store 

mice, fomite (dirty bedding) exposure, and rewilding of previously naive mice (9, 10), 

with each containing their own strengths and weaknesses. In this study, we sequentially 

infected mice with five human-relevant laboratory pathogens to generate SPexp mice. 

This approach increased the number of Ag-experienced T cells and altered the activation 

status of cellular populations involved in a septic event, which was consistent with data 

observed in immune-experienced mice generated by cohousing and other models (16, 27, 

28). Similarly, SPexp mice exhibited increased mortality after sepsis induction (Fig. 3), 

much like that seen for CoH mice (16), compared with SPfree mice. Notably, CoH mice 

have prolonged heightened basal inflammation lasting at least 8 wk (Fig. 5), making this 

model challenging to parse out the role of inflammation before a subsequent challenge. In 

contrast, the heightened inflammation in SPexp mice subsides by day 35 after last infection 

(Fig. 6), enabling investigation of the role of basal inflammation during a septic event in 

immune-experienced mice. Altering the infection regimen in the SPexp model also granted 

us the ability to demonstrate that the enhanced mortality in immune-experienced mice is 

due to heightened basal inflammation (Fig. 6). Changing infection regimens in cohousing, 

fomite, and rewilding models is unattainable due to uncontrollable environmental factors (7), 

suggesting our sequential infection model allows for the precise “tuning” of the immune 

experience status. In addition, pathogens transferred by natural infection are inconsistent 

due to the nature of the pathogen transfer (9), which we control for in SPexp mice by 

giving known doses of each pathogen. Another major hurdle when using nonsequentially 

infected experienced mice is the facility requirements, because some institutions may require 

BSL-3 level housing or an outdoor enclosure. Thus, facility requirements and the lack of 

controlled pathogen transfer creates increased financial burden for investigators, which can 

be mitigated by using SPexp mice housed under BSL-2 conditions. Overall, our SPexp 

murine model creates a defined immunologically experienced host with similar alterations 

observed in nonsequentially infected experienced models, and our model is accessible 

to a broader array of groups due to the reduced financial burden and potential housing 

limitations.

Although the magnitude and molecular composition of inflammation is defined by the 

activity of various immune cells, our data suggest NK cells are significant contributors 

to basal and sepsis-induced inflammation (Supplemental Fig. 4). In addition to their 

cytolytic capacity (46, 50), NK cells conventionally produce IFN-γ, but can produce 

IL-10 in response to IL-15 during sepsis (23). Interestingly, NK-depleted SPexp mice 

had decreased IL-10 without reducing IFN-γ, suggesting they primarily produce IL-10 

in our model. Importantly, SPexp mice have increased survival when the systemic IL-10 

concentration is decreased via NK cell depletion, advocating that IL-10 may be detrimental 

in immune-experienced mice, which is in direct contrast with SPfree mice (23). Notably, 

mice treated with exogenous IL-10 early after CLP surgery have increased mortality to 
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the septic event (51). Furthermore, IL-10 blockade during in vitro stimulation of PBMCs 

enhanced IFN-γ and TNF-α production in PBMCs from septic patients, but not critically ill 

nonseptic patients or healthy controls (52). Therefore, proinflammatory cytokines produced 

during the septic event, but not at baseline, may be superior in supporting survival in 

immune-experienced hosts during a septic event, increasing the complexity of identifying 

therapeutic interventions for septic patients. Moreover, heightened basal inflammation is not 

only observed after sequential infection (or acute infections) but also during autoimmune 

settings, such as experimental autoimmune encephalomyelitis (EAE; murine model of 

multiple sclerosis). Importantly, Jensen et al. (53) show that EAE mice have increased 

mortality to CLP when EAE-induced inflammation is elevated; however, the cell type 

contributing to the elevated steady-state inflammation was not interrogated.

In summary, experimental data provided and discussed in this article emphasize the 

importance of interrogating immune-experienced models for preclinical studies to further 

define the cellular/molecular mechanism(s) that could be therapeutically exploited during 

severe and dysregulated infection-induced inflammatory responses, such as sepsis.
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ACKNOWLEDGMENTS

We thank members of our laboratories for technical assistance and helpful discussions.

This work was supported by National Institutes of Health Grants GM134880 (to V.P.B.), AI114543 (to V.P.B. and 
J.T.H.), AI151183 (to V.P.B. and J.T.H.), AI42767 (to J.T.H.), R35GM140881 (to T.S.G.), and T32AI007485 (to 
R.R.B. and I.J.J.); The Holden Comprehensive Cancer Center at The University of Iowa and its National Cancer 
Institute Award P30CA086862 (to V.P.B); and Veterans Administration Merit Review Award I01BX001324 (to 
T.S.G.).

Abbreviations used in this article:

CLP cecal ligation and puncture

CoH cohoused

EAE experimental autoimmune encephalomyelitis

IAV influenza A virus

LCMV-Arm lymphocytic choriomeningitis virus–Armstrong

MCMV murine CMV

PBL peripheral blood leukocyte

PR8 Puerto Rico/8/34

SPexp specific pathogen experienced

SPfree specific pathogen-free

Berton et al. Page 12

Immunohorizons. Author manuscript; available in PMC 2022 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



REFERENCES

1. Hotchkiss RS, Monneret G, and Payen D. 2013. Immunosuppression in sepsis: a novel 
understanding of the disorder and a new therapeutic approach. Lancet Infect. Dis 13: 260–268. 
[PubMed: 23427891] 

2. Donnelly JP, Hohmann SF, and Wang HE. 2015. Unplanned readmissions after hospitalization 
for severe sepsis at academic medical center-affiliated hospitals. Crit. Care Med 43: 1916–1927. 
[PubMed: 26082977] 

3. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta 
KS, Kissoon N, Finfer S, et al. 2020. Global, regional, and national sepsis incidence and mortality, 
1990–2017: analysis for the Global Burden of Disease Study. Lancet 395: 200–211. [PubMed: 
31954465] 

4. Marshall JC 2014. Why have clinical trials in sepsis failed? Trends Mol. Med 20: 195–203. 
[PubMed: 24581450] 

5. Rosshart SP, Herz J, Vassallo BG, Hunter A, Wall MK, Badger JH, McCulloch JA, Anastasakis DG, 
Sarshad AA, Leonardi I, et al. 2019. Laboratory mice born to wild mice have natural microbiota and 
model human immune responses. Science 365: eaw4361.

6. Fisher CJ Jr., Agosti JM, Opal SM, Lowry SF, Balk RA, Sadoff JC, Abraham E, Schein RM, and 
Benjamin E; The Soluble TNF Receptor Sepsis Study Group. 1996. Treatment of septic shock with 
the tumor necrosis factor receptor:Fc fusion protein. N. Engl. J. Med 334: 1697–1702. [PubMed: 
8637514] 

7. Masopust D, Sivula CP, and Jameson SC. 2017. Of mice, dirty mice, and men: using mice to 
understand human immunology. J. Immunol 199: 383–388. [PubMed: 28696328] 

8. Moore KJ 1999. Utilization of mouse models in the discovery of human disease genes. Drug Discov. 
Today 4: 123–128. [PubMed: 10322264] 

9. Hamilton SE, Badovinac VP, Beura LK, Pierson M, Jameson SC, Masopust D, and Griffith TS. 
2020. New insights into the immune system using dirty mice. J. Immunol 205: 3–11. [PubMed: 
32571979] 

10. Kwon HK, and Seong JK. 2021. New insights into the microbiota of wild mice. Mamm. Genome 
32: 311–318. [PubMed: 34241667] 

11. Mural RJ, Adams MD, Myers EW, Smith HO, Miklos GL, Wides R, Halpern A, Li PW, Sutton 
GG, Nadeau J, et al. 2002. A comparison of whole-genome shotgun-derived mouse chromosome 
16 and the human genome. Science 296: 1661–1671. [PubMed: 12040188] 

12. Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, Thompson EA, Fraser KA, 
Rosato PC, Filali-Mouhim A, et al. 2016. Normalizing the environment recapitulates adult human 
immune traits in laboratory mice. Nature 532: 512–516. [PubMed: 27096360] 

13. Reese TA, Bi K, Kambal A, Filali-Mouhim A, Beura LK, Bürger MC, Pulendran B, Sekaly RP, 
Jameson SC, Masopust D, et al. 2016. Sequential infection with common pathogens promotes 
human-like immune gene expression and altered vaccine response.s Cell Host Microbe 19: 713–
719. [PubMed: 27107939] 

14. Fiege JK, Block KE, Pierson MJ, Nanda H, Shepherd FK, Mickelson CK, Stolley JM, Matchett 
WE, Wijeyesinghe S, Meyerholz DK, et al. 2021. Mice with diverse microbial exposure histories 
as a model for preclinical vaccine testing. Cell Host Microbe 29: 1815–1827.e1816. [PubMed: 
34731647] 

15. Huggins MA, Jameson SC, and Hamilton SE. 2019. Embracing microbial exposure in mouse 
research. J. Leukoc. Biol 105: 73–79. [PubMed: 30260516] 

16. Huggins MA, Sjaastad FV, Pierson M, Kucaba TA, Swanson W, Staley C, Weingarden AR, Jensen 
IJ, Danahy DB, Badovinac VP, et al. 2019. Microbial Exposure Enhances Immunity to Pathogens 
Recognized by TLR2 but Increases Susceptibility to Cytokine Storm through TLR4 Sensitization. 
Cell Rep 28: 1729–1743.e1725. [PubMed: 31412243] 

17. Brincks EL, Gurung P, Langlois RA, Hemann EA, Legge KL, and Griffith TS. 2011. The 
magnitude of the T cell response to a clinically significant dose of influenza virus is regulated 
by TRAIL. J. Immunol 187: 4581–4588. [PubMed: 21940678] 

Berton et al. Page 13

Immunohorizons. Author manuscript; available in PMC 2022 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18. Jensen IJ, Winborn CS, Fosdick MG, Shao P, Tremblay MM, Shan Q, Tripathy SK, Snyder CM, 
Xue HH, Griffith TS, et al. 2018. Polymicrobial sepsis influences NK-cell-mediated immunity by 
diminishing NK-cell-intrinsic receptor-mediated effector responses to viral ligands or infections. 
PLoS Pathog 14: e1007405. [PubMed: 30379932] 

19. Restifo NP, Bacík I, Irvine KR, Yewdell JW, McCabe BJ, Anderson RW, Eisenlohr LC, Rosenberg 
SA, and Bennink JR. 1995. Antigen processing in vivo and the elicitation of primary CTL 
responses. J. Immunol 154: 4414–4422. [PubMed: 7722298] 

20. Lefebvre MN, Surette FA, Anthony SM, Vijay R, Jensen IJ, Pewe LL, Hancox LS, Van Braeckel-
Budimir N, van de Wall S, Urban SL, et al. 2021. Expeditious recruitment of circulating memory 
CD8 T cells to the liver facilitates control of malaria. Cell Rep 37: 109956. [PubMed: 34731605] 

21. Gullicksrud JA, Li F, Xing S, Zeng Z, Peng W, Badovinac VP, Harty JT, and Xue HH. 2017. 
Differential requirements for Tcf1 long isoforms in CD8+ and CD4+ T cell responses to acute viral 
infection. J. Immunol 199: 911–919. [PubMed: 28652395] 

22. Sjaastad FV, Jensen IJ, Berton RR, Badovinac VP, and Griffith TS. 2020. Inducing experimental 
polymicrobial sepsis by cecal ligation and puncture. Curr. Protoc. Immunol 131: e110. [PubMed: 
33027848] 

23. Jensen IJ, McGonagill PW, Butler NS, Harty JT, Griffith TS, and Badovinac VP. 2021. NK 
cell-derived IL-10 supports host survival during sepsis. J. Immunol 206: 1171–1180. [PubMed: 
33514512] 

24. Jensen IJ, McGonagill PW, Berton RR, Wagner BA, Silva EE, Buettner GR, Griffith TS, and 
Badovinac VP. 2021. Prolonged reactive oxygen species production following septic insult. 
Immunohorizons 5: 477–488. [PubMed: 34145054] 

25. Pierson M, Merley A, and Hamilton SE. 2021. Generating mice with diverse microbial experience. 
Curr Protoc 1: e53. [PubMed: 33621444] 

26. Victorino F, Sojka DK, Brodsky KS, McNamee EN, Masterson JC, Homann D, Yokoyama 
WM, Eltzschig HK, and Clambey ET. 2015. Tissue-resident NK cells mediate ischemic kidney 
injury and are not depleted by anti-asialo-GM1 antibody. J. Immunol 195: 4973–4985. [PubMed: 
26453755] 

27. Sun Y, Anyalebechi JC, Sun H, Yumoto T, Xue M, Liu D, Liang Z, Coopersmith CM, and Ford 
ML. 2021. Anti-TIGIT differentially affects sepsis survival in immunologically experienced versus 
previously naive hosts. JCI Insight 6: e141245.

28. Sun Y, Xie J, Anyalebechi JC, Chen CW, Sun H, Xue M, Liang Z, Morrow KN, Coopersmith 
CM, and Ford ML. 2020. CD28 agonism improves survival in immunologically experienced septic 
mice via IL-10 released by Foxp3+ regulatory T cells. J. Immunol 205: 3358–3371. [PubMed: 
33158954] 

29. Lin JD, Devlin JC, Yeung F, McCauley C, Leung JM, Chen YH, Cronkite A, Hansen C, Drake-
Dunn C, Ruggles KV, et al. 2020. Rewilding Nod2 and Atg16l1 mutant mice uncovers genetic 
and environmental contributions to microbial responses and immune cell composition. Cell Host 
Microbe 27: 830–840.e4. [PubMed: 32209431] 

30. Labuda JC, Fong KD, and McSorley SJ. 2022. Cohousing with dirty mice increases the frequency 
of memory T cells and has variable effects on intracellular bacterial infection. Immunohorizons 6: 
184–190. [PubMed: 35210292] 

31. Sjaastad FV, Condotta SA, Kotov JA, Pape KA, Dail C, Danahy DB, Kucaba TA, Tygrett LT, 
Murphy KA, Cabrera-Perez J, et al. 2018. Polymicrobial sepsis chronic immunoparalysis is 
defined by diminished ag-specific T cell-dependent B cell responses. Front. Immunol 9: 2532. 
[PubMed: 30429857] 

32. Anthony SM, Van Braeckel-Budimir N, Moioffer SJ, van de Wall S, Shan Q, Vijay R, Sompallae 
R, Hartwig SM, Jensen IJ, Varga SM, et al. 2021. Protective function and durability of mouse 
lymph node-resident memory CD8+ T cells. eLife 10: e68662. [PubMed: 34143731] 

33. Moioffer SJ, Danahy DB, van de Wall S, Jensen IJ, Sjaastad FV, Anthony SM, Harty JT, Griffith 
TS, and Badovinac VP. 2021. Severity of sepsis determines the degree of impairment observed 
in circulatory and tissue-resident memory CD8 T cell populations. J. Immunol 207: 1871–1881. 
[PubMed: 34479943] 

Berton et al. Page 14

Immunohorizons. Author manuscript; available in PMC 2022 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



34. Danahy DB, Berton RR, and Badovinac VP. 2020. Cutting edge: antitumor immunity by pathogen-
specific CD8 T cells in the absence of cognate antigen recognition. J. Immunol 204: 1431–1435. 
[PubMed: 32051220] 

35. Jensen IJ, Li X, McGonagill PW, Shan Q, Fosdick MG, Tremblay MM, Houtman JC, Xue HH, 
Griffith TS, Peng W, and Badovinac VP. 2021. Sepsis leads to lasting changes in phenotype and 
function of memory CD8 T cells. eLife 10: e70989. [PubMed: 34652273] 

36. Danahy DB, Anthony SM, Jensen IJ, Hartwig SM, Shan Q, Xue HH, Harty JT, Griffith TS, 
and Badovinac VP. 2017. Polymicrobial sepsis impairs bystander recruitment of effector cells to 
infected skin despite optimal sensing and alarming function of skin resident memory CD8 T cells. 
PLoS Pathog 13: e1006569. [PubMed: 28910403] 

37. Badovinac VP, Porter BB, and Harty JT. 2002. Programmed contraction of CD8(+) T cells after 
infection. Nat. Immunol 3: 619–626. [PubMed: 12055624] 

38. Reddehase MJ, and Lemmermann NAW. 2019. Cellular reservoirs of latent cytomegaloviruses. 
Med. Microbiol. Immunol. (Berl.) 208: 391–403. [PubMed: 31011793] 

39. Martin MD, Danahy DB, Hartwig SM, Harty JT, and Badovinac VP. 2017. Revealing the 
complexity in CD8 T cell responses to infection in inbred C57B/6 versus outbred Swiss mice. 
Front. Immunol 8: 1527. [PubMed: 29213267] 

40. Martin MD, Sompallae R, Winborn CS, Harty JT, and Badovinac VP. 2020. Diverse CD8 T cell 
responses to viral infection revealed by the collaborative cross. Cell Rep 31: 107508. [PubMed: 
32294433] 

41. Messingham KA, Badovinac VP, Jabbari A, and Harty JT. 2007. A role for IFN-gamma from 
antigen-specific CD8+ T cells in protective immunity to Listeria monocytogenes. J. Immunol 179: 
2457–2466. [PubMed: 17675507] 

42. Lee SH, Carrero JA, Uppaluri R, White JM, Archambault JM, Lai KS, Chan SR, Sheehan KC, 
Unanue ER, and Schreiber RD. 2013. Identifying the initiating events of anti-Listeria responses 
using mice with conditional loss of IFN-γ receptor subunit 1 (IFNGR1). J. Immunol 191: 4223–
4234. [PubMed: 24048899] 

43. D’Orazio SEF 2019. Innate and adaptive immune responses during Listeria monocytogenes 
infection. Microbiol. Spectr 7: 7.3.12.

44. Miljković Đ, Stanisavljević S, Jensen IJ, Griffith TS, and Badovinac VP. 2021. Sepsis and multiple 
sclerosis: causative links and outcomes. Immunol. Lett 238: 40–46. [PubMed: 34320384] 

45. Pachot A, Monneret G, Voirin N, Leissner P, Venet F, Bohé J, Payen D, Bienvenu J, Mougin 
B, and Lepape A. 2005. Longitudinal study of cytokine and immune transcription factor mRNA 
expression in septic shock. Clin. Immunol 114: 61–69. [PubMed: 15596410] 

46. Jensen IJ, Martin MD, Tripathy SK, and Badovinac VP. 2022. Novel mouse model of murine 
cytomegalovirus-induced adaptive NK cells. Immunohorizons 6: 8–15. [PubMed: 35031582] 

47. Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR, and Vincent JL. 2016. Sepsis and 
septic shock. Nat. Rev. Dis. Primers 2: 16045. [PubMed: 28117397] 

48. Jensen IJ, Sjaastad FV, Griffith TS, and Badovinac VP. 2018. Sepsis-induced T cell 
immunoparalysis: the ins and outs of impaired T cell immunity. J. Immunol 200: 1543–1553. 
[PubMed: 29463691] 

49. Cabrera-Perez J, Babcock JC, Dileepan T, Murphy KA, Kucaba TA, Badovinac VP, and Griffith 
TS. 2016. Gut microbial membership modulates CD4 T cell reconstitution and function after 
sepsis. J. Immunol 197: 1692–1698. [PubMed: 27448587] 

50. Martinet L, and Smyth MJ. 2015. Balancing natural killer cell activation through paired receptors. 
Nat. Rev. Immunol 15: 243–254. [PubMed: 25743219] 

51. Kalechman Y, Gafter U, Gal R, Rushkin G, Yan D, Albeck M, and Sredni B. 2002. Anti-IL-10 
therapeutic strategy using the immuno-modulator AS101 in protecting mice from sepsis-induced 
death: dependence on timing of immunomodulating intervention. J. Immunol 169: 384–392. 
[PubMed: 12077268] 

52. Mazer M, Unsinger J, Drewry A, Walton A, Osborne D, Blood T, Hotchkiss R, and Remy KE. 
2019. IL-10 has differential effects on the innate and adaptive immune systems of septic patients. 
J. Immunol 203: 2088–2099. [PubMed: 31501258] 

Berton et al. Page 15

Immunohorizons. Author manuscript; available in PMC 2022 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



53. Jensen IJ, Jensen SN, McGonagill PW, Griffith TS, Mangalam AK, and Badovinac VP. 2021. 
Autoimmunity increases susceptibility to and mortality from sepsis. Immunohorizons 5: 844–854. 
[PubMed: 34702761] 

Berton et al. Page 16

Immunohorizons. Author manuscript; available in PMC 2022 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1. Frequencies of Ag-experienced CD4 and CD8 T cells during the generation of SPexp 
mice.
(A) Experimental design. Sequential infection of SPfree C57BL/6 mice with PR8, MCMV-

Smith, vaccinia virus (VACV), attenuated L. monocytogenes (L.m.-att), and LCMV-Arm 

in 5-d intervals was used to generate SPexp mice. The frequency of Ag-experienced CD4 

and CD8 T cells (CD3+CD4+CD11ahi and CD3+CD8loCD11ahi, respectively) in the PBLs 

was monitored every 5 d for 25 d. (B) Body weight changes were monitored during 

SPexp generation. Longitudinal analysis and representative gating (day 25 after PR8) of Ag-

experienced (C) CD4 and (D) CD8 T cells. Prior gating on CD3+ single-cell lymphocytes. 

Numbers of Ag-experienced (E) CD4 and (F) CD8 T cells on days 0 and 25 after PR8 

infection. Data are representative of at least three independent experiments with 5–10 mice 

per group. Error bars represent SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 2. Sequential infection leads to increased inflammation and alters cellular composition 
and phenotype.
(A) Experimental design. Serum and PBLs were collected from SPexp and age-matched 

SPfree B6 mice 5 d after last infection. (B) Summary data of analyte levels 5 d after 

last infection. Concentrations are in pg/ml. Parentheses indicate fold difference between 

experimental groups. (C) IFN-γ, IL-1β, IL-6, and TNF-α concentrations in SPfree and 

SPexp mice 5 d after last infection. (D–H) Number of cells per milliliter of PBL (D), 

frequency of Ag-experienced (E) CD4 and (F) CD8 T cells, and frequency of (G) TLR2- 

and (H) TLR4-expressing leukocytes 5 d after last infection. Data are representative of at 

least three independent experiments with 10 mice per group. Error bars represent SEM. **p 
< 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 3. Immunologically experienced mice have exacerbated responses to sepsis.
(A) Experimental design. Moderate septic event (<20% mortality in SPfree mice) was 

induced via CLP 5 d after last infection in SPexp and age-matched SPfree B6 mice. Weight 

loss and mortality were monitored over time, and serum cytokines were measured 12 h 

after CLP. Weight of mice (B) before and (C) after CLP. (D) Mortality of mice after 

CLP. (E) Summary data of analyte concentrations (pg/ml) in mice 12 h after CLP. (F) 

Individual serum IFN-γ, IL-1β, and TNF-α concentrations between mice 12 h after CLP. 

(G) Individual serum IFN-γ concentrations between SPfree and SPexp mice that survived or 

succumbed to CLP surgery. Data are representative of at least three independent experiments 
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with 10 mice per group. (H) Experimental design. Five days after last infection, CLP was 

induced in SPfree and SPexp Swiss Webster mice. (I) Survival curves after CLP. Data are 

representative of at least three independent experiments with 10–15 mice per group. Error 

bars represent SEM. *p < 0.05, **p < 0.01, ****p < 0.0001.
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FIGURE 4. Enhanced control of virulent L. monocytogenes in SPexp mice.
(A) Experimental design. SPfree and SPexp B6 mice (without attenuated L. monocytogenes 
infection) were challenged with 8 × 104 CFUs virulent L. monocytogenes 5 d after last 

infection, and mortality was monitored. Bacterial burden was assessed within spleen and 

liver 2 d after virulent L. monocytogenes challenge. (B and C) Clinical score (B) and L. 
monocytogenes CFUs per gram of (left) spleen and (right) liver (C) 2 d after challenge. 

(D) Mortality of mice after challenge. Data are representative of at least three independent 

experiments with five mice per group. Error bars represent SEM. *p < 0.05, **p < 0.01, 

****p < 0.0001.
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FIGURE 5. Prolonged inflammation in microbially experienced laboratory mice generated 
through cohousing with pet store mice.
(A) Experimental design. One female pet store mouse was CoH with eight female B6 mice, 

and serum was collected at indicated times. (B) Longitudinal summary data of analyte levels 

throughout cohousing. (C) Analyte levels before and after 8 wk of cohousing. Data are 

representative of at least three independent experiments with 5–10 mice per group. Error 

bars represent SEM. *p < 0.05.
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FIGURE 6. Susceptibility of immune-experienced hosts to sepsis correlates with the basal 
inflammation present at the time of challenge.
(A) Experimental design. CLP was performed 35 d after last infection in SPexp and 

age-matched SPfree B6 mice. Body weight and mortality were monitored over time. 

Serum and PBLs were collected before CLP for baseline analyses. (B) Summary data of 

analyte concentrations (pg/ml) before CLP. Parentheses indicate fold difference between 

experimental groups. (C) Survival of mice after CLP. (D) Experimental design. Thirty-five 

days after last infection, CLP was induced in SPfree and SPexp Swiss Webster mice. 

(E) Survival of Swiss Webster mice after CLP. Data are representative of at least two 

independent experiments with 5–20 mice per group. Error bars represent SEM.
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FIGURE 7. Heightened inflammation in SPexp mice contributes to increased mortality to CLP.
(A) Experimental design. CLP was induced 5 or 90 d after last infection in SPexp B6 mice 

or in age-matched SPfree B6 mice. Body weight and mortality were monitored over time. 

Serum was collected before surgery. (B) Summary data of analyte concentrations (pg/ml) 

before CLP. (C–E) Weight loss (C), clinical score (D), and mortality (E) after CLP. Data are 

representative of at least two independent experiments with nine mice per group. Error bars 

represent SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 8. NK cells contribute to enhanced mortality of SPexp mice during septic event.
(A) Experimental design. SPfree and SPexp B6 mice were given 300 mg of anti-NK1.1 

mAb or control IgG 10 and 12 d after last infection. Day 12 administration of mAb was 

given after CLP procedure. (B) Frequencies of NK cells 12 h before CLP. (C) Survival of 

SPfree mice (control IgG and anti-NK1.1 mAb treated). (D) Survival of SPexp mice (control 

IgG and anti-NK1.1 mAb treated). (E) Experimental design. SPfree and SPexp mice were 

given 300 μg of anti-NK1.1 mAb or control IgG 2, 4, and 6 d after last infection. Day 6 

administration of mAb was given after CLP procedure. (F) Frequencies of NK cells 12 h 

before CLP. (G) Survival of mice after CLP. (H) Experiments 1 and 2 combined survival 
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after CLP. Data are representative of two independent experiments with 5–20 mice per 

group. Error bars represent SEM. *p < 0.05, **p < 0.01, ****p < 0.0001.
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