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Abstract—Head acceleration measurement sensors are now
widely deployed in the field to monitor head kinematic
exposure in contact sports. The wealth of impact kinematics
data provides valuable, yet challenging, opportunities to
study the biomechanical basis of mild traumatic brain injury
(mTBI) and subconcussive kinematic exposure. Head impact
kinematics are translated into brain mechanical responses
through physics-based computational simulations using val-
idated brain models to study the mechanisms of injury. First,
this article reviews representative legacy and contemporary
brain biomechanical models primarily used for blunt impact
simulation. Then, it summarizes perspectives regarding the
development and validation of these models, and discusses
how simulation results can be interpreted to facilitate injury
risk assessment and head acceleration exposure monitoring
in the context of contact sports. Recommendations and
consensus statements are presented on the use of validated
brain models in conjunction with kinematic sensor data to
understand the biomechanics of mTBI and subconcussion.
Mainly, there is general consensus that validated brain
models have strong potential to improve injury prediction
and interpretation of subconcussive kinematic exposure over
global head kinematics alone. Nevertheless, a major road-
block to this capability is the lack of sufficient data
encompassing different sports, sex, age and other factors.

The authors recommend further integration of sensor data
and simulations with modern data science techniques to
generate large datasets of exposures and predicted brain
responses along with associated clinical findings. These
efforts are anticipated to help better understand the biome-
chanical basis of mTBI and improve the effectiveness in
monitoring kinematic exposure in contact sports for risk and
injury mitigation purposes.

Keywords—Brain biomechanics, Concussion, Subconcus-

sion, Impact kinematics, Instrumentation, Finite element
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ABBREVIATIONS

ADAPT A detailed and personalizable head
model with axons for injury prediction

BrIC Brain injury criterion
CAB Center for Applied Biomechanics
CG Center of gravity
CORA Correlation Analysis Score
CSDM Cumulative strain damage measure
CSF Cerebrospinal fluid
DAI Diffuse axonal injury
HIC Head Injury Criterion
IC Imperial College
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ISO International Standards Organization
FEBio Finite element analysis software for

biomechanics and biophysics
GHBMC Global Human Body Models

Consortium
KTH Kungliga Tekniska Högskolan
NFL National Football League
NCAP New Car Assessment Programme
NHTSA National Highway Traffic Safety

Administration
MAS Maximum axonal strain
MNI Montreal neurological imaging
MPS Maximum principal strain
PMHS Post Mortem Human Subjects
RWECP Risk-weighted cumulative exposure
SDH Subdural hematoma
SIMon Simulated injury monitor
SUFEHM Strasbourg University FE Head Model
TBI Traumatic brain injury
THUMS Total Human Model for Safety
UCDBTM University College Dublin Brain

Trauma Model
WHIM Worcester Head Injury Model
WSUHM Wayne State University Head Model

SUMMARY STATEMENTS

This work was part of the Consensus Head Accel-
eration Measurement Practices (CHAMP) project. The
objective of CHAMP was to develop consensus best
practices for the gathering, reporting, and analysis of
head acceleration measurement data in sport. Subject
matter experts were recruited to draft a series of papers
on various aspects of the issue. As described in detail in
a companion paper (Arbogast et al. 2022),9 each team
drafted a paper and a several summary statements
ahead of the CHAMP Consensus Conference, held on
March 24–25, 2022 at the Children’s Hospital of
Philadelphia. The following summary statements
regarding brain computational modeling were dis-
cussed, revised as necessary, and ultimately approved
by more than 80% of the vote at the conference:

1. Brain biomechanical models have strong potential
to improve injury prediction and interpret kine-
matic exposure over global head kinematics alone.
They provide the ability to interrogate physics-
based tissue level response, estimate risk of injury,
and offer insight into injury specifics such as
location and extent of structural damage.

2. The modeling community advocates for the sensor
community to standardize reporting of head
kinematic data. Standardized reporting should

include sensor hardware and software details, as
well as specifics on coordinate system, post-
processing, sampling frequency, and subjects’
morphological and demographic information.

3. It is recommended that model quality be assessed
comprehensively by comparing with experimental
data related to the metric used for model predic-
tions (e.g. deformation, strain, stress), correlating
against real-world data, and then where possible,
comparing to responses from existing models. It is
also recommended that models be reevaluated for
validation quality when new experimental data or
analytic strategies become available.

4. We recommend modelers explore modern data
science techniques to efficiently process large
amounts of sensor data.

5. The modeling community advocates for a curated
open-access database repository to facilitate shar-
ing of real-world data such as subject-specific head
kinematics, injury diagnoses, and other associated
information including head/brain morphology. In
addition, simulation results from existing models
using idealized kinematic profiles should be shared
as a benchmark for cross-model examination.

INTRODUCTION

This paper intends to recommend best practices
related to using physics-based, computational finite
element (FE) models of the human brain for predicting
intracranial biomechanical responses and subsequent
interpretation of sustained head impact kinematics.
Topics of model development, validation, simulation,
result interpretation, and limitations are discussed.
Finally, a list of recommendations and consen-
sus-derived best practices are presented. Wherever
possible, all of these topics are taken in the context of
interpreting intracranial biomechanical responses from
instrumentation-based measurements of head impact
kinematics in contact sports.

MODEL DEVELOPMENT

Model Development Overview

The purpose of developing a human brain biome-
chanical model (hereafter ‘brain model’) is to accu-
rately represent brain biomechanics in silico. This
allows estimating brain responses in real-world kine-
matic events through computer simulations that are
otherwise difficult or impossible to measure directly.
Most brain models are developed using physics-based
finite element (FE) method, which is a modern engi-
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neering tool widely used across industry and academia.
The solution of the mechanical response of a complex
FE model is resolved within a discretized mesh con-
sisting of a collection of simple-shaped elements. Here,
several critical aspects of FE model development are
addressed, including mesh development, assignment of
material properties, and defining boundary conditions.
Several high-quality brain models are now available
for estimating brain responses during blunt head
kinematics. Some comparisons of these models include
model validations,32,82 evaluation of predicted brain
strains,42 etc. Figure 1 summarizes some of these
models.42

Generating high-quality meshes of the brain is
usually the first hurdle in model development. This is
critical for representing the complex brain anatomy
and providing accurate element-level response predic-
tions. In the literature, 8-noded hexahedral meshes are
usually preferred to represent the brain,63 which often
incorporate an o-grid or ‘‘butterfly’’ pattern to repre-
sent rounded surfaces (Fig. 1a). Together with selec-
tively reduced integration and hourglass control, linear
hexahedral elements provide sufficient accuracy and
efficiency using explicit time integration in LS-Dyna
(Ansys, Canonsburg, PA)54,62,80,99,114,122,135,144,155,166

or ABAQUS (Dassault Systèmes, France)149,172 solvers
(Fig. 1b). Higher order tetrahedral elements are also
possible for meshing the brain,117 but they can suffer in

efficiency.63 Brain models with various numbers of
elements ranging from five thousand to three million
have been reported (Fig. 1a). The effects of element
number on predicting brain strains have also been
quantified.63,170 Thin shell elements have been used to
represent the falx and tentorium that are important to
support the brain in rotational motion. Other com-
ponents include ventricles that are sometimes approx-
imated as fluid elements or low-shear solids and skull-
to-brain membranes that are usually overlaid to near-
by solid elements.

After meshing, material properties are assigned to
each element to represent brain anatomical structures.
Constitutive model assumptions and parameters are
often periodically updated as new experimental data
become available. Both linear viscoelas-
tic80,99,114,122,144,166 and nonlinear, visco-hyperelas-
tic54,62,99,135,144,149,155,172 material properties have been
commonly used (Fig. 1c). Typically, the brain is
assumed to have a density close to water, and is nearly
incompressible with the bulk modulus many orders of
magnitude greater than the shear modulus (GPa vs.
kPa). This combination of material characteristics is
important for accurate prediction of intracranial
pressure gradients during translational head motion.
In addition to the brain parenchyma, membrane
structures including the falx, tentorium, dura, arach-
noid, and pia if included are usually defined as elastic

FIGURE 1. A brief overview of a number of selected brain models (see text for model acronyms). (a) All hexahedral meshes with
various element numbers of the models (in logarithmic scale; WHIM shows the maximum number available170), (b) solvers used by
the various models, (c) material model with more using nonlinear with viscoelasticity, and (d) brain-skull interface with the majority
adopting tied or nodal sharing conditions.
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materials. Due to the rather large variation in material
property characterization of the brain,23,168 it is com-
mon for model developers to optimize material
parameters to improve model validation while bal-
ancing numerical stability and efficiency for practical
use.

Defining appropriate boundary and interface con-
ditions between the brain and skull, and among
internal brain structures remains a challenge because
these areas lack abundant experimental data to sup-
port modeling choices. A common practice is to use
tied conditions or nodal shar-
ing,54,62,80,114,122,135,144,155,166,172 as used in the majority
of models (Fig. 1d). A tangential-sliding-only interface
condition is also possible, allowing sliding motion
between the skull and brain.99,149 Similar to brain
material property assignment, it is also common to
select and optimize brain-skull boundary conditions to
satisfy model validation. Nevertheless, there remains
concern that a tied brain–skull boundary condition is
not a perfect anatomical representation,183 even if it
may produce reasonable model validation against
cadaveric data deep to the brain.72 There has been
limited investigation on the relative motion between
the brain-skull interface and the resulting strain at the
outer surface of brain models.122

It is noteworthy that new capabilities are continu-
ally adopted to improve a model’s sophistication and
predictive power. The stiffening effect of blood vessels,
which are small in volume percentage but have a
stiffness value orders of magnitude higher than the
brain, has been studied by incorporating the cerebral
vasculature network.76,165,173,174 White matter fiber
tracts have also been modeled either through material
definition59,136,171 or explicitly embedded in the brain
to study axon loadings.102,155,178 Fluid–solid interac-
tion between brain and cerebrospinal fluid (CSF) has
also been investigated,38,181 which is an alternative to
assigning low shear modulus fluids to the CSF. Lastly,
brain models with detailed meshes with millions of
elements are also available, offering an improved look
at brain anatomy such as gyri and sulci or direct cor-
relation with neuroimaging.54,62,105,122

Selected Models and Applications

This section reviews some legacy brain models and
more contemporary ones at the global organ level,
their unique features and applications, ordered by the
year each developer group first published their initial
versions. This list is not inclusive of every brain model
ever developed and was compiled by the authors. It
aims to avoid endorsement of any model over any
other.

The Wayne State University Head model
(WSUHM) was developed based on earlier versions in
1993134 and 1995.179 It was one of the first models used
to study concussions in American football.167 Pressure
and shear stress were predicted across the brain in 12
National Football League (NFL) impacts involving 24
players, with 9 players diagnosed with concussion. The
study found intracranial pressure to be more strongly
correlated with translational acceleration than rota-
tional acceleration. In addition, large shear stress in the
brainstem and thalamus was identified. These are areas
that are often damaged in traumatic brain injury
(TBI), particularly in conjunction with diffuse axonal
injury (DAI), and are also relevant in concussion. The
study showed shear stress in the upper brainstem can
better predict concussion than pressure, translational
acceleration, rotational acceleration and Head Injury
Criterion (HIC).150 Later, the model was used to pre-
dict strain distribution in the brain in 28 NFL colli-
sions (22 concussions).151 It was shown that midbrain
strain and strain rate correlated with memory and
cognitive deficits and removal from play.

The Strasbourg University FE Head Model (SU-
FEHM) has been used to determine injury metrics for
predicting the risk of concussion, subdural hematoma
(SDH) and skull fractures. It originated from work in
1997.88 This visco-elastic brain model has been applied
to the replication of 28 NFL collisions153 and 125 real
world head trauma31 to derive brain tolerance limits. A
SUFEHM-Box pipeline has been made available for
end users for assessment of head protection systems in
the automotive,56,126 motorcycle,17,145 and bike and
equestrian helmet industries.15,30,71 SUFEHM is part
of ‘‘Certimoov.com’’ helmet rating and used for front
car crash safety assessment within EuroNCAP. A deep
learning version of the model was developed for helmet
applications.16 An anisotropic version with visco-hy-
perelastic material for white matter from diffusion
tensor imaging (DTI) data has been developed.24,25

This was validated135 and used to derive prediction for
skull fracture137 and mild TBI.138 The prediction
capability of multiple metrics including maximum ax-
onal strain (MAS), strain rate, cumulative strain
damage metric (CSDM), etc. showed axonal strain
prediction capability.

Several versions of the KTH (The Kungliga Te-
kniska Högskolan Royal Institute of Technology)
models exist. An early version with visco-hyperelastic
brain material properties was used to simulate 58 NFL
collisions and to determine the mechanical parameter
for better concussion prediction.98 Later, Giordano
and Kleiven59 incorporated anisotropic material
properties for white matter to test the prediction
accuracy of MPS, MAS, CSDM, HIC and BrIC. They
found that they are all significant predictors of con-
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cussion based on logistic regression. The model was
also used for multiscale modeling of TBI26 and to
incorporate white matter mechanical anisotropy and
assess its effects on the predictions.57,58 Another ver-
sion incorporating several pairs of bridging veins has
shown large strains in these veins under head rotations,
suggesting that large rotational accelerations can pro-
duce SDH.180,182

A smoothed voxel KTH version was also developed
fromMRI,75,77,78 which was validated by segmentation
accuracy, element quality and brain motion. It showed
that maximal strain was concentrated in the depth of
sulci during rotational loading, similar to reported
locations of DAI.77 Therefore, it was suggested that
the inclusion of sulci may be considered for future FE
head models.

The ADAPT model105,124 (A Detailed and Person-
alizable Head Model with Axons for Injury Prediction)
is the latest from the KTH group. It is an anatomically
detailed model with conforming meshes of sulci and
gyri with embedded white matter fiber tracts. The
ADAPT model is equipped with a hierarchical image
registration-based personalization pipeline that allows
fast generation of detailed subject-specific models for
almost any brains that have significant anatomical
differences comparing with the baseline.104 The per-
formance of the head model is evaluated by comparing
model predictions with experimental data of brain–
skull relative motion, brain strain, and intracranial
pressure. The ADAPT model has been used in a sub-
ject-specific multiscale analysis of concussion.124

The University College Dublin brain trauma model
(UCDBTM)79 has been used to study falls and sport-
ing injuries, to evaluate helmet performance and to
establish threshold metrics of concussion.35,89,128 It
was shown that the model can predict the location of
contusions in two reconstructed falls.35 Recent work
has used this model to explore relationship between
strain in white matter regions of interest and DTI
abnormalities in 8 reconstructed TBI cases.127 A sig-
nificant relationship was found between radial and
mean diffusivity in fornix and shear strain in this re-
gion. The model was updated in 2020149 with an
important feature being a low coefficient of friction
between scalp and skull (0.06), which is based on dy-
namic experiments on PMHS heads.148,149

The SIMon (simulated injury monitor) head model
was developed by researchers at NHTSA.143 Loading
data from experiments on animals (114 experiments in
total) were used to determine thresholds for strain,
pressure and relative brain/skull displacement, which
were proposed as predictors of DAI, contusion and
SDH respectively. The SIMon Model was updated144

with improved anatomy and more elements to better
preserve anatomical details (~ 46 k vs ~ 8 k elements).

This model was calibrated for predicting the risk of
DAI only. SIMon was used in later studies to develop
the BrIC and UBrIC brain injury criteria.46,142

The Total HUman Model for Safety (THUMS)
head model was developed by researchers at Toyota
Central Research and Development labs.95 This model
included various tissues, including scalp, skull, CSF,
brain and meninges. In a recent version of the model,
the brain, CSF and skull were connected with shared
nodes, in contrast to a tied contact in the older version,
to address computational instability issues81 and later
an anisotropic material model was incorporated for the
brain.10 This model was used to develop brain injury
criteria based on rotational kinematics of the head
(RIC and PRHIC).94 The THUMS is available in
several anthropometries.

The Global Human Body Models Consortium
(GHBMC) head model is derived in part from the
GHBMC 50th percentile male model developed by an
international consortium.114 It has been used to predict
brain tissue response in automotive and sporting
impacts.40,46,103,139,142 The GHBMC model has been
used to develop brain injury criteria, BrIC and UBrIC,
and a second-order system for predicting brain
strain.46,47,142 It was later used to determine correla-
tions between fifteen kinematics-based head injury
criteria and strain in brain tissue in occupant and
pedestrian crash tests.45 This study showed strong
correlation between rotational kinematics and brain
tissue strain. As with THUMS, several other sizes ex-
ist, including but not limited to the 5th percentile fe-
male and the 95th percentile male. The GHBMC
model pedestrian model is approved for use with Euro
NCAP in silico test guidelines for pedestrian protection
which involve the calculation of TBI risk.

The Worcester Head Injury Model (WHIM) has
been used to study concussion in sports.12,86,115 An
early version was used to study concussed ice hockey
and football players who had pre and post-trauma
diffusion imaging scans.115 The model was used to
predict strain and strain rate in the corpus callosum of
the players, using acceleration data from instrumented
helmets. They showed that both strain and strain rate
in the corpus callosum correlated with changes in dif-
fusion tensor imaging parameters of the corpus callo-
sum. The subsequent isotropic WHIM V1.0 was used
to study the reconstructed NFL concussion dataset
using machine learning.21,160 White matter anisotropy
based on whole-brain tractography from the same
subject used to develop the model was later incorpo-
rated through the Holzapfel Gasser-Ogden constitutive
model (anisotropic WHIM V1.0).171 This model also
serves as the basis for deep learning models for (near)
real-time regional or whole-brain responses.55,158,159,161

The model was recently further upgraded (anisotropic
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WHIM V2.1) to reach strain mesh convergence170 and
to include the cerebral vasculature network and brain
heterogenous material properties from magnetic reso-
nance elastography.173,174 This model offers insight
into strains of the cerebral vascular network in typical
concussive impacts in sports and severe impacts in car
crashes.

The Atlas Brain Model (ABM) was developed at
Wake Forest University.122,123 This model includes
cerebrum, cerebellum, and brain stem with special
attention paid to similarity and interoperability with
imaging atlases. The boundary conditions, including
falx cerebri and tentorium cerebelli, are modeled in a
matter to allow sliding. The CSF layer is tied to the
brain and the boundary between the CSF and skull is
defined to allow relative motion. The brain interacts
with normal forces and against the skull and the falx
and tentorium affecting its motion. The model includes
gyri and sulci and was developed from an atlas of the
human brain in Montreal Neurological Imaging
(MNI) space by converting MRI voxels into hexahe-
dral elements. This model was used to create and ex-
plore computational metrics of injury118 and has been
used to explore pre to post season imaging changes in
football players.91,92,120,129 Recently, this model was
used to explore and report a large variety of whole-
brain and more targeted injury metrics focused on
tensile, shear and compressive strains,118 where strain-
based injury metrics outperformed kinematic metrics
in discriminating neuroimaging changes over the
course of a season of football.119

The Imperial College (IC) FE model of the human
head was developed using an image-based meshing
method to incorporate fine details of the brain anat-
omy, including the sulci. By using this model, it has
been shown that maximal strain and strain rate are
concentrated in the depth of sulci in sporting colli-
sions.54,186 The sulcal depths are the locations where
pathology of chronic traumatic encephalopathy
(CTE), has been found in athletes subjected to repeti-
tive head kinematics. An analysis of the diffusion
imaging of a large cohort of TBI patients also showed
that white matter abnormalities are concentrated in
sulci, providing converging evidence for the predic-
tions of the model. This model has been used to eval-
uate new helmet technologies that are designed to
manage the rotational motion of the head.2,93,140 Re-
cently the model was upgraded to incorporate fine
details of the venous system mapped from 7T QSM
(quantitative susceptibility mapping) image of the
same subject.37 This model was shown to be able to
predict the location of small deposits of venous blood,
known as microbleeds and a marker for axonal injury
in mild TBI, seen in the SWI (susceptibility weighted

imaging) scan of a rugby player following a head col-
lision.

One model developed at Penn State focused more
on progressing the computational methods used to
bridge between FE modeling and imaging by devel-
oping a method to explicitly represent axonal fiber
tractography,49,50 a technique now adopted by others.
It has been used to study impacts in football as well as
military overpressure loading.51

Two models were developed at the University of
Virginia. The UVA-Axon model155 is based on the
GHBMC M50 model with updated isotropic Holzapfel
Gasser-Ogden brain material properties and with
explicitly embedded axon tractography.49 This
embedded axon technique was later incorporated into
primate brain models to study interspecies scaling156

and a pig brain model to study the relationship
between brain strain and axon pathology.69 They
identified that global maximum axonal strain mea-
sured in the embedded axons was the best predictor of
injury for all species and TBI severities studied, with
global MPS-95 as a suitable alternative metric.157

Further, the UVA-Axon model has been used to study
the functional changes that occur from TBI by evalu-
ating the loss of functional network efficiency from
localized regions of high strain.8

The second CAB-20MSym model62 was developed
based on a template brain image from 20 young,
healthy male participants.130 It was developed to
integrate into the Registration-Based Morphing
(RBM) technique to automatically generate subject-
specific FE brain models through registration to pre-
serve both external and internal neuroanatomical
characteristics.61 A unique aspect of the model was
that brain material properties were optimized to ensure
the model is biofidelic across a wide-range of kinematic
conditions using human volunteer magnetic elastog-
raphy,74 volunteer tagged-MRI data,101 and human
cadaver sonomicrometry data.4 The optimized model
was then validated against additional sonomicrometry
data and the final tissue properties were validated
against independent tissue experimental data.

Most of these models represent a generic subject,
typically that of a 50th percentile male head. It is
known that a larger brain will produce higher strains
than a smaller brain when applying the same head
impact kinematics as model input.62,100,105,109,156

Therefore, caution must be used when applying generic
models to a specific subject, especially for females and
youth subjects, where greater differences in brain
morphology relative to the generic model are expected.
Conversely, additional work is necessary to develop
advanced modeling and/or simulation strategies that
will compensate for brain response differences due to
morphological variations to improve subject speci-
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ficity.105,109 A recent study identified that the size of the
head and brain, tragion-to-top distance, as well as
head length and width are the anatomic components
that most significantly influence head geometric vari-
ations.109

MODEL VALIDATION

Validation is a process where the response of the
model is compared to independently measured exper-
imental data under the same applied loading condi-
tions. It is critical to validate models against
experimental data to establish the necessary confidence
in prediction accuracy of the response variable of
interest.7 Early brain models were validated against
intracranial pressure data collected from human
cadaveric impacts.125,147 However, brain pressure is
not thought to be a mechanism relevant to brain tissue
shear responses due to the assumed near incompress-
ibility of the brain.99,116 In fact, brain pressure is di-
rectly related to the mass (volume/density) and shape
of the brain when subjecting the head to linear accel-
eration.19,176 Therefore, a model only ‘‘validated’’
against pressure is not sufficient for predicting large
brain deformation generated from shearing of brain
tissue.

To probe the brain’s shearing deformation, relative
brain-skull displacements were measured in human
cadaveric heads. An earlier technique used high-speed
X-ray that employed neutral density targets (NDTs)
made from radio-opaque materials. They are sparsely
implanted in the brains of human cadaveric head-neck
specimens.39,72,73 The specimens are subjected to im-
pact, and 2D in-plane marker motion is tracked. The
use of a second X-ray system orthogonal to the pri-
mary X-ray source enables the visualization of out-of-
plane marker motion, permitting measurement of 3D
brain motion.73 The X-ray method requires a line-of-
sight between the emitter, specimen, and camera to
obtain a clear image, which can potentially limit the
mounting hardware and the direction of loading for
the tested specimen.

Sonomicrometry has also been used to measure
dynamic 3D displacements of brain3,4 via trilateration
and Kalman filtering.5 Because displacement is mea-
sured sonically rather than visually, this technique does
not limit the external mounting hardware or the
direction of specimen loading. Nevertheless, the mea-
surement sampling rate is limited by the number of
transmitting crystals. Finally, dynamic ultrasound has
also been used to study peripheral brain motion.113

Limitations with this technique are the penetration
depth of ultrasound waves, 2D tracking of motion, and

the substantial disruption of the brain-skull boundary
condition due to the craniectomy.

To validate a brain model, head kinematics are first
prescribed for simulation. A common practice to assess
model biofidelity is to compare model predicted rela-
tive brain-skull displacement trajectories with those
from experiments. The degree of model-experiment
agreement is then evaluated independently for each
displacement component before an average score is
calculated. If model-predicted displacements closely
match with those from the experiment, then the model
can be thought to be well validated against the avail-
able data. These assertions are subject to the limita-
tions associated with experimental error, differences
between human cadavers and live subjects, differences
in anatomy between the experimental subjects and the
models, and the biomechanical variation naturally
occurring in the population.172 Complete agreement
with all experimental data is unlikely in practice.

There are also efforts using marker-based displace-
ments to derive brain strains for validation.172,184,185

Essentially, the strategy is to assess the aggregated
consistency between model and experiment in terms of
marker displacement components among multiple
markers as a whole. The magnitude of these ‘‘averaged
strains’’ are shown to be consistent with model pre-
dicted whole or averaged brain strains, suggesting that
they are capable of discriminating model strain
responses.172,185 Nevertheless, there is potential for
displacement measurement error to propagate into
sparse marker-based strains.177 In addition, the aver-
aged strains may not have the spatial resolution to
inform strain accuracy at the element level because the
number of markers is limited, and they cannot be too
close to each other in practice. Hypothetically,
nonetheless, the averaged strains would converge to
more localized counterparts when more embedded
markers are available.

The inherent limitations of embedded sparse
markers may preclude validation for strain prediction
at the element level, regardless of the approach.177

Recent strain measurements from tagged MRI with
human volunteers may mitigate some of the limita-
tions, as they provide voxel-wise strains.11 However,
their ‘‘effective’’ spatial resolution is similarly limited
by spacing between tag lines and imaging planes.22,101

In addition, they are limited to impact severities far
below injury, and extrapolation of data to injurious
levels may be flawed given the brain non-linear
responses. Nevertheless, peak rotational kinematics of
these measurements (244–370 rad/s2) are on the same
order relative to the 25th percentile sub-concussive
rotational acceleration peak magnitudes (531–682 rad/
s2).132,168 Therefore, these data have been increasingly
used to validate brain models at low impact magni-
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tudes,48,86,154,172 which may offer insight into brain
biomechanics relevant to subconcussive kinematics.

The cadaveric and in vivo brain biomechanics data
are all valuable in assessing the response of a brain
model. However, a ‘‘gold-standard’’ strain field to
validate a model for injury-level deformation predic-
tion with typical FE element-level resolution in live
humans does not exist.11 Objective rating methods
such as CORA52 are commonly used during valida-
tion, but the specific use of these types of rating
methods are not consistent across the field. In addition,
the quality assessment may not be effective, as different
versions of the same model can produce significantly
different strains even if they have similar CORA
scores.155,172

Given these considerations, we recommend a com-
prehensive validation approach against representative
high- and mid-rate cadaveric experiments with varying
impact direction, kinematic magnitude, and duration.
For brain models intended to simulate low severity
kinematics common in contact sports, additional val-
idations against in vivo brain strains are also recom-
mended,168 especially given the potential relevance of
subconcussive kinematics to the onset of concus-
sion.133,141 A comprehensive validation across a wide
range of loading conditions is expected to maximize
the confidence in deriving tissue-based injury met-
rics.118 For all validations, it is important that the
model be scaled to match with the test subject’s head
dimension, and ideally, the brain dimensions if such
information is available.6,172

Finally, it is important to recognize that as new
experimental data4,39,65 and analytic strategies172,185

become available, the validation quality of brain
models should be reevaluated from time to time to
maintain or improve the level of confidence in kine-
matic simulation.

MODEL SIMULATION

After model development and validation, a brain
model is ready for kinematic simulation. Typically, this
is completed using a commercial FE solver,1,110 al-
though open-source alternatives such as FEBio111 also
exist. Most commercial codes can use explicit time
integration schemes with parallel processing.

There are a host of numerical challenges that brain
models face primarily due to the rapid loading to soft
biological tissues. As previously described in Sect. 3, a
typical material model for brain tissue is nearly
incompressible, which leads to a Poisson’s ratio close
to 0.5 (e.g., > 0.49999). As a consequence, this
requires special numerical techniques to alleviate the
numerical issues related to volume and shear lock-

ing.29,63 In addition, for typical brain models utilizing
under-integrated hexahedral meshes, the elements can
exhibit hourglassing, which are non-physical, spurious
mesh deformation modes.13,98 Modern simulation
packages allow brain modeling to be numerically
accurate and stable. Nevertheless, modeling such a
compliant, nonlinear and viscous material remains a
challenge.

At a minimum, FE-based brain model systems
should account for dynamics, the ability to model
nonlinear viscoelastic materials (e.g., visco-hyperelas-
tic), reduced integration with hourglass control or
other elements free of locking. Furthermore, parallel
computing capabilities, hexahedral based meshes and
coordinate system transformations (i.e., body fixed vs
ground fixed) are encouraged. Note that while wear-
able kinematic sensors may have the ability to measure
repeated sub-concussive impacts with accuracy, there
are currently no widely accepted methods for quanti-
fying the history-dependent tissue damage that results
from repeated loading.41,53

Applying boundary conditions is another numerical
aspect needing attention. Conceptually, an impact
transfers force to the head via contact with the helmet
or ground. However, most sensor systems report linear
and rotational accelerations instead of force or pres-
sure. For impacts relevant to contact sports, the skull
is usually assumed to be rigid because skull deforma-
tion is expected to be negligible. Therefore, skull mo-
tion is fully described by the linear acceleration and
angular acceleration/velocity, such that impact loca-
tion and direction become irrelevant for modeling
purposes. This allows the kinematics to be commonly
prescribed in terms of 6 degrees of freedom (DOF) of
head acceleration (three for linear and three for rota-
tional), or equivalently velocity, to the rigid body skull
at the head center of gravity (CG). The head CG is the
location where accelerometers are mounted in crash
test dummies, and is often the location where wearable
sensors measurements are transformed.

With the assumption of near incompressibility of
the brain, linear acceleration induces little strain.14,87,98

As a consequence, 3DOF head rotational kinematics
provide the majority of the information necessary to
drive models for strain estimation. Linear acceleration
does influence brain strain in the critical brainstem
region when there is a large component in the inferior-
superior direction,96,97,161 which should not be ignored
in real-world applications. Even if pure linear acceler-
ation produces limited strain, it can lead to injury.
Therefore, mechanical variables sensitive to linear
acceleration such as stress may also be considered as
an alternative.

Kinematic information from wearable sensors
should also be handled with care because they may not
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use a standardized orientation or naming methodol-
ogy. For example, some sensor systems export data
that have been transformed from the physical
accelerometer and gyroscope readings embedded in a
mouthguard situated on the teeth to the estimated
head CG of the athlete. However, other sensor systems
export data directly from the sensors without trans-
formations. The burden then lies on the modeler to
transform the data properly before kinematic simula-
tion. Our group recommends sensor manufacturers to
standardize their data export protocol. One reference
for this may be the J211 coordinate system adopted in
the automotive and military area.131 Another alterna-
tive is to follow that used in the medical imaging
community, where the y and z positive directions are
reversed relative to those in J211. In either case, it is
necessary to define and use anatomical axes.

Wearable sensors measure the motion of the skull
while the brain motion lags behind the skull. This
phenomenon and the time-dependent deviatoric (i.e.,
time lag) material behavior of the brain tissue causes
the brain to continue to deform in response to head
impact in some cases even after significant skull motion
ends.4,83 In some cases, this ‘post-impact’ brain tissue
deformation can be larger than that experienced during
the impact duration when the main skull motion oc-
curs and the sensor data is collected. This post-impact
brain deformation is also shown to be dependent on
the brain geometry and is more significant in larger
brains.107 Current head kinematic sensor systems col-
lect data for approximately 50–200 ms which contain
pre-trigger and post-trigger times and the trigger time
point is typically considered when the resultant linear
acceleration exceeds a threshold value. When dealing
with data near the lower end of 50 ms, the simulation
input can end, while the brain tissue may continue to
deform. Therefore, we recommend simulations to
encompass a longer time window than the impact
duration and check for significant brain strains ‘post-
impact’. A recent study recommends a 20 ms pre-
trigger and 70 ms post-trigger duration for a proper
capture of brain deformation during the full kinemat-
ics.107,174 From a simulation perspective, another study
recommends at least ~ 20 ms additional simulation
time (with zero acceleration) for the deep brain regions
to reach peak strain.83 .

Impact Simulation Efficiency

While great strides have been made over the past
half century to improve the sophistication and biofi-
delity of head injury models,112,162 relatively less
attention has been paid to improve simulation effi-
ciency. Direct impact simulations using a validated
brain model may be the most accurate, but substantial

computational runtime may make them less feasible
for real-time monitoring and assessment. This is
important and especially relevant to contact sports, as
each player typically sustains dozens to hundreds of
impacts in a play season and there is growing concern
on the cumulative effects from many subconcussive
kinematics on the onset of concussion.

To achieve rapid estimation of brain response, sev-
eral approaches have been pursued. One method is to
develop generalized kinematic-based tissue deforma-
tion hypersurface through parametric simulations.47,68

This allows brain strain to be quickly elucidated from
kinematics. However, the idealized acceleration pulses
used for simulation may not capture details of realistic
accelerations. Another limitation is that they typically
estimate MPS of the whole brain; thus, losing the de-
tails of the spatial distribution. An alternative
approach is a pre-computed brain response atlas based
on simulations of idealized rotational pulses using
discretized parameters of head impact (i.e., peak
magnitude and duration, rotational axis azimuth and
elevation angles). Although this method allows ele-
ment-wise brain strains to be efficiently interpolated or
extrapolated,84 accuracy may suffer when kinematics
are more complex.175

Recent deep learning-based approaches avoid these
limitations, as they retain high accuracy without the
need to simplify the brain model, response output, or
kinematic input. These models use kinematic profiles
directly16,55,158 or extracted features164 as input, and
employ thousands of direct model simulations based
on realistic kinematic profiles to generate training data.
Upon convergence, the trained deep learning models
can instantly estimate detailed strains55,164 or maxi-
mum stress of the brain and injury risk directly.16

Recently, a transformer and a separate convolutional
neural network have been developed to rapidly esti-
mate the complete spatiotemporal details of brain
strains with high accuracy (normalized RMSE 2–3%
with R2 > 0.99).159

Given these results, deep learning models may have
the potential to allow monitoring detailed brain strains
from many head impacts and for a large number of
athletes in diverse contact sports teams. With high
accuracy relative to direct model simulation, deep
learning models could also promote model sharing by
effectively shielding the details of FE model construc-
tion from end users. This may be especially helpful
when it is not practical to share the biomechanical
model, including the mesh elements and nodes, itself.
An added benefit is that they do not need any spe-
cialized FE code or sophisticated computing hardware,
and computation time is drastically reduced. Never-
theless, a large number of training samples are neces-
sary to yield a desired accuracy, which would demand
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a enormous initial cost of simulation. This could be
mitigated by transfer learning (i.e., reusing network
weights instead of random initialization) to reduce the
samples required, even when the technique is applied
to a different brain model or impact type (e.g., auto-
motive vs. contact sports).159,161

Brain Response Sensitivity to Impact Kinematics

Errors in kinematics are typically assessed by the
percentage of peak magnitudes of linear and rotational
acceleration and rotational velocity.108 A potential
limitation is that this approach is unable to assess the
significance of other important kinematic features on
the resulting brain responses, such as direction of
rotation,4,96,97,152 area of the brain that experiences
high strains or stresses,98,115 temporal variation,14,169

variation by direction or orientation of brain tis-
sue,26,57,59,86,154 and even digital filters that are known
to affect strain magnitude and distribution.90 We are in
the adolescent stage of exploring these variations, with
many promising findings that are helping researchers
better understand the biomechanics they are encoun-
tering in the field. Determining how kinematic errors
affect brain response may seem straightforward, e.g.,
by comparing the simulated brain responses to refer-
ence data using a validated brain model. Nevertheless,
this process can be made much more efficient when
using a deep learning model.108

MODEL SIMULATION RESULTS

AND INTERPRETATION

There are several considerations related to model
result interpretation in the context of head impact
simulation using kinematic data measured from head
acceleration sensors. Assuming sufficient confidence
has been achieved regarding the model development
and biofidelity, there are many metrics that are com-
monly used by the brain modeling community for
quantifying head kinematic severity. The aphorism
‘‘All models are wrong, but some are useful’’ is often
attributed to the statistician George Box,18 and surely
applies to FE modeling of the brain, one of the most
complex human anatomical structures.

A main objective for the creation and use of brain
models is to better interpret head kinematics in the
context of injury risk. This involves calculation of FE
based metrics for subsequent quantification of impact
exposure, risk estimation, or other activities. Fre-
quently, these results are used to relate to contextual
and outcomes information. Contextual information
here is defined as information which may be useful to
coaches, athletes, parents, regulatory bodies, equip-

ment designers, etc. Outcome information generally
refers to clinically and scientifically useful information
relating to maximizing benefit and reducing risk. This
can be neurocognitive,154 imaging,28,115,129,163 or bio-
marker data,64 etc. There is long-term potential for FE
brain model results to improve our understanding of
pre- and post-exposure changes of various clinical
biomarkers, and better utilize head kinematics to pre-
dict clinically relevant outcomes typically interpreted
by the engineer, physician, athletic trainer, public
health scientist, etc.

In a sense the FE modeling community is at the
early stages of understanding and utilizing the tissue-
level metrics that can be computed using brain models.
They represent an example of the pareto principle—the
majority of the value can be achieved with less effort,
and the remaining value will require pushing the
boundaries of thought and expertise, is the purview of
researchers, and holds the promise for better capturing
nuance and serving as a better context or outcome
discriminator. These activities are expected to lead to a
better fundamental understanding of the biomechanics
of kinematic exposure and acute or chronic injury.
Considering that there is known asymmetry in the
brain both anatomically and functionally,36 the brain
changes structurally with age,33 and is a networked
system that is structurally and functionally complex,20

no FE modeling approach totally represents the anat-
omy or function of the brain completely. Further, no
FE model allows tissue-level interpretation of even the
most basic functional, biochemical, or molecular out-
comes observed in neurotrauma models. Most biome-
chanics researchers studying the brain focus on trying
to approximate the mechanical response of the par-
enchyma caused from head impact, using the best
available neuroanatomy, material property, and
boundary condition data. The outcomes of these sim-
ulations are complex, but metrics are used to simplify
the simulated outcomes to allow quality analyses to be
performed.

There are basic metrics commonly adopted in brain
models, beginning with simple strain measurements.121

Peak maximum principal strain and stress are some of
the earliest explored metrics from a test and FE
modeling standpoint.73,98 The history and experience
with modern, FE-based approaches has rapidly ex-
panded over the past couple of decades, allowing for a
slew of other metrics.

Scalar values may come from one element of the
brain at one specific time in the simulation, often the
time of peak maximum principal strain and strain rate
or their product, at any point during the simula-
tion.27,87,115,172 Most FE models provide this scalar
value. Nevertheless, the peak or highest strain in an FE
brain may be spurious. Therefore, this measure may
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not discriminate impacts well. To mitigate the issue, it
is possible to adopt use of the 5th percentile com-
pressive strain or the 95th percentile tensile strain.43,118

Volumetric based metrics are also scalars, which
have the advantage of describing the state of the entire
brain. As with percentile rank based metrics, these are
best thought of as deriving from the complete picture
of the stress or strain state at a moment in time or at
any time during the kinematics, with functional simi-
larity to CSDM but without the threshold. These are a
product of the volume of each element and the peak
strain experienced by that element, representing the
entire volume of brain tissue.118

Percentile based metrics and volumetric metrics
have been derived and can be developed for strains
(typically first principal strain or maximum tensile,
third principal strain or maximum compressive, and
shear strain) and strain rates, which are the maximum
rate of change of each of the above.118 Metrics like the
CSDM144 have been derived by choosing thresholds
thought to be biomechanically or clinically relevant
from these basic metrics.66,70,86,106,167,177 Threshold
based metrics have the benefit of representing or are
associated with relevant and helpful values of risk, but
also have the drawback that they sometimes combine
aspects of continuous and categorical values, measur-
ing zero below a certain threshold and varying above
the threshold. In this sense they may be more practical
but may be less helpful for research designed to iden-
tify thresholds from clinical data when one is not
known.

These scalar values may be oversimplified as they
lose information on the anatomical location of where
peak strains occur. In these cases, the brain models
may be underutilized. At the other extreme, element-
wise strains can also be used; but this may be excessive
as neighboring elements typically have similar strain
magnitudes. As a compromise, therefore, it may be
advantageous to report peak strains in a selected few
anatomical regions, for example, the left and right
cerebrum, corpus callosum, cerebellum and brain-
stem.161 The resulting response ‘‘vector’’ is analogous
to the Injury Severity Score used to encode AIS of the
six body parts. This idea can be further extended by
considering peak strains in gray matter regions and
their connections, in which case a response ‘‘matrix’’
can also be obtained.160 In short, model result inter-
pretation is important for the best use of brain model
simulations and efforts are converging towards more
sophisticated metrics than a scalar metric previously
used.

Model-Based Injury Prediction

The utility of a validated brain model ultimately
rests on how it performs when predicting the likelihood
and extent of injury in the real world, including iden-
tifying the location of the injury within the brain.
Therefore, verifying injury predictions based on model
simulated responses against clinical injury manifesta-
tions such as neuroimaging and symptoms is help-
ful.37,54,77,115 However, challenges remain, due to
inherent confounding factors associated with human
subject injury (e.g., concussion history and accumula-
tion of subconcussive impacts), uncertainties in mod-
eling parameters (e.g., material properties and brain
external and internal boundary conditions), and lim-
ited real-world cases that provide both accurate impact
kinematics and injury findings on the same subjects.
Consequently, these efforts remain at an early stage.
Nevertheless, increasing the availability of real-world
injury cases and public accessibility is important to the
modeling community to test the utility of the diverse
brain models.

An ultimate use of a brain model is to estimate risk
of injury, predict injury, or to quantify subconcussive
kinematic exposure as previously discussed. It has been
anticipated that FE model simulated regional strains
metrics may improve the performance in injury pre-
diction over simple kinematic injury metrics Another
application of model responses is to derive injury risk
functions, which are anticipated to be more effective
than those based solely on kinematics. In fact, peak
MPS of the whole brain currently serves as the
benchmark to assess the effectiveness of kinematics-
based injury metrics. Conventionally, brain strains
such as peak MPS of the whole brain and CSDM as
well as stress have been used to fit a univariate logistic
regression model using simulation results from recon-
structions of real-world cases. An injury risk function
is then developed that best separates the injury vs. non-
injury cases, e.g., using SUFEHM,42,105,173 WSU,171

KTH,138 and GHBMC.78,148 However, a major con-
cern with these injury risk functions is the ‘‘selection
bias’’ due to the severe under-sampling of noninjury
cases. This potentially would result in gross overpre-
diction of the risk of injury for real-world impacts.

This limitation is partially alleviated by incorpo-
rating laboratory-based animal injury data and animal
FE brain models that are developed using methods
consistent with the human models. Recently, injury-
risk functions using the GHBMC114 and UVA-
Axon155 models have been developed using human,
primate, and pig injury data, through the identification
of species-independent tissue metrics MPS and maxi-
mum axonal strain.
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Another concern with utilizing injury data is the
uncertainty of the actual clinical diagnosis, or the lack
of neuropathology or neuroimaging data that can help
support the FE model predictions (again, partially
alleviate when incorporating animal data).34,44,67 Fur-
thermore, injury risk data do not consider the potential
reduction of injury tolerance from cumulative head
impacts or previous injury. Therefore, caution must be
exercised when using these risk functions for the gen-
eral assessment of concussion in a sport context.

More recent efforts have employed feature-based
machine learning,146 where multiple response features
in different anatomical regions are combined to predict
the likelihood of injury.21,160 They have been shown to
improve injury prediction performance relative to
other scalar values, such as peak kinematics or peak
MPS. In addition, testing performances from leave-
one-out or k-fold cross-validation may be more
objective in performance comparison than fitting per-
formances commonly used in training logistic regres-
sion models. Otherwise, a 100% sensitivity and
specificity fitting performance can be achieved,21 which
is not meaningful in practice. From data science per-
spective, it is critical to use an objective testing per-
formance rather than a fitting or training performance
for assessment.

Response Comparison Across Models

Response comparison across diverse range of brain
models used to assess head impacts is a recurring issue,
and two models may predict different levels of severity
for the same head kinematics.42,60,82 Ideally, all models
predict the same injury risk, but disparate results are
possible because most models have been developed in
isolation. Assessing the differences in scalar or vector
strains is straightforward. However, assessing the dif-
ference for the whole brain may be non-trivial because
different models may have different meshes, or spatial
sampling of the deformation field. To manage mesh-
mesh mismatch, one approach is to resample the sim-
ulated results into a standard image format, such as the
MNI space.85 A standard image representation of the
simulated responses across diverse brain models may
allow seamless comparison of simulated responses, or
to directly compare with neuroimage findings for a
given subject. In addition, an image representation of
the response field may promote a more convenient data
sharing strategy in the future, as it effectively elimi-
nates the need for explicit description of the brain
model and mesh.

To facilitate a convergence of model responses and
to promote the continual development of brain mod-
els, the authors recommend an open-source digital
repository to archive impact simulations of well ac-

cepted validation experiments and reconstructed real-
world cases from existing brain models. In addition,
idealized or simplified head kinematics can also be
used for benchmarking purposes to compare simulated
brain responses across different models. The repository
may serve as a first step towards harmonizing various
brain models to promote the development of new or
upgraded models in the future.

DISCUSSION/CONCLUSIONS

One of the main focuses of the TBI research field is
related to the biomechanics of the brain from head
kinematic exposure in contact sports, and the subse-
quent risk of injury. Early biomechanical studies relied
on interpreting head kinematics, such as linear and
rotational acceleration peak magnitudes, to quantify
impact severity and to assess the likelihood of injury.
With the advent of sufficient computing power
accompanied by the possibility of simulating physical
events, FE models of head and brain have emerged,162

first of simplified anatomies with two dimensional and
coarse meshes. They have continually improved and
advanced over the past half century112 with increasing
sophistication in brain anatomical representations,
material properties reflecting complex mechanical
responses of the brain parenchyma, and advanced
modeling capabilities to estimate tissue mechanical
behaviors in specific anatomical regions such as corpus
callosum and sulci, and along dense white matter fiber
tracts and cerebral vascular network. These models
have suggested tissue-level injury thresholds and en-
able translating head kinematics into detailed biome-
chanical responses of the intracranial tissue thought to
be responsible for injury.

This article reviews brain model development, vali-
dation, impact simulation and result interpretation
primarily in the context of contact sport. Because brain
models can predict physical tissue responses, there is
general consensus within the modeling community of
their strong potential to study the biomechanics of
head impact exposure. Best practices in model devel-
opment such as meshing and simulation numerical
considerations will continue to progress. FE brain
models will continue to advance and to reflect updated
understanding of brain mechanics when relevant
experimental data become available. Nevertheless,
there are also an array of issues and challenges beyond
model development that are relevant for impact mon-
itoring in contact sports.

On the high level, the first challenge might be a
robust model validation to ensure sufficient biofidelity
for a large range of impact conditions that occur in
contact sports. This is also related to model develop-
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ment for assignment of brain material properties and
brain-skull boundary conditions, where validation is
necessary to confirm their effectiveness. While most
head kinematics experienced in sports are of low
magnitude and subconcussive, more severe impacts
can happen that could lead to acute injury. Experi-
mental data already exist from in vivo volunteers to
mid- and high-rate cadaveric impacts to allow vali-
dating a model across the large kinematic severity
spectrum. Nevertheless, efforts to utilize all of the
available data for comprehensive model validation
remain limited at present.

The second challenge is model simulation efficiency
of head kinematics. Contemporary models often take
hours per simulation on a high-end computing plat-
form, and thus, cannot provide near-instantaneous
results. This may be especially relevant for impact
exposure monitoring in contact sports given that each
player usually sustains dozens to hundreds of impacts
throughout a play season and that each impact seems
to be relevant given their potential cumulative effects.
Advanced deep learning models have shown promise
to efficiently estimate tissue responses16,55,158,164 and
with high accuracy159 on a low-end computing plat-
form. This may be valuable for continual exploration
of cumulative injury metrics using tissue-level
responses and to examine how they correlate with
long-term clinical neurological findings.119 Neverthe-
less, similar to FE brain models, accounting for head/
brain morphological differences in these deep learning
alternatives is warranted.

In addition, the accuracy of simulated or estimated
brain responses would necessarily depend on the
quality of kinematics that serve as input. Therefore,
concerted efforts from the head acceleration sensor and
modeling communities are important to maximize the
effectiveness in impact exposure monitoring. Stan-
dardized protocols and data formats to characterize
head kinematics across sensor manufacturers as well as
simulated brain responses from diverse models would
facilitate these activities. Translating variations in head
kinematics into variations in brain responses may
provide more relevant context for result interpretation
and evaluation than simple variance in peak kinemat-
ics.

Finally, a major roadblock for effective real-world
use of brain models is the lack of sufficient kinematic
and injury data encompassing sports, sex, age and
other factors. This type of database is necessary to
establish a relevant tissue response-based metric for
injury detection and interpretation, as well as to
quantify subconcussive exposure due to the potential
cumulative effects on the onset of concussion.

Therefore, it seems clear that it is important to
continue the collection of high-quality head kinematic

data along with associated information on subject-
specific age, sex, head morphological measures and
clinical indicators of injury. Together with an efficient
modeling scheme, eventually, these efforts may allow
training brain models for more effective mTBI detec-
tion and monitoring of head kinematic exposure for
potential clinical applications. By hosting the kine-
matic data and the resulting brain responses in a
dedicated, transparent, and open-access data reposi-
tory whenever possible, an improved understanding of
the biomechanics behind concussion and subconcus-
sive exposure may ensue. These efforts could con-
tribute to enhanced mTBI mitigation strategies and
rule changes to better protect the brain.

Based on the reviews and discussions, our group has
compiled recommendations and consensus statements
presented at the beginning of the paper.
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