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Abstract

G protein–coupled receptors (GPCRs) not only are turned on or
off to control canonical G protein signaling but also may be
fine-tuned to promote qualitative/biased signaling. Qualitative
signaling by M3 muscarinic acetylcholine receptors (mAChRs)
has been proposed, but its impact on physiologic systems remains
unclear, and currently no biased M3 mAChR ligands have been
described. Herein, we identify PD 102807 as a biased M3 ligand
and delineate its signaling and function in human airway smooth
muscle (ASM) cells. PD 102807 induced M3-mediated b-arrestin
recruitment but not calcium mobilization. PD 102807 inhibited
methacholine (MCh)-induced calcium mobilization in (M3-
expressing) ASM cells. PD 102807 induced phosphorylation of
AMP-activated protein kinase (AMPK) and the downstream
effector acetyl–coenzyme A carboxylase (ACC). PD 102807–
induced phosphorylated (p)-AMPK levels were greatly reduced in
ASM cells with minimal M3 expression and were not inhibited by

the Gq inhibitor YM-254890. Induction of p-AMPK and p-ACC
was inhibited by b-arrestin 1 or GRK2/3 knockdown. Similarly,
MCh induced phosphorylation of AMPK/ACC, but these effects
were Gq dependent and unaffected by GRK2/3 knockdown.
Consistent with the known ability of AMPK to inhibit
transforming growth factor b (TGF-b)–mediated functions, PD
102807 inhibited TGF-b–induced SMAD-Luc activity, sm-a-actin
expression, actin stress fiber formation, and ASM cell
hypercontractility. These findings reveal that PD 102807 is a
biased M3 ligand that inhibits M3-transduced Gq signaling
but promotes Gq protein-independent, GRK-/arrestin-dependent,
M3-mediated AMPK signaling, which in turn regulates
ASM phenotype and contractile function. Consequently,
biased M3 ligands hold significant promise as therapeutic
agents capable of exploiting the pleiotropic nature of
M3 signaling.
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Early G protein–coupled receptor (GPCR)
dogma posits that the receptor active state
varies only in the degree of receptor
activation and generation of its second
messenger. It is now appreciated that GPCRs
may undergo many different conformations
to promote various forms of signaling,
sometimes not related to the traditional G
protein coupling and second messenger
generation. Qualitative signaling/biased
agonism concepts hold that many receptor

conformations exist. Rather than just being
turned on or off, GPCRs can be fine-tuned to
achieve various signaling outcomes as
opposed to simply effecting a different
magnitude of a canonical secondmessenger
signal (1–4). In this context, other proteins,
such as arrestins, have been proposed to act
as signaling molecules.

GPCR kinases (GRKs) and arrestins were
originally identified asmediators of receptor
desensitization and internalization (5, 6).

Briefly, the active (ligand-bound) form of a
GPCR is phosphorylated by GRKs, which
allows arrestins to bind to the receptor and
subsequently desensitize the receptor by
means of steric hindrance of G protein
binding and internalization of the receptor by
means of clathrin-coated pits (7). GRK-
mediated phosphorylation of GPCRs is not
only important for arrestin recruitment but
may also impart further signaling specificity
bymeans of a “barcode” of phosphoresidues

(Received in original form July 13, 2021; accepted in final form August 9, 2022)

Supported by National Institutes of Health awards R01 HL140064 (T.P.) and P01 HL114471 (R.B.P. and J.L.B.).

Author Contributions: E.T., R.B.P., and T.P. designed research; E.T., B.M., K.C.-M., H.S., S.D.S., and T.P. performed research; D.A.D. and
J.L.B. provided new reagents/analytic tools, expertise, and manuscript editing; E.T., B.M., and T.P. analyzed data; E.T., R.B.P., and T.P.
wrote the paper.

Correspondence and requests for reprints should be addressed to Tonio Pera, Ph.D., Department of Medicine, Center for Translational Medicine,
Jane and Leonard Korman Respiratory Institute, 1020 Locust Street, JAH Rm 236, Philadelphia, PA 19107. E-mail: tonio.pera@jefferson.edu.

This article has a related editorial.

This article has a data supplement, which is accessible from this issue’s table of contents at www.atsjournals.org.

Am J Respir Cell Mol Biol Vol 67, Iss 5, pp 550–561, November 2022

Copyright © 2022 by the American Thoracic Society

Originally Published in Press as DOI:10.1165/rcmb.2021-0320OC on August 9, 2022

Internet address: www:atsjournals:org

550 American Journal of Respiratory Cell and Molecular Biology Volume 67 Number 5 | November 2022

http://crossmark.crossref.org/dialog/?doi=10.1165/rcmb.2021-0320OC&domain=pdf&date_stamp=2022-10-26
mailto:tonio.pera@jefferson.edu
https://doi.org/10.1165/rcmb.2022-0335ED
http://www.atsjournals.org
https://doi.org/10.1165/rcmb.2021-0320OC
http://www.atsjournals.org


in the C terminus of GPCRs (8). More
recently, the GRK-arrestin axis has been
proposed as amediator of biased signaling
by GPCRs, with arrestins serving as scaffolds
for initiating G protein–independent
signaling (9, 10).

Biased signaling has been most widely
studied for b-adrenoceptors (b-ARs). In the
cardiac system, b-AR–mediated arrestin
signaling improves heart function (11, 12).
Arrestin-biased b-2 adrenoreceptor signaling
has been identified in the lung, where it
promotes asthma pathology, including
airway hyperresponsiveness and mucus
production (13–16). Furthermore, biased
signaling has now been established for a
growing number of receptors, including
angiotensin II type 1 receptor, mu and kappa
opioid receptors, dopamine 2 receptors,
serotonergic receptors (5-HT2BRs),
adenosine receptors, and others (17). The
emerging breadth of biased GPCR signaling
suggests potentially wide-ranging effects on
the regulation of (patho-)physiological
processes. However, to date, many ligands
have only been screened with respect to their
ability to stimulate or inhibit second-
messenger induction; thus, the full extent of
their signaling capabilities—including
whether such signaling is skewed toward a
given pathway or whether it is G protein
dependent or independent—is unknown.

M3muscarinic acetylcholine receptors
(mAChRs) are key regulators of airway
physiology; they are the major mediators of
(physiologic and pathophysiologic) airway
smooth muscle (ASM) contraction and
airway mucus production. In addition,
M3mAChRs have been identified as major
drivers of pathology in asthma and chronic
obstructive pulmonary disease, contributing
to airway obstruction (18), structural changes
in the airway wall (airway remodeling)
(19–21) and inflammation (19, 21, 22).
M3mAChRs also exhibit cooperativity with
growth factors, including transforming
growth factor b (TGF-b), to promote
airway pathology (23, 24). The importance
of M3mAChRs is evidenced by the
effectiveness of inhaled mAChR antagonists
(anticholinergics) as treatment for airway
obstruction in chronic obstructive
pulmonary disease (25) and asthma (26).
M3mAChRs are Gq-coupled GPCRs whose
canonical signaling leads to calcium
mobilization, resulting in ASM contraction
and airway obstruction. Currently, studies
into potential Gq-independent M3mAChR
signaling have been hampered by the lack of

biasedM3 ligands (27–29). In this study, we
identify PD 102807—a previously described
muscarinic antagonist with selectivity for the
M4mAChR—as a biasedM3mAChR ligand
that induces arrestin recruitment and
activates AMP-activated protein kinase
(AMPK) signaling in a GRK-arrestin–
dependent manner while inhibiting Gq
protein–mediated signaling in ASM cells.
Some of the results of these studies have been
previously reported in the form of an
abstract (30).

Methods

Reagents
A list of reagents used is available (see data
supplement).

Cell Culture
Human ASM cells stably expressing
telomerase reverse transcriptase (hTERT)
with physiological/high expression of M3
mAChR (two cell lines) and with lowM3
mAChR expression (two cell lines) were
provided by Dr. W. T. Gerthoffer and have
been previously described in detail (31).
Detailed methods are available in the data
supplement.

siRNA-Mediated Knockdown
siRNAON-TARGETplus SMARTpool
oligos directed against b-arrestin-1
(L-011971) or b-arrestin-2 (L-007292) were
purchased from Dharmacon. GRK2/3
(59-GAT CTT CGACTCATA CAT CTT-
39) siRNA oligos were annealed at 95�C for 5
min and allowed to cool; ASM cells were
transfected using Dharmafect 1 (Dharmacon).
Mock-transfected cells were treated
with Dharmafect 1 without oligos.
Detailed methods are available in the data
supplement.

b-Arrestin Recruitment
b-arrestin recruitment was determined
as described previously by Carr and
colleagues (32). HEK293 cells were
transfected with pcDNA3-M3-RLucII and
pcDNA3-barrestin2-GFP10 using Fugene
(Promega). Cells were incubated with
coelenterazine 400a and stimulated with
mAChR ligands. Bioluminescence
resonance energy transfer (BRET) was
measured using a Tecan Infinite F500
microplate reader. Detailed methods are
available in the data supplement.

Intracellular Calcium Measurements,
Immunoblotting, and M3 mAChR
Heterologous Expression
Intracellular calciummeasurements were
performed using Fluo-4 AM and Flexstation,
as described previously (33). Immuno-
blotting was performed using standard
methods. For heterologousM3mAChR
expression, lowM3–expressing cells were
transfected with lentiviral particles from
Origene (control: PS100064V; M3mAChR:
RC212436L1V), according to the
manufacturer’s instructions. Detailed
methods are available in the data
supplement.

Luciferase Reporter Assay
Stable expression of a reporter construct for
SMAD-Luc was established in hTERT ASM
cells using Cignal Lenti luciferase reporter
viral particles (SA Biosciences). Cells were
stimulated for 6 hours and then harvested in
passive lysis buffer. Luminescence was
determined after adding firefly luciferase
substrate reagent using a microplate
luminometer. Detailed methods are available
in the data supplement.

Immunofluorescence Staining
and Imaging
Immunocytochemical methods were used to
stain for smooth muscle a-actin (a-SMA),
phalloidin, and DAPI. Detailed methods are
available in the data supplement.

Gel Contraction
For collagen gel contraction assays, cells were
plated onto 10-cm dishes and cultured for
3 days. Then the cells were treated with
1 ng/ml TGF-b with or without PD 102807
(10 μM). After 72 hours of treatment, cells
were trypsinized and plated in collagen
solution onto a 96-well plate at a density of
100,000 cells per well. After acquiring baseline
images, collagen gels containing cells were
stimulated with histamine (1 μM) for 10min,
and images were obtained. The collagen gel
area was quantified, and percent reduction in
gel area was calculated. Detailed methods are
available in the data supplement.

Statistical Analysis
Data analysis was performed using
GraphPad Prism 8 (GraphPad Software, La
Jolla, CA); data are expressed as
means6 SEM. Group comparisons were
performed using a one-way ANOVA
followed by a Dunnett’s test compared with
the vehicle condition or Bonferroni’s
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multiple comparison test. A value of P, 0.05
was considered significant to reject the null
hypothesis.

Results

PD 102807 Promotes M3 mAChR
Arrestin Recruitment and Inhibits
Gq Signaling
To assess the ability of various mAChR
ligands to induce arrestin recruitment to M3
mAChR (M3), we heterologously expressed
M3-RLuc and GFP-b-arrestin 2 in HEK293
cells and assessed the ability of mAChR
ligands to induce 1) arrestin recruitment and
2) calciummobilization (Figure 1). We
found that the degree of arrestin recruitment
(Figures 1A–1D) was proportional to the
degree of calciummobilization (Figures 1E
and 1F) for all but one of the ligands tested:
PD 102807. PD 102807 is a known
characterized muscarinic receptor antagonist
with selectivity for the M4mAChR (half
maximal inhibitory concentration: 91 nM for
M4 and 950 nM for M3) (34, 35). In our
M3-expressing hTERT ASM cells, PD

102807 inhibited M3-mediated, Gq-
dependent calciummobilization (36) in a
competitive manner, as evidenced by a
rightward shift of the methacholine (MCh)
concentration-response curve (Figure 1C).
Full agonists induced a robust increase in
both arrestin recruitment and calcium
mobilization, whereas partial agonists
displayed low efficacy for both (Figures
1D–1F). However, PD 102807 did not fit this
pattern, as it induced arrestin recruitment
without concomitant calciummobilization.
These findings suggest that PD 102807 is an
arrestin-biasedM3 ligand.

M3-mediated AMPK Phosphorylation
Is Modulated by Arrestins; PD 102807
Induced AMPK Phosphorylation Is
M3 Dependent
In addition to identifying potential biased
ligands as defined by arrestin recruitment, we
also sought to identify associated signaling
pathways activated by PD 102807. Using
antibodies directed against known
phosphopeptide residues, we aimed to
identify aspects of M3-mediated signaling
modulated by arrestins. For these initial

screening studies, we knocked down
expression of both b-arrestin isoforms
(b-arrestin 1/2) in hTERT ASM cells by
siRNA transfection, stimulated the cells with
MCh (100 μM) for 5 min, and subjected cell
lysates to the phosphoscreen using the
ProteinSimpleWes automated capillary
electrophoresis system.We observed a
decrease in signal of MCh-induced AMPK-
specific phosphoresidues in cells transfected
with arrestin siRNA, as indicated by the
overall decrease in the area under the curve
(Figure E1A). This indicates a decrease in
phosphorylation of AMPK consensus
sequence peptides and suggests a decrease
of MCh-induced AMPK activity. We
then confirmed, using specific anti-
phosphorylated (p)-AMPK antibodies, that
M3-mediated AMPK phosphorylation
is inhibited by arrestin knockdown
(Figure E1B). Next, we determined time and
concentration dependence for MCh- and
PD 102807–induced AMPK signaling.
PD 102807 reached a peak AMPK
phosphorylation at 20 min and maintained
elevated p-AMPK over the next 4 hours
(Figure 2A). MCh-induced p-AMPK peaked
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Figure 1. b-arrestin recruitment and calcium mobilization by muscarinic ligands. (A) Methacholine (MCh) (0.1, 1, 10, or 100 mM) and (B) PD
102807 (1, 10, or 100 mM) induce M3-mediated b-arrestin recruitment as assessed by bioluminescence resonance energy transfer (BRET)
signal in HEK293 cells. (C) PD 102807 is a competitive antagonist of the M3 mAChR. Calcium mobilization in airway smooth muscle (ASM) cells
by different concentrations of MCh in the presence or absence of PD 102807 (1, 10, or 100 mM; 15 min pretreatment) using Flexstation. (D)
Maximal increase in b-arrestin recruitment BRET signal by mAChR ligands (100 mM) in HEK293 cells. (E ) Net maximal calcium mobilization by
mAChR ligands (100 mM) in human ASM cells stably expressing telomerase reverse transcriptase (hTERT) ASM cells. (F ) Relationship between
net maximal calcium mobilization and b-arrestin recruitment for each of the characterized mAChR ligands. Data are means6SEM from two to
four experiments. CCh=carbachol; MCh=methacholine; Musc=muscarine; OXO=oxotremorine sesquifumarate; OXO-M=oxotremorine-M;
Pilo=pilocarpine; PD=PD 102807; Veh=vehicle.
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at 5 min but waned over the next 4 hours
(Figure 2B). MCh showed similar kinetics in
inducing p-ERK (Figures E1D and E1E),
whereas PD 102807 did not induce p-ERK

(Figure E1F). MCh and PD 102807 both
induced a concentration-dependent
(1–100 μM) increase in p-AMPK, at 5 and
20 min, respectively (Figures 2C and 2D).

In addition, we determined the phos-
phorylation status of acetyl-coenzyme
A-carboxylase (ACC), a downstream target
of AMPK whose phosphorylation is a proxy
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Figure 2. Methacholine and PD 102807 induce phosphorylated (p)-AMPK and p-ACC in a time- and concentration-dependent manner in human
ASM cells; PD 102807–induced p-AMPK is M3 dependent. (A and B) Human hTERT ASM cell lines expressing M3 mAChRs were stimulated
with (A) PD 102807 (100 mM) or (B) MCh (100 mM) for 0–240 min. (C–F ) Cells were stimulated with increasing concentrations (1, 10, or 100 mM)
of (D, F ) MCh for 5 min or (C, E ) PD 102807 for 20 min. *P, 0.05, **P, 0.01, and ***P,0.001; one-way ANOVA followed by Dunnett’s multiple
comparison test for differences from vehicle. (G) Cell lines expressing either high or low levels of M3 mAChR were stimulated with MCh (100
mM; 5 min) or PD 102807 (100 mM; 20 min). (H ) In cell lines expressing low M3 mAChR, heterologous expression of M3 was achieved using
lentiviral transfection. Transfected cells (control vector vs. M3 mAChR vector) were then stimulated with PD 102807 (100 mM; 20 min). (I ) Cell
lines expressing M3 mAChR were stimulated with PD 102807 (100 mM; 20 min) in the presence or absence of tiotropium bromide (100 nM; 30
min pretreatment). *P,0.05, ***P,0.001 versus vehicle, ##P,0.01, ###P, 0.001, and ####P, 0.0001 versus own control; one-way ANOVA
followed by Bonferroni multiple comparison test. Immunoblotting was performed using specific antibodies against p-AMPK, p-ERK, and p-ACC,
as described in Methods. Representative blots are shown; loading was corrected for b-actin. Data are means6SEM from three to seven
experiments. Veh=vehicle.
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for AMPK activity. We found that both
MCh and PD 102807 induced p-ACC in a
concentration-dependent manner
(Figures 2E and 2F). To determine the
M3 dependence of MCh- and PD
102807–mediated p-AMPK induction, we
evaluated responses to MCh and PD 102807
(100 μM; 5 and 20 min, respectively) in
additional hTERT ASM cell lines (31) that
we have determined to express very low
levels of M3mAChR (33, 37, 38). MCh- and
PD 102807–induced p-AMPKwas almost
fully blunted in these cells (Figure 2G).
We then used lentivirus to heterologously
express M3mAChR in these cells; PD
102807 strongly increased AMPK
phosphorylation under these conditions.
Finally, in the presence of the clinically
relevant muscarinic receptor antagonist
tiotropium bromide (100 nM), PD 102807–
induced p-AMPKwas almost fully inhibited
(Figure 2I). These data indicate that PD
102807–induced AMPK signaling is
M3 dependent.

MCh-Induced, but Not PD
102807–Induced, p-AMPK Is
Gq Dependent
Because canonical M3 signaling is mediated
by the Gq protein in most cell types, we
clarified the role of Gq protein in M3
signaling in ASM cells by using an inhibitor
of Gq signaling, YM-254890 (10 μM). Gq
inhibition did not affect PD 102807–induced
p-AMPK (Figure 3A). However, MCh-
induced p-AMPKwas strongly inhibited

(88%) by YM-254890 (Figure 3B). Similarly,
YM-254890 inhibited MCh-induced p-ERK
by 82% (Figure 3C). These data indicate that,
although bothMCh-induced AMPK
signaling and PD 102807–induced AMPK
signaling are M3 dependent, MCh-induced
p-AMPK is driven by canonical M3-Gq
signaling, whereas the PD 102807–induced
p-AMPK is M3mediated but Gq
independent.

PD 102807–Induced AMPK Signaling
Is GRK2/3 Dependent; Arrestins
Modulate M3-Mediated AMPK Signaling
To further elucidate the signaling pathways
involved inM3-mediated AMPK activation
by PD 102807, we focused on the potential
role of arrestins and GRK2/3, given the
substantial body of literature showing that
arrestins mediate signaling bias for various
receptors, and given our data demonstrating
that PD 102807 induces arrestin recruitment.
To determine how the different b-arrestin
isoforms and GRK2/3 regulate signaling, we
selectively knocked down b-arrestin 1 and
b-arrestin 2, as well as GRK2/3, using siRNA
and determined phosphorylation of AMPK.
Knockdown of b-arrestin 1 expression
resulted in 64% inhibition of PD
102807–induced p-AMPK, whereas
b-arrestin 2 knockdown augmented PD
102807–induced p-AMPK (Figure 4A). On
the other hand, MCh-induced p-AMPKwas
decreased by 46% for b-arrestin 1
knockdown and 53% for b-arrestin 2
knockdown (Figure 4D).We determined

that GRK2/3 knockdown completely
abrogated PD 102807–induced p-AMPK,
whereas it did not affect MCh-induced
p-AMPK (Figures 4B and 4E). Similarly,
GRK2/3 knockdown abolished the PD
102807–induced p-ACC but did not affect
MCh-induced responses (Figures 4C and 4F).
Collectively, these results indicate that
GRK2/3 and arrestins modulate PD 102807–
induced, M3-mediated AMPK signaling in
ASM cells.

PD 102807 Inhibits TGF-b Signaling
and Hypercontractility in ASM Cells
AMPK is an established antagonist of TGF-
b–induced signaling and pathology (39–41),
a fact that is highly relevant to ASM cell
biology, as M3mAChRs and TGF-b
cooperate to drive ASM cell phenotype
switching to a hypercontractile phenotype
characterized by increased contractile protein
expression and contractility (23, 24). TGF-b
is known to activate transcription factor
SMAD in a variety of cell types. Using a
luciferase reporter assay, we determined that
PD 102807 inhibited TGF-b–induced
SMAD-Luc activity by 58% in hTERT ASM
cells with highM3 receptor expression
(Figure 5A).

Next, we focused on the functional
significance of TGF-b signaling inhibition by
M3 biased signaling. TGF-b is known to
increase expression of contractile proteins in
ASM; this is one of several ways in which
TGF-b contributes to ASM cell phenotype
plasticity and airway hypercontractility,
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important features of airway pathology
in obstructive airway disease. We stimulated
M3-expressing ASM cells with TGF-b
(1 ng/ml) for 3 days in the absence or
presence of PD 102807 (10 μM). Using
immunocytochemistry, we determined that
the TGF-b–induced increase in the
expression of a-SMA, as well as the
formation of actin stress fibers (phalloidin
staining), is inhibited by PD 102807
(Figure 5B). We then used immunoblotting
to quantify the effects of PD 102807 and

MCh on TGF-b–induced a-SMA
expression. In cells with highM3 expression,
PD 102807 inhibited TGF-b–induced
a-SMA expression by 65% (Figure 5C).
In cells with lowM3 expression, PD 102807
did not significantly affect TGF-b–induced
SMAD-Luc activity or a-SMA expression
(Figures E1H and E1I).

Consistent with the effect of PD 102807
on TGF-b–induced modulation of ASM
structural phenotype, PD 102807 inhibited
TGF-b–induced ASM cell hypercontractility

as assessed in a collagen gel contraction assay
(Figure 5D). TGF-b treatment increased
histamine-induced ASM cell contraction by
2.8-fold, which was effectively inhibited by
PD 102807 pretreatment. Collectively, these
data indicate that PD 102807 inhibits TGF-
b–induced signaling, a-SMA expression,
and hypercontractility in human ASM cells.
To further implicate the role of GRK-
arrestin–biasedM3 signaling in PD 102807-
mediated regulation of ASM phenotype, we
used GRK2/3 knockdown, given that
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GRK2/3 knockdown can be sustained for
high levels in ASM over the course of a
chronic experiment (Figures 6A and 6B).
GRK2/3 knockdown reversed the ability of
PD 102807 to inhibit TGF-b–induced
a-SMA expression by 58% (Figure 6A).

Discussion

The present study identifies PD 102807 as a
biasedM3 ligand, which induces GRK2/3-
mediated, arrestin-mediated, and
Gq-independent activation of AMPK
signaling in ASM cells. Our reductionist
model—HEK293 cells heterologously
expressing anM3-arrestin BRET pair—
allowed us to screen for the ability of
mAChR ligands to recruit arrestins toM3
mAChRs. Using this model, we observed
that, for most mAChR ligands, the ability to

recruit arrestins correlates with the ability to
induce Gq signaling (calciummobilization).
When ligand-induced calciummobilization
is plotted against ligand-induced arrestin
recruitment, the various ligands cluster
together on the basis of their intrinsic ability
to activate the M3 receptor (i.e., full agonists
vs. partial agonists). The PD 102807 signaling
profile—antagonism of M3-Gq–stimulated
calcium and agonism of arrestin recruitment—
indicates that this compound acts as a
biased M3 ligand capable of arrestin
recruitment independent of promoting
Gq signaling.

In concert with the aforementioned
studies, we focused on identifying potential
biased arrestin-dependent signaling byM3
mAChR in human ASM cells. We used
antibodies against specific kinase
phosphoresidue sequences in conjunction
with automated capillary electrophoresis

(using the ProteinSimpleWes system) to
reveal that MCh increased the
phosphorylation of residues specific to
AMPK in an arrestin-dependent manner.
Using a specific phospho-AMPK antibody,
we then confirmed that MCh-induced
AMPK phosphorylation is impaired in ASM
cells in which expression of b-arrestins is
knocked down.We also determined that PD
102807 induces phosphorylation of AMPK;
this is the first indication of a biased ligand
inducing discrete signaling by theM3
mAChR. Indeed, we show that PD 102807
inhibits M3-mediated Gq signaling (calcium
mobilization) yet promotes arrestin
recruitment toM3mAChR and induces
phosphorylation of AMPK and the
downstream AMPK target ACC. Using
several experimental approaches, we
determined that bothMCh and PD 102807
require M3 expression to induce p-AMPK
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Figure 5. PD 102807 inhibits TGF-b–induced signaling and function in ASM cells in an M3-dependent manner. (A) SMAD-Luc transfected
human hTERT ASM cell lines were preincubated with PD 102807 (1 or 10 mM) for 20 min and then stimulated with TGF-b (1 ng/mL) for 6 hours.
Luciferase activity was determined as described in Methods. (B) hTERT ASM cell lines were treated with TGF-b (1 ng/mL)6PD 102807 (10 mM)
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and that PD 102807 induction of p-AMPK is
inhibited by the specific, clinically used
muscarinic antagonist tiotropium, thereby
demonstrating that this is anM3-dependent
signal.

On the basis of our initial findings
(Figures E1A–E1C), we expected that
MCh-induced p-AMPKwould be a
Gq-independent/biased signal. However,
even though we show that knocking down
arrestins decreases the MCh-induced
p-AMPK, this MCh-induced signal appears
to be strongly dependent on Gq activation.
Indeed, M3mAChR-mediated, Gq- and
calcium-dependent phosphorylation of
AMPK has previously been reported in
skeletal muscle cells (42). However, PD
102807–induced activation of AMPK
signaling is not dependent on Gq activation;
the PD 102807–induced signaling is
modulated by arrestins and is strongly
dependent on GRK2/3, further establishing
signaling bias by PD 102807. GRK2/3 does
not appear to be required for MCh-induced
AMPK signaling.

The GRK-arrestin axis has been widely
studied in the context of receptor
desensitization. On the other hand,
regulation of signaling by GRK/arrestin,
whether canonical G protein or alternative
biased/qualitative, is a relatively new concept,
andmore research is needed to elucidate the
underlying mechanisms.With respect to the
arrestin regulation of canonical Gq protein
signaling, in our previously published
studies, we determined that, in ASM cells,
b-arrestin 1 expression is required for
M3-mediated calciummobilization as well as
contraction both ex vivo and in vivo (38).
Conversely, we have previously determined
that GRK2/3 knockdown does not affect
M3-mediated calciummobilization in ASM
cells (33). Our current findings show that
MCh-induced p-AMPK is fully inhibited by
Gq inhibition, whereas PD 102807-induced
p-AMPK is not affected. The ability to use
the Gq inhibitor YM-254890 to effectively
distinguish between Gq and non-Gq
(GRK-arrestin–dependent) signaling is
important, given that at least one study (43)
suggested that some arrestin-dependent
signals may still require G protein activation.
However, both MCh- and PD 102807–
induced p-AMPK are partially inhibited by
b-arrestin 1 knockdown. These data,
indicating that knockdown of b-arrestin 1
diminishes both canonical Gq and
noncanonical biasedM3 signaling, suggest
that b-arrestin 1 may regulate both
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Gq-dependent and -independent signaling.
Under b-arrestin 2 knockdown conditions,
the PD 102807–induced p-AMPKwas
increased; this suggests that the PD 102807–
induced biased signaling is not mediated by
b-arrestin 2 but that b-arrestin 2 may have a
limiting effect on noncanonical biasedM3
signaling.

Our data show that GRK2/3 is a crucial
mediator of PD 102807–induced,
noncanonical biasedM3 signaling.
Knockdown of GRK2/3 fully inhibits PD
102807–induced p-AMPK and p-ACC,
whereas theMCh-induced p-AMPK and
p-ACC are not affected. Our previous studies
showing no role for GRK2/3 in regulating
MCh-induced Gq signaling (33), as well as
our present data, support a role for GRK2/3
as a specific regulator of biasedM3 signaling.
Furthermore, these findings bolster the
evidence that PD 102807 induces a
Gq-independent, biasedM3-mediated
p-AMPK signal, whereas MCh-induced
p-AMPK is mediated by canonical Gq
signaling.

With respect to regulation of ASM
physiology, we identified a role for PD
102807–inducedM3-mediated GRK-arrestin
biased signaling in inhibiting TGF-b
signaling in ASM cells (Figure 7). This is a
highly relevant observation in the context
of obstructive airway diseases, because
TGF-b is an important driver of airway
hypercontractility mediated by increased
ASM contractile protein expression and
airway remodeling, resulting in thickened
airway wall (23, 44, 45). We found PD
102807 to inhibit TGF-b–induced SMAD-
Luc activity, as well as a-SMA expression, in
cells that express M3R but not in cells with
lowM3mAChR (M3R) expression,
indicatingM3 dependence. Similarly, we
found that PD 102807 inhibits TGF-
b–induced increase in the formation of
a-SMA fibers as well as actin stress fibers.
Furthermore, we determined that TGF-
b–induced increase in contractile protein
expression also results in increased
contractility of ASM cells. Consistent with
our contractile protein expression data, PD
102807 inhibits the TGF-b–induced
hypercontractility. In an attempt to further
demonstrate M3 dependence, we tested the
effect of the nonselective mAChR antagonist
tiotropium on the effect of PD
102807–mediated regulation of the TGF-
b–induced increase in a-SMA expression.
We found that tiotropium had limited ability
to inhibit the effects of PD 102807 over the

3-day stimulation (data not shown). Despite
some reversal of PD 102807–induced AMPK
phosphorylation at several time points, the
inhibition is not complete over the course
of 3 days, likely because of PD 102807
sufficiently competing with tiotropium for
receptor binding over time. This is consistent
with competitive behavior and not
surprising, given the relatively higher
concentration of PD 102807 versus
tiotropium. Even under optimal
circumstances, experiments in which an
effect is induced (e.g., by TGF-b), is then
inhibited by a compound (e.g., PD 102807),
and then needs to be inhibited by a second
compound (e.g., tiotropium) remain
challenging, especially over the course of
multiple days. However, we confirmed that
the effects of PD102807 are GRK dependent,
as we show that PD 102807 is less effective at
inhibiting the TGF-b–induced expression of
a-SMA in ASM cells when GRK2/3 is
knocked down. These data indicate that PD
102807–induced GRK-arrestin–biasedM3
signaling may be a promising pathway to
attenuate airway hypercontractility, with
obvious therapeutic implications for
obstructive airway diseases.

AMPK is a heterotrimeric serine/
threonine complex comprising an a catalytic,
and b and g regulatory subunits. AMPKwas
initially identified as a crucial regulator of
cellular energy homeostasis, detecting
changes in cytosolic AMP/ATP ratio and
steering various metabolic pathways to
address energy needs of the cell (46).
However, further research revealed that
AMPK activity is not only promoted by
increases in the AMP/ATP ratio but also by
several kinases, including serine/threonine
kinase 11 (also known as liver kinase B1),
TGF-b–activated kinase 1, and calcium/
calmodulin-dependent kinase, which
indicates that AMPK is a focal point for a
variety of signaling pathways and an
important regulator of physiology (47).
AMPK activation has been shown to
attenuate pathology in various disease
models. The widely used oral antidiabetic
drug metformin, which promotes AMPK
activity, has been found to improve cardiac
function and prevent cardiac remodeling in
nondiabetic models of heart failure and
models of myocardial infarction (48–50). In
addition, AMPK has been a prominent target
for reducing pathological tissue fibrosis and
TGF-b signaling in many disease models,
including in the lung (40, 51, 52), liver
(53–55) and kidney (56, 57). Our study

provides a proof-of-concept that the biased
M3mAChR ligand, PD 102807, can
modulate AMPK activity. This finding has
wide-ranging implications, given the
prominent role of AMPK in regulating
various organ systems.

Previous studies have focused on
identifying M3 biased signaling. Studies by
the Tobin lab have indicated that M3 engages
in Gq-independent signaling, potentially by
means of mechanisms that involve receptor
phosphorylation. The authors generated a
mutant, phosphorylation-negative M3
mAChR in which 15 residues were
substituted to prevent phosphorylation of the
receptor. Expression of these
phosphorylation-negative receptors did not
affect canonical M3-Gq signaling but did
result in impaired insulin release frommouse
pancreatic b-islet cells (28), impaired
constriction of murine airways (27), and
impaired learning in mice (29). These studies
point to a substantial non–Gq-dependent
input fromM3 receptors in the regulation of
various physiological processes. Other
studies have shown that the M3mAChR
undergoes barcode phosphorylation when
activated by full versus partial agonists (and
varied by cell type), suggesting that barcode
phosphorylation is a possible mechanism for
determining biasedM3 signaling as well as
indicating that barcode phosphorylation may
have wider implications for how canonical
Gq signaling is transduced (58). Indeed,
barcode phosphorylation has been
demonstrated for several GPCRs, and
it is possibly a key feature in GPCR
signaling (8, 59).

The Roth lab created a designer receptor
based on theM3mAChR with two
mutations in the orthosteric pocket that
render it insensitive to acetylcholine but
allow its activation by clozapine-N-oxide,
an otherwise pharmacologically inert
compound, to induceM3 signaling (60–62).
An additional R165L mutation to this
receptor renders it unable to activate
Gq signaling but still able to recruit
arrestins (63). This arrestin-biased receptor
was found to promote insulin release from
murine pancreatic b-islet cells, thereby
further strengthening the case for M3 biased
signaling as an important regulator of
physiological processes. All these studies
have focused on identifying biased signaling
induced by mAChR agonists. However, no
studies to date have identified a biased ligand
that can selectively activate non-canonical
pathways downstream of M3. Pronin and
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colleagues have suggested that the
muscarinic ligand pilocarpine can act as a
biased agonist for M3 (64). Pilocarpine is a
partial agonist that induces M3-mediated Gq
signaling, so the potential for pilocarpine to
selectively induce non-Gq pathways may be
dependent on receptor expression levels and
cell type. This suggests that mAChR ligands
may behave as either balanced or biased
ligands depending on the cell system to
which they are applied. In our study,
pilocarpine behaves as a partial muscarinic
agonist that induces both modest calcium
mobilization and modest arrestin
recruitment.

Although our studies demonstrate the
capacity of PD 102807 to stimulate M3-/
GRK-/arrestin-dependent signaling to
regulate ASM function that is independent of
Gq, we cannot definitively assert that such
signaling and function is entirely G protein
independent. AlthoughM3 signaling
stimulated by its cognate agonist
acetylcholine (and the comparable MCh
and carbachol) appears to be mediated
exclusively through Gq (36), additional
studies—along the lines of those performed
in HEK293 cells to assess a role for multiple
G protein subtypes in biased signaling by
several GPCRs (43)—are required to
eliminate any contribution of other G
proteins. To date, no properties other than
muscarinic receptor antagonism have been
attributed to PD 102807 in published

literature. Our data indicate a requirement
for M3mAChR in PD 102807–induced
AMPK activation; additional/alternative
mechanisms for the actions of PD 102807
are possible, pending further study.

One limitation of the present study is
that we have primarily focused on studying
PD 102807–induced signaling and effects in
cell-based models. Isolated ASM cells
heterologously expressing hTERT are our
model of choice because some of these lines
retain M3mAChR expression; these cells are
not primary cells per se, but they are derived
from low-passage primary cells that have
been transfected with hTERT, essentially
making them senescence resistant. It has
been established that primary cultures of
human ASM cells rapidly lose M3 expression
with progressive population doubling
(typically between the second and fourth
passages) and are, therefore, impractical as a
model to studyM3 signaling, particularly in
experiments of long duration. In the past
15 years, hTERT ASM cells have been widely
used and have been established as a useful
model system that is representative of ASM
physiology (65–67), specifically in analyses of
M3 signaling or function (68–70).

Because more integrative models
enabling further validation of the
physiological and translational relevance of
our findings are beyond the scope of this
study, our future efforts will focus on
evaluation of the impact of muscarinic biased

signaling in the airways by using ex vivo
precision-cut lung slices as well as in vivo
models of lung disease. With more biased
ligands and biased GPCR signaling pathways
being identified, it is increasingly important
to determine the impact of biased signaling
on physiological processes. Althoughmany
studies are ongoing, biased signaling is
already showing promise in pain manag-
ement (oliceridine and TRV734) and in the
treatment of diseases and conditions (in
various stages of clinical or preclinical
studies), including heart failure (carvedilol),
and schizophrenia (UNC9994) (17). This
study suggests that M3mAChR-biased
signaling in the airways may be targeted for
therapeutic purposes.

In summary, in this study, we identify
PD 102807 as a biased M3 mAChR ligand
that promotes AMPK signaling in a
GRK2/3-arrestin–dependent and
Gq-independent manner in ASM cells.
The ability of PD 102807 to inhibit
pathogenic ASM hypercontractility is
highly relevant to the treatment of
obstructive airway diseases.�
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