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Abstract

Polyfluoroarene moieties are of interest in medicinal chemistry, agrochemicals, and material 

sciences. Herein, we present the first polyfluoroarylation of unactivated alkyl halides via a halogen 

atom transfer process. This method converts primary, secondary, and tertiary alkyl halides into 

the respective polyfluoroaryl compounds in good yields in the presence of amide, carbamate, 

ester, aromatic, and sulfonamide moieties, including derivatives of complex bioactive molecules. 

Mechanistic work revealed that this transformation proceeds through an alkyl radical generated 

after the halogen atom transfer.

Graphical Abstract

Organofluorine scaffolds are pivotal frameworks in various applications such as 

pharmaceuticals, material sciences, and pesticides and for positron emission tomography 

imaging (Scheme 1A).1 Fluorine atoms in a bioactive molecule can provide many beneficial 

properties such as increased membrane penetration and enhanced activity and can promote 

chemical or metabolic stability.2 Thus, the way to incorporate polyfluoroarenes into 

compounds has attracted considerable attention.3,4 Metal-catalyzed cross-couplings between 

ArF─H and aryl, alkenyl, or alkynyl groups have been explored.3-5 Strategies that proceed 
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via nucleophilic aromatic substitution, such as the defluorinative functionalization of readily 

available polyfluoroarenes, often require the use of strong organometallic species such as 

Grignard, organolithium, or organozinc reagents.6 These harsh reaction conditions limit the 

functional group compatibility and reduce the complexity of possible molecular scaffolds.

Recently, photoredox-catalyzed polyfluoroarylation has been developed to enable mild and 

selective C─C bond formations, but the number of alkylation strategies remain limited.7 

The Weaver group reported various photoredox functionalizations of C─F bonds in 

polyfluoroarenes, including a photocatalytic alkylation using alkenes as starting materials 

(Scheme 1B).7d In 2021, the Ritter group developed an alkylation of polyfluoroarenes via 

the radical decarboxylation of carboxylic acids.7e Finally, the Hu group reported a dual 

photo- and copper-catalyzed decarboxylative coupling of aliphatic N-hydroxyphthalimide 

(NHPI) esters with ArF─Zinc reagents.7f

Despite the progress made in the alkylation of polyfluoroarenes, the direct use of unactivated 

alkyl halides under metal-free conditions would significantly expand the scope and diversity 

of alkyl chains amenable for coupling compared to alkyl carboxylic acids, NHPI esters, and 

alkenes. Indeed, not only do alkyl halides represent one of the largest classes of building 

blocks in organic chemistry but they are also readily accessible from alcohols, another large 

chemical feedstock. Yet, access to alkyl radicals from alkyl halides remains challenging.8

As part of our interest in transition-metal-free cross-coupling reactions9 and inspired 

by the recent work of Leonori, Juliá, and Doyle,10 who demonstrated the ability of α-

amino radicals to generate alkyl radicals from alkyl halides through halogen atom transfer 

processes (XAT), we present here the first example of a photoredox direct polyfluoarylation 

of unactivated alkyl halides via XAT (Scheme 1C). This metal-free transformation uses 

an α-aminoalkyl radical as the halogen abstracting reagent to obtain privileged alkyl 

polyfluoroarenes with wide functional group compatibilities, including esters, amides, 

carbamates, and sulfonamides.

We started our investigation with perfluorobenzene (1a) and 3-iodobutyl 4-methoxybenzoate 

(2a) as model substrates (Table 1, entry 1) in the presence of 4CzIPN as the photocatalyst 

and triethylamine as the halogen abstracting agent (Table 1). Initial screens showed 

the formation of the desired product in various solvents (entries 1–3), with 1,4-dioxane 

providing the best results (44%) when the reaction was performed at higher concentrations 

(entry 4). Screening of bases showed that increasing the steric bulk around the nitrogen 

using diisopropylethyl amine (DIPEA) reduced the yield to 34% (entry 5). Using structurally 

rigid bases such as DABCO (entry 6) completely shut down the reactivity. Increasing the 

amount of Et3N (entries 7 and 8) led to small but noticeable increases in the yield. Similarly, 

increasing the amount of polyfluoroarene to 5 and 10 equiv (entries 9 and 10, respectively) 

further increased yields, affording the desired product in a 60% isolated yield (entry 10). 

Switching LED lamps from 440 to 427 nm (entry 11) reduced the yield to 38%. In the 

absence of either base (entry 12) or light (entry 13), the desired product was not observed. 

Finally, other common photocatalysts such as eosin Y (entry 14) or iridium-based catalysts 

(entry 15) provided the desired product in lower yields, 38% and 58%, respectively (see the 

Supporting Information for the full table of optimization on pages S7-S9).
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We continued our investigations by exploring the scope of alkyl halides (Scheme 2). Ester 

moieties are well-tolerated in product 3 (60%). Cyclic and heterocyclic alkyl halides (4–6) 

afforded the desired products in good yields. Importantly, both alkyl iodides and alkyl 

bromides engage efficiently in this cross-coupling (42–70% yields), while alkyl chlorides 

remained unreactive. The reaction could also proceed with Boc-protected azetidines and 

piperidine motifs in 50% and 80% yields, respectively (7 and 8, respectively), which are 

important motifs in drug discovery.11 The ability of this method to tolerate Boc protecting 

groups further emphasizes the synthetic utility of this approach. Thus, we continued 

exploring the piperidine amide motif,4-iodo-1-benzoylpiperidine (9–14), bearing various 

substituents. Electron-donating and electron-withdrawing groups were well-tolerated (65–

85%). Aromatic halogens in the para position were also compatible with this method, as 

well as halogens in the meta position, affording products 15 and 16 in 55% and 75% 

yields, respectively. Importantly, the orthogonal reactivity of these aryl halides through 

this coupling process may enable further functionalization of the products via Suzuki or 

Negishi cross-coupling reactions. Ortho substitutions and heteroaromatics such as thiophene 

afforded products 17 and 18 in moderate to good yields (55–65%). Less stable primary 

alkyl radicals afforded products in 19–21 in low but synthetically useful yields (20–

45%).12 Notably, 1-adamantyl iodide, a tertiary alkyl iodide, also gave desired product 

22 in a 30% yield. Finally, to highlight the late-stage functionalization potential of the 

method, compounds derived from commercially available bioactive molecules (ibuprofen, 

probenecid, and naproxen) were polyfluoroarylated to generate products 23–25, respectively, 

in good to excellent yields (50–89%). These functionalizations could be broadly applied to 

other bioactive compounds containing alcohol moieties that could be readily transformed 

into their halogen counter parts.13

Next, we turned our attention to explore the scope of polyfluoroarenes 26–33 (Scheme 

3). Substituted polyfluoroarenes generate inseparable mixtures of regioisomers due to 

unselective radical addition to different positions.14 However, the reaction tolerates bromo 

and chloro substitutions, affording products 26 and 27, respectively, in good to excellent 

yield (70–85%). It is worth indicating that alkylation occurred chemoselectively at the 

location of fluorine atoms with no observable substitution at the bromide or chloride, 

differentiating this method from previous methodologies.7d Polyfluoroheteroarenes such as 

pentafluoropyridine also gave product 28 in a moderate yield (60%). Electron-withdrawing 

CF3 (29), secondary amides (30 and 31), and sulfonamide 32 were well tolerated, affording 

the corresponding products in 85%, 75%, 65%, and 40% yields, respectively. Finally, 

1,2,4,5-tetrafluoro-3-(trifluoromethyl)benzene also benefitted from the chemoselective 

alkylation, providing product 33 in a 66% yield with no observable substitution at the 

location of the hydrogen.

To explore the reaction mechanism, a series of control experiments were performed (Scheme 

4). As expected, a carbon-centered radical generated from (3-iodopropyl)-benzene was 

confirmed by the formation of the cyclic byproduct 35 (Scheme 4A). Furthermore, the use of 

radical trapping agents such as 2,2,6,6-tetramethyl-peperidinylxoyl (TEMPO) only afforded 

a trace amount of product 4 (Scheme 4B). The use of other trapping agents (1,1-DPE, 

1,4-DNB, and BHT) also produced similar results. Importantly, two radical intermediates 
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were successfully trapped as TEMPO and 1,1-DPE adducts (36–38) and observed by GC-

MS. The cyclohexane alkyl radical was trapped with both TEMPO (36) and 1,1-DPE (37). 

Additionally, the triethylamine radical at the α-position was also trapped using 1,1-DPE as 

product 38. These experiments indicate that alkyl and triethylamine radicals are involved in 

this transformation.

To further understand the mechanism of the reaction and determine the sequence of 

each step, we performed a series of fluorescence quenching experiments involving 

the photocatalyst (Scheme 4C and Supporting Information S27). The addition of 

polyfluoroarene 1a or alkyl halide 2a does not quench fluorescence of the excited state 

of the photocatalyst (Scheme 4C1 and C2). On the other hand, the addition of Et3N (Scheme 

4C3) leads to a substrate-dependent quenching, indicating that the excited state of 4CzIPN 

initially reacts with Et3N via a single-electron transfer. This observation is in accordance 

with previous XAT reactions developed by Leonori and Juliá.10a,b

On the basis of the above obtained results and previous reports,7e,10 we propose a reaction 

mechanism in Scheme 5. First, photoexcited 4CzIPN oxidizes Et3N to form radical 

cation I. Fast deprotonation15 of I generates an α-aminoalkyl radical species II capable 

of performing the XAT with iodocyclohexane, which generates alkyl radical III and α-

iodoamine IV (II and III can be trapped with 1,1-DPE and TEMPO; Scheme 4B). The 

irreversible dissociation of IV into iminium iodide V provides a XAT driving force. Radical 

species III then reacts with polyfluorobenzene to form the aryl radical intermediate VI via 

radical nucleophilic aromatic substitution. The reduction of VI by radical anion 4CzIPN•− 

affords the aryl anion species VII and regenerates the photocatalyst. Finally, the loss of 

fluoride from VII generates the desired final product.

In summary, this work presents the first polyfluoroarylation of alkyl halides via a XAT 

process. The reaction shows good functional group compatibility with synthetically useful 

moieties such a Boc protecting groups, esters, amides, and sulfonamides, all of which are of 

great interest to medicinal chemistry. The transformation proceeds in moderate to excellent 

yields with I°, II° and III° alkyl halides building blocks and alkyl halides derived from 

bioactive compounds. This process provides a complementary and metal-free approach to 

current decarboxylative and hydrofunctionalization approaches.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. Molecules of Interest and Current Technologiesa

a(A) Bioactive compounds of interest. (B) Photoredox methodologies to access alkylated 

polyfluoroarenes. (C) The presented halogen atom transfer (XAT) strategy.
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Scheme 2. Alkyl Halide Scopea

aReaction conditions are as follows: 1a (2.0 mmol, 10 equiv), 2 (0.2 mmol, 1 equiv), 

Et3N (1.0 mmol, 5 equiv), 1,4-dioxane (0.4 mL), 4CzIPN (5 mol %), room temperature 

(temperature around reaction flask was 35 °C due to heating caused by the LED lamp), 24 h. 

All yields are isolated. b1a (5 equiv). cReaction in DMSO (0.4 mL).
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Scheme 3. Polyfluoroarene Scopea

aReaction conditions are as follows : 1 (1.0 mmol, 5 equiv), 2a (0.2 mmol, 1 equiv), 

Et3N (1.0 mmol, 5 equiv), 1,4-dioxane (0.4 mL), 4CzIPN (5 mol %), room temperature 

(temperature around reaction flask was 35 °C due to heating caused by the LED lamp), 

overnight. All yields are isolated.
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Scheme 4. Verification of the Presence of Radicalsa

a (A) Cyclization byproduct experiment. (B) Radical trapping experiments. (C) Fluorescence 

spectra of 4CzIPN in 1,4-dioxane (0.01 mM) before and after the addition of different 

amounts of (1) C6F6, (2) iodocyclohexane, and (3) Et3N. (4) The resulting Stern–Volmer 

plot.
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Scheme 5. 
Proposed Mechanism
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Table 1.

Optimization of the Reaction and Its Conditions 
a

entry base (equiv) solvent (mL) [photocatalyst] yield (%)
b

1 Et3N (2.0) CH3CN (1.0) 4CzIPN 24

2 Et3N (2.0) DMSO (1.0) 4CzIPN 22

3 Et3N (2.0) 1,4-dioxane (1.0) 4CzIPN 26

4 Et3N (2.0) 1,4-dioxane (0.4) 4CzIPN 46

5 DIPEA (2.0) 1,4-dioxane (0.4) 4CzIPN 34

6 DABCO (2.0) 1,4-dioxane (0.4) 4CzIPN 0

7 Et3N (3.0) 1,4-dioxane (0.4) 4CzIPN 48

8 Et3N (5.0) 1,4-dioxane (0.4) 4CzIPN 50

9
c Et3N (5.0) 1,4-dioxane (0.4) 4CzIPN 55

10
d Et3N (5.0) 1,4-dioxane (0.4) 4CzIPN

62 (60)
e

11
f Et3N (5.0) 1,4-dioxane (0.4) 4CzIPN 38

12 – 1,4-dioxane (0.4) 4CzIPN 0

13
g Et3N (5.0) 1,4-dioxane (0.4) 4CzIPN 0

14 Et3N (5.0) 1,4-dioxane (0.4) eosin Y 38

15 Et3N (5.0) 1,4-dioxane (0.4) Ir(dtbbpy) 58

a
Optimal reaction conditions are as follows: 1 (2.0 mmol, 10 equiv), 2a (0.2 mmol, 1 equiv), base (1.0 mmol, 5 equiv), 1,4-dioxane (0.5 mL), 

4CzIPN (5 mol %), 440 nm LED (40 W), room temperature (temperature around reaction flask was 35 °C due to heating caused by the LED lamp), 
reaction flask capped under argon, 24 h.

b1H NMR yields using dibromomethane as internal standard.

c
1a (5 equiv) was used instead of 2 equiv.

d
1a (10 equiv) was used instead of 2 equiv.

e
Isolated yield.

f
A 427 nm LED (40W) was used instead of a 440 nm LED.

g
The reaction was performed in the dark.
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