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dcHiC detects differential compartments
across multiple Hi-C datasets

Abhijit Chakraborty 1,6 , Jeffrey G. Wang 1,2,5,6 & Ferhat Ay 1,3,4

The compartmental organization ofmammalian genomes and its changes play
important roles in distinct biological processes. Here, we introduce dcHiC,
which utilizes amultivariate distancemeasure to identify significant changes in
compartmentalization among multiple contact maps. Evaluating dcHiC on
four collections of bulk and single-cell contact maps from in vitro mouse
neural differentiation (n = 3), mouse hematopoiesis (n = 10), human LCLs
(n = 20) and post-natal mouse brain development (n = 3 stages), we show its
effectiveness and sensitivity in detecting biologically relevant changes,
including those orthogonally validated. dcHiC reported regions with dyna-
mically regulated genes associated with cell identity, along with correlated
changes in chromatin states, subcompartments, replication timing and lamin
association. With its efficient implementation, dcHiC enables high-resolution
compartment analysis as well as standalone browser visualization, differential
interaction identification and time-series clustering. dcHiC is an essential
addition to the Hi-C analysis toolbox for the ever-growing number of bulk and
single-cell contact maps. Available at: https://github.com/ay-lab/dcHiC.

The three-dimensional organization of chromatin in the nucleus has
been of interest to scientists for more than a century now. The
observation that different chromosomes occupy a defined space in the
nucleus dates back to Carl Rabl’s work in animal cells in 18851. Since
then, many experimental techniques have been developed to image
and map chromatin, allowing us to look at chromatin organization at
an ever-increasing resolution. The greatest strides in this area
have been made in the past decade following the advent of genome-
wide conformation capture techniques. We now know that interphase
chromosomes are folded into multiple layers of hierarchical struc-
tures. Each layer contributes to the establishment and maintenance of
the epigenetic landscape that controls cellular state and function.

Among these, themegabase-scale compartmental organization of
eukaryotic genomes has been shown to play a critical role in tran-
scription, DNA replication, accumulation of mutations, and DNA
methylation2–12. In broad terms, two types of compartments divide the
genome into regions of open and active chromatin (compartment A)

versus inactive and closed chromatin (compartment B)13. Further
analysis of each compartment revealed subsets of regions with mark-
edly different properties within each class called subcompartments14,15

aswell as a putative third class (intermediate or I) that is at the interface
between A and B and is reorganized in cancer cells9.

The main method to extract compartment information has been
to analyze high-throughput chromosome conformation capture (Hi-C)
contact maps using Principal Components Analysis (PCA)13,16,17. Briefly,
this process involves distance normalization (observed/expected for
each genomic distance) of theHi-C contactmap for each chromosome
at a particular resolution (generally between 100 kb to 1Mb) followed
by transformation into a correlation matrix, where each entry (i, j)
denotes the correlation of row i and row j (or column i and j since
symmetric) of the distance-normalized Hi-C map. The eigenvalue
decomposition of the correlation matrix provides eigenvalues and
eigenvectors, and typically the first principal component (PC1) derived
from them represents the genomic compartments A and B. If PC1
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corresponds to chromosome arms or other broad patterns in the Hi-C
map (e.g., copy number differences), the second principal component
(PC2) is likely to represent A and B compartments. The A and B com-
partment labels are assigned to the positive and negative stretches of
the selected PC, respectively. However, depending on the imple-
mentation of eigenvalue decomposition, it may be necessary to
reorient these assignments correctly usingGCcontent orgenedensity.

Whether one is interested in the twomajor compartments or their
more nuanced subsets, the principal components derived from PCA
have been the major determinants of compartment type. However,
standard PCA is limited to analyzing each Hi-C contact map individu-
ally, and computational methods that can compare compartmentali-
zation acrossmultiple (>2) Hi-C datasets are needed. This is becoming
an obstacle in analyzing the ever-increasing chromatin conformation
data, either from Hi-C or its variants18–25, generated across many cell
types and conditions26. In addition, single-cell Hi-C datasets now pro-
vide a rich testbed for studying cluster-specific and/or timedependent
changes in compartmentalization27–31. Technical challenges such as
selecting the correct PC and sign that represents A/B compartments
and their scaling across different datasets become larger problems
when comparing many bulk or single-cell Hi-C contact maps. Thus far,
comparative compartment analysis has been mainly limited to exam-
ining compartment flips between two Hi-C maps at a time32,33.

Here, we introduce dcHiC (differential compartment analysis of
Hi-C), a method that identifies statistically significant differences in
compartmentalization among two or more contact maps, including
changes that are not accompanied by a compartment flip. Ourmethod
implements a parallelized partial singular value decomposition (SVD)
that uses a memory-efficient data structure (Filebacked Big Matrix or
FBM) and efficiently computes only the first few singular vectors (i.e.,

eigenvectors) that are need for compartment analysis34. We follow this
by quantile normalization to obtain comparable compartment scores
across twoormoreHi-Cmaps/replicates at a time (Fig. 1, Step 1). dcHiC
then utilizes the normalized component scores to derive amultivariate
distance measure35 (Fig. 1, Step 2) to estimate the statistical sig-
nificance of compartment differences. If available, dcHiC utilizes var-
iance among Hi-C replicates as covariates for independent hypothesis
weighting (IHW)36 to correct for multiple testing. With our methodol-
ogy, compartment analysis can be conducted on Hi-C maps with or
without replicates at resolutions up to 10 kb and for pseudo-bulk Hi-C
profiles from as few as 100 cells per condition. Further downstream,
dcHiC provides a number of analysis features, including standalone
IGV browser37 visualization of results, detection of differential inter-
actions involving significant differential compartments, time-series
clustering of compartment scores, and a module for determining
enriched Gene Ontology terms from differential compartments.

To assess the biological relevance of the identified differences, we
apply dcHiC to several different collections of bulk and single-cell Hi-C
datasets, including mouse neuronal development (n = 3), mouse
hematopoiesis (n = 10), a set of lymphoblastoid cell lines (LCLs) from
different human populations (n = 20) and single-cell Hi-C data from
post-natal mouse cortex and hippocampal brain regions at six differ-
ent time points clustered into three developmental stages (n = 3).
Analyzing each Hi-C dataset at resolutions ranging from 10Kb to
250Kb, we identify relevant compartmentalization differences
reflecting the underlying biology in the respective scenarios. In the
mouse neuronal differentiation model, dcHiC identified compart-
mental changes for loci involving critical genes associatedwith cellular
identities in mouse embryonic stem cells (mESC) and neuronal dif-
ferentiation, such asDppa2/4, Zfp42, Ephb1, and Ptn, as well as GO term

Fig. 1 | Outline of the method. The figure panel shows the dcHiC workflow in two
steps. In step 1, dcHiC calculates the principal components followed by the quantile
normalization of the compartment scores across all input Hi-C data. In step 2, for
each genomic bin, dcHiC calculates the Mahalanobis distance, a multi-variate z-
score that measures the extent to which each bin is an outlier with respect to the
overall compartment score distribution across all input Hi-C maps (Methods - dif-
ferential compartment identification). dcHiC then utilizes the Mahalanobis

distance to assign a statistical significance using the chi-square test (p-value) for
each compartment bin and employs independent hypothesis weighting (IHW –

when there are replicate samples) or FDR (when no replicates are available) cor-
rection on these p-values. dcHiC outputs a standalone dynamic IGV web browser
view and enables the user to integrate other datasets into the same view for an
integrated visualization. Source data are provided as a Source Data file.
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enrichments consistent with these cellular identities. In a ten-way
comparison (n = 10) of major progenitor and differentiated cell types
frommousehematopoiesis, dcHiC revealed significant compartmental
changes involving key genes such as Sox6,Meis1, Runx2, Klf5, andmany
others. Across both neural and hematopoietic differentiation models,
our results also highlight the importance of generally ignored com-
partmental differenceswithin the samecompartment type (within A or
within B - Fig. 1).We also demonstrate the biological significanceof our
differential calls through strong correlations with cell-type specific
differences in lamin B1 association, histone modifications and gene
expression. For human LCLs, comparing twenty Hi-C maps from a
diverse set of individuals, dcHiC confirms the previous findings, with
significant enrichment of various biological signals within the differ-
ential compartment regions across the population. Finally, using
single-cell Hi-C data from two post-natal developing mouse brain
regions across different time points, we demonstrate the utility of
dcHiC in identifying compartments and in performing differential
compartment analysis onpseudo-bulkdata fromas fewas 100cells per
time point. Our results from this analysis reveal dynamic and tissue-
specific compartmental differences for key genes related to synapse
assembly and adult brain development that were not highlighted
before.

Overall, dcHiC provides an integrative framework and an easy-to-
use tool for comparative analysis of bulk and single-cell Hi-Cmaps and

identifies biologically relevant differences in compartmentalization
across multiple cell types and/or conditions. With immediate appli-
cation to hundreds of publicly available datasets, dcHiC will play an
essential role in providing deeper insights into dynamic genome
organization and its downstream effects.

Results
dcHiC identifies compartments consistent with other
approaches
Asmore complex experimental designs emerge that comparemultiple
different Hi-C profiles, a comprehensive method to compare the spa-
tial organization of the genome is necessary. To do this, dcHiC first
employs a time- and memory-efficient R implementation of singular
value decomposition (SVD) to achieve the eigenvalue decomposition
of each Hi-C contact map34. This is followed by automated selection to
find the principal component and its sign (reoriented if needed) that
best correlateswith genedensity andGC content per sample (Methods
– computation and quantile normalization of compartment scores for
comparison). The resulting compartment scores are quantile normal-
ized, and a multivariate score (Mahalanobis distance) is computed
based on an initial covariance estimation. We then refine the null dis-
tribution by removing outliers before calculating new covariance
estimates that will be used for computing the final statistical sig-
nificance (χ2 test) of differences in compartmentalization (Methods –

Fig. 2 | Comparison of dcHiC compartment scores with HOMER compartment
scores and Lamin B1 association data. A–C Genome-wide comparison of dcHiC
(orange), HOMER (green), and Cscore (blue) compartment scores against each
other for mouse ESCs. D–F Genome-wide comparison of dcHiC, HOMER, and
Cscore compartment scores against Lamin B1 profiles for mouse ESCs.
G, H Browser views of the compartment scores from three different methods and
Lamin B1 signal in chromosomes 6 and 2 inmouse ESC. Arrows highlight a subset of
regions where the compartment assignment was not consistent among the three

methods. I Genome-wide runtimes for compartment calling by each of the three
methods at 10 Kb, 25 Kb, 40Kb, 50Kb, and 100Kb resolution for mESC Hi-C data.
The runtimes include a sequential run of compartment calling for each chromo-
some and this is repeated for two pseudo-replicates of mESC data with runtimes
summed up. JGenome-wide runtimes for 50 kb resolutionmESC Hi-Cmaps at 10%,
20%, 40%, 60%, 80%, and 100% down-sampling rate (100%= 500 million reads) for
two pseudo-replicates (similar to Fig. 2I). Source data are provided as a Source
Data file.
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differential compartment identification). dcHiC provides standalone
browser visualization as well as several other features facilitating the
interpretation of its results. Figure 1 summarizes the overall workflow
of dcHiC.

To establish the validity of the dcHiC results, we first compared
compartment calls to two other common compartment-finding
approaches: a canonical PCA-based approach (HOMER33), and the
CscoreTool17, a method that uses a likelihood function over a sliding
window to infer compartment scores. The resulting compartment
scores were highly similar among the three methods at 100Kb reso-
lution using mouse ESC Hi-C data, with Pearson’s r =0.96 between
dcHiC and HOMER, 0.97 between HOMER and CscoreTool, and 0.98
between CscoreTool and dcHiC (Fig. 2A–C). Similar to A/B compart-
ment decomposition from Hi-C data, association with the nuclear
lamina (or radial position) is another strong indicator of a broad-level
chromatin state with heterochromatin localizing at the periphery and
euchromatin at the nucleus center. All three methods also showed
strong negative correlation with Lamin B1 data, confirming the pre-
vious findings27,36, with R-values of −0.91, −0.91, and −0.89 for dcHiC,
HOMER, and CscoreTool, respectively (Fig. 2D–F). We further plotted
the compartment scores for chromosome 2 and chromosome 6 for
ESCs and NPCs from dcHiC, HOMER and CscoreTool alongside Lamin
B1 association signal confirming the high concordance (Fig. 2G, H).
These results established that dcHiC, similar to existing approaches,
accurately captures compartment patterns. Next, we further analyzed
the 4–7% of the genome that is labeled in opposite compartments by
dcHiC in comparison to HOMER for ESC and NPC (Supplementary
Fig. S1A, B). Overall, dcHiC-B but HOMER-A regions (~1% for ESC and
NPC) showed positive lamin B1 signal and lower gene expression levels
compared to dcHiC-A but HOMER-B regions (Supplementary Fig. S1C,
D). The latter set (3% for ESC and 6% for NPC) had amix of regions with
positive and negative lamin association as well as gene expression
values that are lower than constitutive A but higher than constitutive B
compartment regions (compare to Fig. 3) suggesting a weak com-
partmentalization for these regions into either A or B compartment.

Performance evaluation of compartment calling by dcHiC and
other approaches
Next, we assessed the resource utilization of dcHiC against HOMER
and CscoreTool for compartment calling, a prerequisite to differential
compartment analysis as well as the major bottleneck for high-
resolution analysis in general. We evaluated the time and memory
utilization of these three methods using two mouse ESC pseudo-
replicates (~500Mreads each), fromwhichwegenerated contactmaps
at 5 different resolutions and 6 different sequencing depths (30
combinations; Supplementary Information, Table S1–4). In Fig. 2I, J, we
plotted genome-wide runtimes at 100% sampling rate for 5 different
resolutions and for 50 kb resolution at six different down-sampling
rates showing that dcHiC runs 4–13x faster than CscoreTool and
22–33x faster than HOMER across these conditions. Across all read
depths and all resolutions we tested, dcHiC ran 1.3–15x faster than
CscoreTool and 10–52x faster than HOMER genome-wide (Supple-
mentaryTables S1 and2). Figure 2J also demonstrates thatdcHiCscales
better with increasing sequencing depth.With respect tomemory use,
at full read depth and 100 kb resolution, CscoreTool had a lower peak
memory (~0.24Gb) usage than dcHiC (~0.34Gb) and HOMER (~1.2Gb).
For resolutions of 50Kb, 40Kb, and 25 Kb Hi-C data at 100% sequen-
cing depth, all the three tools were within 30% of each other (~1.13 Gb,
~1.25 Gb, and ~1.3 Gb for CscoreTool, dcHiC, andHOMER, respectively)
with CscoreTool utilizing the least amountmemory for computing the
compartment score at every resolution (Supplementary Tables S3, 4).
For this time and memory profiling, we ran all tests genome-wide, and
used one CPU per chromosome (Intel Xeon Gold 6252 CPU @
2.10GHz). Running HOMER genome-wide at 10Kb resolution did not
finish after 100h of compute time for ESC data.

Pairwise differential compartment analysis of mouse neuronal
differentiation
Previous studies have reported substantial compartment flips during
the mouse embryonic cell (ESC) to neuronal progenitor cell (NPC)
transition, a well-studied in vitro differentiation system38,39. These dif-
ferences have been studied further using replication timing profiling,
lamin B1 association mapping, and fluorescence in situ hybridization
(DNA FISH)8,32,40. Therefore, we chose these two cell types to demon-
strate dcHiC’s utility in a pairwise comparison to replicate known
compartment flips and identify additional significant changes that are
supported by other data. This also allowed us to compare pairwise
differential compartment calls from dcHiC and HOMER.

Overall, dcHiC identified 1981 100 kb bins with statistically sig-
nificant differential compartmentalization (FDR <0.1), covering up to
7.5% of the genome. For ESC and NPC, ~37% (72.8Mb) and ~51%
(101.6Mb) of these differences involved A (active) compartment,
respectively. The differential compartments are further subdivided
into flipping (A->B or B->A) or matching (A->A or B->B) compartment
transitions.Weobserved that ~74%of all the differential compartments
were flips (A to B: ~30%, B to A: ~44%) during ESC to NPC transition,
whereas the remaining ~26% were within matching compartments
(Fig. 3A). We further classified significant changes within the same
compartments (A to A or B to B) based on whether the compartment
scoreswere higher in ESCorNPC (Fig. 3B–E). For the resulting set of six
different types of differential compartments, we plotted the distribu-
tions of compartment scores (Fig. 3B), lamin B1 association (Fig. 3C),
replication timing (Fig. 3D), andgene expression (Fig. 3E). As expected,
more euchromatic compartments were associated with lower lamin B1
attachment, early replication timing and higher gene expression.
These trends were consistent for compartment flips as well as changes
within matched compartments (e.g., strong A in ESCs to weak A
in NPCs).

Next, we compared the differential ESC vs NPC compartments
from dcHiC to those from HOMER. HOMER reported a total of 3,042
100Kb bins with significant differential compartmentalization (FDR <
0.05) and 1,355of these 100Kbbins overlappedwith dcHiCdifferential
calls (±1 bin slack; Fig. 3F). To compare the calls made by the two
different methods, we plotted the absolute differences in
laminB1 signal, replication timing and log2 gene expression values of
all the reporteddifferential compartments (Fig. 3G) ormethod-specific
differential compartments (Fig. 3H) for each method. These results
show that dcHiC differential compartments are significantly (unpaired
t-test p-values < 0.05) enriched for regions with higher ESC and NPC
differentials for lamin association and replication timing signals
although both methods captured regions with signal differences in all
three measures. We also performed differential expression analysis
between ESCs andNPCs tomap the differentially expressed (DE) genes
(DEseq241, FDR <0.05, fold change>4) on the differential compart-
ments. We observed that dcHiC differential compartment bins were
enriched in the number of DE genes (Fig. 3I) as well as the fold change
(log2) and significance (DESeq2) of the difference for those DE genes
(Supplementary Fig. S2A, B). Further, we also looked at the average
number of histone modification peak (MACS2 p-value < 1e-5) differ-
ences between ESC and NPC per 100Kb for the regions from dcHiC
and HOMER’s differential calls (Supplementary Fig. S3). For all three
different histone marks (H3K4me1, H3K4me3, H3K27ac), we observed
a higher number of peak differences per 100Kb for dcHiC compared
to HOMER. These observations imply that the differential calls made
by dcHiC are accompanied by larger changes between ESCs and NPCs
in other biological signals relevant to compartmentalization.

Robustness of dcHiC differential compartment calls
Next, we sought to see howwell the pairwise differential compartment
calls between different Hi-C profiles are preserved through down-
sampling and at different resolutions. We used the 4 ESC biological

Article https://doi.org/10.1038/s41467-022-34626-6

Nature Communications |         (2022) 13:6827 4



replicates (230M–1.2B reads) and the 3 NPC biological replicates
(720M–1.5B reads) at their full sequencing depth (100%) and then
down-sampled each replicate separately to 5 different read depths:
80%, 60%, 40%, 20%, and 10%. To profile the effects of down-sampling,
we first compared ESC and NPC replicates at each read depth using
100Kb resolution contactmaps.We found that thereover 80% recall of

differential compartments called from full sequencing depth (“ground
truth”) for down-sampling rates of 40% or more (Supplementary
Fig. S4). In order to also assess the role of resolution in recall of dif-
ferential compartments, we repeated the same down-sampling
experiments for 4 other resolutions: 50Kb, 40Kb, 25Kb, and 10Kb.
We observed that except from 10Kb resolution, all other cases were
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similar to 100Kb where 40% down-sampling still led to a high recall
(>75%), whereas for 10 Kb resolution, the results at 60% down-
sampling had a recall of 80% that dropped to 61% for 40% down-
sampling (Supplementary Fig. S5A–D).

To better understand the role of low sequencing depth
replicates in this recall analysis, we repeated the down-sampling
by leaving out the one ESC replicate with 230 M reads, which
pushed the sequencing depth range to 600M to 1.5B reads per
replicate across 3 remaining ESC and 3 NPC replicates (3v3 ana-
lysis). First, at 100% sequencing depth, we recovered 1906 dif-
ferential bins out of 1981 we found from the 4v3 analysis above
suggesting a minimal effect of the low depth replicate for dif-
ferential compartment identification. Next, we observed that
over 80% recall for these 1906 bins was kept up until 20% down-
sampling (~120 M reads for the lowest depth replicate; ~90% recall
for 40% down-sampling) in this 3v3 analysis as opposed to 40%
for 4v3 analysis. Overall, these results suggest that replicates with
substantially lower sequencing depth than others may not con-
tribute much to overall discovery power of dcHiC especially if
they are sequenced below 100M reads. Our data also shows that
with replicates of at least 100 M reads, differential compartment
analysis at 25Kb or lower resolution (50 kb, 100 kb) can be carried
out with an acceptable recall of all compartmentalization chan-
ges that can be detected with deeper sequencing.

To show the utility of our tool in detecting differences at higher
resolution, we ran dcHiC at 10Kb resolution to call differential
compartments between ESC and NPC. We found a total of 16,581
10Kb bins (165.81 Mb) differential compartments between the con-
ditions. Among the 1981 100Kb dcHiC differential bins (198.1 Mb),
72% exactly overlapped at least one 10Kb differential bin (over 86%
within ±2 bins). This suggests a significant overlap across resolu-
tions but also highlights the prevalence of regions that are detect-
able only at higher or lower resolution compartment analysis
(Supplementary Fig. S6). We also evaluated the potential of false-
positive discoveries from dcHiC by running it to compare replicates
of the same conditions/sample. We used all four biological Hi-C
replicates available for ESC in different combinations (all 1 vs 3 and 2
vs 2 combinations of splitting the replicates). When we ran dcHiC on
these combinations, the number of significant compartment chan-
ges (i.e., false positives or type-1 error) ranged from 1 to 32 with a
median value of 2 bins (compared to 1,981 100 kb bins when ESCwas
compared to NPC), suggesting a low false-positive rate for identi-
fying differential compartments. When we ran the same analysis
using 10Kb bins, we identified amedian value of 751 differential bins
(~0.2% of the genome), suggesting that higher resolution differ-
ential analysis may be more prone to false positives.

To further assess the type-1 error rate, we carried out a series of
differential compartment analysis between mouse ESC pseudo-
replicates (2 replicates) at different resolutions (100Kb, 50 Kb,
40Kb, 25 Kb, and 10Kb) and down-sampling rates (100%, 80%, 60%,
405, 20% and 10% of 500million sequencing depth). Wemeasured the
number of differential compartments when running two down-
sampled replicates against each other at different resolutions and
our results indicate that dcHiC is robust to type-1 error when

comparing replicates at different resolutions and read depths (Sup-
plementary Table S5). We also evaluated the type-1 error rate, when
two mouse ESC pseudo-replicate Hi-C maps of different sequencing
depth are compared by dcHiC. Across the 21 comparisons, we first see
that the compartment calls are highly correlated within 100% to 40%
(500M-200M reads) of read depth (Supplementary Table S6). The
correlations with high read depth samples drop substantially for 20%
(100M reads) and further for 10% (50M reads) sample.Wenoticed this
occurred because compartment scores for some chromosomes star-
ted to not fully reflect the compartmentalization pattern at lower read
depths. Removing the 5 chromosomes (chr 4, 5, 14, 17, X) with such
issues, we see correlations at lower read depths improve, however not
to the point that we highly concordant (correlation >0.9) compart-
ment calls between two pseudo-replicates (Supplementary Table S7).
While evaluating the false-positive calls, we first observed that corre-
lations between compartment scores are closely related to the number
of differential calls. When we utilized dcHiC to find differential com-
partments (i.e., false-positive calls) between two replicates of different
sequencing depth by down-sampling Hi-C maps at 100Kb resolution,
we see no false positives among samples with 100% to 60% down-
sampling (500M-300M reads) (Supplementary Table S8). We also do
not obtain any false positives even for lower depth samples when they
are compared against the sample with the same rate of down-
sampling. However, a substantial number of false-positive differential
calls appear when 20%or 10%down-sampled samples are compared to
higher depth samples (Supplementary Table S8). Like compartmental
correlations, here also when we filter out the 5 chromosomes with
issues in compartment calls at low read depths, we see that the false-
positive rates dramatically improve for 40% and for 20% down-
sampled samples (SupplementaryTable S9). Basedon these results, we
believe compartment scores and differential compartment calls are
robust when comparing Hi-C maps that are sufficiently sequenced
(100M or more reads) and are within 2–3-fold read depth of
each other.

Example genes from ESC vs NPC differential compartments:
Within dcHiC’s calls, we also analyzed a set of key genes known for
their critical role in ESC or NPC state that have been studied exten-
sively for changes in their nuclear organization during the transition.
For instance, we analyzed a set of genes for which fluorescence in situ
hybridization (FISH) experiments were performed to study changes in
radial positioning during the ESC to NPC transition. These included
pluripotency markers specifically expressed in ESCs (e.g., Zfp42/Rex1
and Dppa2/4) as well as EPH Receptor B1 (Ephb1) and other marker
genes specific to neuronal differentiation. Figure 3J shows theDppa2/4
region in mouse chromosome 16 that is shown to change radial posi-
tioning, chromatin state, lamin B1 association and replication timing
during differentiation40,42. Consistent with these data, both dcHiC and
HOMER reported a significant shift from the A (active) to the B (inac-
tive) compartment during mouse ESC to NPC differentiation (Fig. 3J).
In addition, dcHiC reported significant compartment changes for
several other important genes that HOMER missed. Figure 3K, L dis-
plays two genes, namely, Dach1 and Nedd9, which are known to play a
critical role in organogenesis and signal transduction pathways for
mouse neuronal development43,44. We also detected these genes in our

Fig. 3 | Pairwise differential compartment analysis between ESCs and NPCs.
A The breakdown of the numbers of differential compartment calls (100kb reso-
lution) belonging to different types. A compartments are in orange and B com-
partments are in purple. B–E The distributions of compartment scores, replication
timing, Lamin B1 signal and gene expression values for all statistically significant
compartment changes identified by dcHiC. Strong (s) and weak (w) were used to
indicate the relative compartment strength (or absolute value) between the twocell
types. The breakdown of differential compartment calls across different subtypes
with respect to compartment association were: A->Bn = 659; B->A, n = 819; sA->wA,
n = 70; wA->sA, n = 50; wB->sB, n = 168; sB->wB, n = 222 for each subpanel with zero

or N/A values removed from each data type. F The Venn diagram shows the overlap
between dcHiC (green) andHOMER (blue) differential compartment calls.G,H The
absolute difference in Lamin B1, replication timing signal and gene expression
values (TPM) overlapping with all and exclusive differential compartments identi-
fied by dcHiC and HOMER, respectively (statistical significance was calculated by
unpaired, two-sided t-test). I The average number of differentially expressed (DE)
genes overlapping with differential compartment bins (100kb) identified by dcHiC
and HOMER. J–L dcHiC differential compartments involving three DE genes:
DppA2/4, Dach1 and Nedd9. In B–E, G, and H, data are presented as mean values
±SEM. Source data are provided as a Source Data file.
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differential gene expression analysis of ESCs vs NPCs as significantly
upregulated in NPCs (FDR<0.05; >160x for Dach1 and >30x for
Nedd9). Dach1 lies in a compartment reported to be flipped from ESC-
B to NPC-A by dcHiC (Fig. 3K). Nedd9 gene overlapped with the A
compartment in both cell types but with stronger compartmentaliza-
tion in NPC, which was detected as a significant change by
dcHiC (Fig. 3L).

To determine whether the compartmental changes are
accompanied by specific differences in local chromatin interac-
tions, we implemented an extension of our comparative approach
to identify differences in contact counts involving the differential
compartments (Methods – differential interaction identification).
This feature allows users to input a set of significant chromatin
interactions (e.g., from Fit-Hi-C45) or chromatin loops (e.g., from
HiCCUPS or Mustache), which will then be filtered for their overlap
with differential compartments and tested for their difference
across the compared conditions. The black square boxes in Fig. 4A
represent the dcHiC-identified differential interactions (ESC vs
NPC) that are anchored in the Dppa2/4 region. These interactions
are identified among FitHiC2 calls46 (FDR < 0.05) that are reported
as significant in at least one replicate of ESC and/or NPC datasets.
The results show that the Dppa2/4 domain in NPC specifically

interacts with its upstream region compared to ESC, while the
interactions with the adjacent downstream region remained
unchanged, a change that can be visualized on the Hi-C map
(Fig. 4A). Previous studies on Ephb1 have demonstrated significant
subnuclear repositioning of the gene from the periphery to the
nuclear center during ESC to NPC differentiation40 accompanied by
higher gene expression later. A similar analysis of the Ephb1 region
shows that it has enriched interactions with a pair of upstream B
compartments in ESCs, which are weakened in NPCs where Ephb1 is
transitioned to the A compartment (Fig. 4B). In addition, the same
region gained interactions with a downstream A compartment in
NPC. These results highlight the value of differential interaction
analysis coupled with differential compartmentalization to better
delineate important changes in the local chromatin environment.
Finally, even though the above examples highlight cases where gene
expression is tightly correlated with compartment changes and
radial positioning, this is not necessarily the case for all genes.
Figure 4C shows the pluripotency marker gene Pou5f1/Oct4 region
with ESC-specific gene expression. The radial positioning of this
gene locus was shown to remain unchanged during the ESC to NPC
transition40, consistent with our results (Fig. 4C). Overall, dcHiC
identified both known compartment flips (A to B or B to A) as well as

Fig. 4 | Differences in local chromatin interactions of differential compart-
ments. Detailed browser views (top), Hi-C contact maps (mid) and differential
chromatin interactions (bottom) of three gene loci – A DppA2/4, B Epbh1, and
COct4. Visible changes in interactions involving theDppa2/4 locus and Ephb1 locus

are highlighted through each plot. AlthoughOct4 shows a dramatic change in gene
expression, the region does not alter its radial position within the nucleus (FISH
experiments), which is also consistent with the lack of change in compartmentali-
zation reported by dcHiC. Source data are provided as a Source Data file.
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compartmentalization differences within the same compartment
for important genes.

Differential compartments are associated with sub-
compartment transitions during ESC to NPC lineage
differentiation
Recent studies have shown that beyond open and closed chromatin,
genome activity encompasses multiple states of compartmentaliza-
tion which can be captured via a more refined sub-compartment
analysis14,15,47. Therefore, we hypothesized that differential compart-
ments identified by dcHiC, whether they involve compartment flips or
not, should also be associated with changes in sub-compartments
between conditions. To compare the changes in sub-compartments
with differential compartments, we mapped the dcHiC differential
calls on the ‘Calder’47 derived sub-compartments within mouse ESC
andNPC cell lines. The Calder algorithm infers a complete hierarchy of
compartment domains using intrachromosomal interactions and
classifies each A/B compartment into 4 sub-compartments each (8 in
total; A/B.1.1, A/B.1.2, A/B.2.1, A/B.2.2) adopting a more nuanced
representation of the two primary compartment classes. We applied
Calder on ESC and NPC Hi-C maps separately and retrieved a total of
24,546 100Kb bins (~2.4 GB) with sub-compartment assignments for
both ESC and NPC. For these bins, we then assessed the overlap of
differential calls from dcHiC with the differences in sub-compartment
labels. Out of 1,981 dcHiC bins, for 1,862 we had Calder labels on both
cell types and among those 97.5% (1,816 bins) overlapped with differ-
ential sub-compartment labels. For the remaining 22,684 bins with
Calder labels that do not overlap with dcHiC differential calls, still a
high but smaller percentage (57.5%) corresponded to differences in
sub-compartment labels. Supplementary Fig. S7A, B shows the total
number of differential compartment transitions, grouped based on
their sub-compartment classes within ESC and NPC lineages. These
results highlight that nearly all dcHiC differential compartments have
underlying changes in sub-compartment assignments consistent with
our initial hypothesis. In termsof being able todoadifferential analysis
directly from sub-compartments, however, a large percentage (~60.5%
or 14,866 out of 24,546 100 kb bins) of sub-compartment transitions/
flips suggest that this approachmay lead to low specificity in detecting
important differences and would need to be coupled with additional
filters and/or supplemented by further statistical assessments.

To better understand the type of sub-compartment flips that are
overrepresented in dcHiC calls, we compared the transition prob-
abilities among sub-compartment labels (ESC vs NPC) obtained from
dcHiC differential calls versus non-differential regions (Supplementary
Fig. S7C, D). The fold-change values show that dcHiC differential calls
are significantly enriched for sub-compartment transitions with a dis-
tance of 3 or more in the sub-compartment hierarchy (e.g., A.1.1 to
A.2.2 (distance of 3) or A.1.1 to B.1.1 (distance of 4)) supporting the
strong compartmentalization change of these bins (Supplementary
Fig. S7C, D). We observed highly enriched transitions from ESC-A
subcompartments to strong NPC-B subcompartments (B.2.1 and B.2.2)
that corresponded to substantial reduction in the transcriptional
activity of overlapping genes going from ESC to NPC (Supplementary
Fig. S7E). An example of such sub-compartment transition was the
145–148Mb region in chromosome 4 encompassing 71 unique genes
(Supplementary Fig. S7F). This locus harbored genes with known
functions including pluripotency (Rex2) and migration and invasion
inhibition (Miip)48.

Although the broad classification of A and B compartments is
likely insufficient to capture themultistate genomic activity across cell
lines, our sub-compartment analysis suggested that differential ana-
lysis using compartment scores is able to effectively capture changes
involving sub-compartments with biological significance. Sub-
compartment inferring algorithms such as Calder47 provide a useful
approach to decipher the underlying epigenetic and transcriptional

heterogeneity within tissue types, differentiation stages and other
conditions but are not directly applicable for the task of de novo
detection of compartmentalization changes across samples due to a
large number of transitions involving sub-compartment types that are
very similar (distance of 1 or 2).

Multicell-type differential compartment analysis of the mouse
neuronal system
The same in vitro system used to differentiate from ESCs to NPCs also
allows further differentiation of NPCs to cortical neurons orCNs39. This
developmental lineage provides an approach to demonstrate how
dcHiC uses a multivariate distance measure to compare the compart-
mentalization of more than two cell types simultaneously. For such
multiway comparisons, dcHiC provides a quick and straightforward
approach to detect outliers in compartment scores and associated
differential interactions, an approach far easierwithmany experiments
than the traditional paradigm of taking pairwise comparisons. In this
section, we first illustrate the biological significance of dcHiC’s differ-
ential compartments using multiple lines of biological data. We then
demonstrate functional term enrichments and show specific differ-
ential genes that illustrate the application’s breadth of analysis.

Applying dcHiC at 100 kb resolution to intrachromosomal Hi-C
data from ESC, NPC, and CN samples, we identified a total of
5055 significant differential bins covering approximately 19.2% of the
genome. Compartments A and B were evenly split for NPC and CN,
whereas ESC had ~63% B compartments. Overall, regions in the B
compartment for each cell type weremore likely to exhibit statistically
significant compartment changes compared to the A compartment
(21–23% vs 16-18%). Figure 5A summarizes the number of differential
compartment bins that involve flips (A->B or B->A) or remained within
the same compartment throughput the lineage transition. Consistent
with the literature2,5,49, we showed that compartmental dynamics are
strongly associated with the variability of gene expression and histone
modifications (Fig. 5B).

To further analyze these changes simultaneously, rather than one
transition (or pair) at a time, we utilized time-series analysis to cluster
the compartmentalization score patterns of these differential bins
across (Fig. 5C) and plotted the expression pattern of the overlapping
genes in each cluster across three different time-points. To focus on
relative changes in compartmentalization, we further z-transformed
the quantile normalized PCA scores for each 100 kb bin across the
three cell types and applied TC-seq50 to identify 6 major clusters. Two
major clusters corresponded to regions that progressively became
more euchromatic (clusters 1 and 6), and one corresponded to more
heterochromatic regions (cluster 4). We observed other clusters that
corresponded to one cell type showing highly different compart-
mentalization with respect to the other two (e.g., clusters 3 and 5 with
NPC-specific patterns). To link these compartmentalization patterns to
gene function, we identified genes overlapping with each differential
compartment bin for each cluster. Performing functional enrichment
analysis on these gene sets51, we identified signatures that are con-
sistent with the cellular identity of the cell type with the highest
compartment z-scores (i.e., more euchromatic). For instance, for the
genes overlapping with clusters 1 and 6 with compartment scores
increasing from ESC to NPC to CN, the enriched terms included neu-
rogenesis and neuronal development (Fig. 5D). For cluster 3, where CN
compartment scores were highest, the enriched terms (cell-cell adhe-
sion, biological adhesion, and others) were consistent with a general
pattern for genes involved in regulating cell-type specific migration
and development. We also observed that cluster 3 overlapped with an
important class of gene family known as protocadherins52. Proto-
cadherins arehighly conservedgenes across species, andmostof them
are clustered in a single genomic locus in vertebrates53. They are shown
to be differentially expressed in individual neurons and involved in
diverse neurodevelopmental processes54. When we repeated the
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functional enrichment analysis per cell type using genes overlapping A
compartments with the highest compartmentalization score for that
cell type compared to the other two,we alsoobserved cellular identity-
related annotation terms (Supplementary Data 1). While annotations
related to cell adhesion were enriched in ESCs as well as CN, CN spe-
cifically showed enrichment for neurogenesis, neuron differentiation

and development (Supplementary Data 1). CN, but not NPC, also
showed enrichment for synaptic signaling, synapse organization and
neuron projection development, potentially related to its further dif-
ferentiated state with respect to NPC.

Example genes from ESC-NPC-CN differential compartments: The
differential compartments captured by dcHiC encompass a variety of
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traditionally studied as well as more nuanced scenarios. For instance,
similar to Dppa2/4, Zfp42/Rex1 is a well-studied pluripotency marker
primarily expressed in undifferentiated stem cells (Fig. 5E). As is the
case for Dppa2/4, Zfp42 is also in a small A compartment region sur-
rounded by large stretches of B compartments in ESCs. As expected,
this region flipped into the B compartment in NPC and stayed in CN,
consistent with the lack of gene expression in these two cell types
(Fig. 5F).Ptnorpleiotrophin, on theother hand, exhibitsmitogenic and
trophic effects on dopaminergic neurons and is instead a marker gene
for neuronal lineage. dcHiC reported this gene in a differential com-
partment that is B in ESC but A in NPC and CN, in concordance with
gene expression (Fig. 5G, H), which fits the compartmentalization
pattern of cluster 1 (Fig. 5C). These two examples represent strong
compartment flips fromA to B or B to A. An example of amore gradual
compartmental change is the CN-specific Ctnna2 gene, which func-
tions as a linker between cadherin adhesion receptors and the cytos-
keleton to regulate cell-cell adhesionanddifferentiation in thenervous
system. The B compartment encompassing Ctnna2 in ESCs gradually
weakens during the ESC-NPC-CN transition, leading to a transcription-
permissive A compartment that starts in NPCs and expands further in
CNs (Fig. 5I, J).

Compartment shifts within the same compartment are also
captured by dcHiC (Fig. 5K, L). Etv5 encodes a transcription factor
that plays an important role in the segregation between epiblast
and primitive endoderm specification during ESC differentiation55.
Etv5 is highly expressed in ESCs but gradually loses its expression
(Fig. 5L) as well as strong compartmentalization during the ESC-
NPC-CN transition while remaining in the A compartment at all
times. This locus belongs to cluster 2 with enrichment for more
euchromatic association specifically in ESCs, consistent with the
highest expression for Etv5 for this cell type. Beyond Etv5, we also
found a list of 179 other genes (199 bins) within the A compartment
throughout the ESC-NPC-CN transition, for which the variation in
the expression profile strongly correlated with changes in com-
partmentalization (Pearson correlation > 0.7; Supplementary
Data 2). A similar analysis within differential B compartments
revealed 190 genes (245 bins) with a strong positive correlation
between expression and compartmentalization change (Supple-
mentary Data 2). Overall, our results demonstrate that dcHiC can
comprehensively analyze multiple different Hi-C maps simulta-
neously and identify compartmental changes involving abrupt
(e.g., compartment flips) as well as gradual changes.

Differential compartment analysis of the mouse hematopoietic
system
The hematopoietic system is a developmentally regulated and
well-characterized cell differentiation model56,57. This system
provides an opportunity to understand the dynamic changes in
chromatin structure together with transcriptional and other epi-
genetic changes during differentiation in detail. The study of
genome organization changes during this complex process—
involving many different progenitors and differentiated cell types
—requires a systematic approach. A recent study by Zhang et al.33

profiled chromatin organization in a classic hematopoietic model
with ten primary stem, progenitor, and terminally differentiated

cell populations frommouse bone marrow (Fig. 6A). In this model,
long-term hematopoietic stem cells (LT-HSCs) represent the
starting point of the hematopoietic hierarchy with self-renewal
and multilineage differentiation capability. LT-HSCs first differ-
entiate into short-term hematopoietic stem cells (ST-HSCs) and
then multipotent progenitor cells (MPPs). MPP cells differentiate
into either common lymphoid progenitor (CLP) or common mye-
loid progenitor (CMP) cells. CMPs then further branch out into
granulocyte-macrophage progenitors (GMPs) andmegakaryocyte-
erythrocyte progenitors (MEPs). The GMP cells are then terminally
differentiated into granulocytes (GR), while MEP cells are further
differentiated into megakaryocyte progenitors (MKP) and then
terminally differentiated into megakaryocytes (MK).

Using the Hi-C data from this system, we carried out multi-
variate differential analysis using dcHiC at 100 kb resolution. We
detected a total of 6,061 (60.61 Mb of the genome) differential
compartment bins across the ten cell types encompassing many of
the genomic regions previously shown to undergo hematopoiesis-
related dynamic changes33. Figure 6A shows an overall summary of
the significant compartment changes identified by dcHiC across
these cell types. We observed that the number of A to B transitions
continued to increase from the LT-HSC stage to the MEP and GMP
progenitor stages. The differentiation of CMP into MEP and GMP
cells represents two of the most frequent A to B transitions (~27.4%
and ~15.7% A- > B transition, respectively) within the hematopoietic
hierarchy, likely reflecting the need for suppression of certain
transcriptional profiles for commitment into each branch. This is
consistent with the largest proportion of differential B compart-
ments in MEP (~46.5%) and GMP (~42%%) compared to all other cell
types. With respect to the top of the hematopoietic tree (i.e., LT-
HSC), early progenitors such as MPP have 571 100 kb bins with a
significant compartment flip (either A to B or B to A), whereas the
differentiated cells such as MK and GR had 949 and 1212 such bins,
respectively. This confirms the gradual divergence of chromatin
compartmentalization from hematopoietic stem cells as cells pro-
gress further into differentiation.

Next, similar to the ESC-NPC-CN transition, we also carried out
functional enrichment analysis of differential regions with the
highest A compartment score in each group and specific cell type.
Figure 6B–E shows these enrichments for four different stages of
hematopoiesis (pre-bifurcation stage: LT-HSC, ST-HSC, progenitor
stage: MPP, CMP, granulocyte branch: GMP, GR and the terminally
differentiated granulocytes or GR) with respect to the rest and for a
specific cell type within each of these stages highlighting biologi-
cally relevant processes in each case. For example, morphogenesis-
and development-related biological processes were enriched in the
overall pre-bifurcation stage (set of genes with the highest A com-
partment score in either LT-HSC or ST-HSC; Fig. 6B), and progenitor
stage cells were enriched in morphogenesis-, adhesion- and
migration-related terms (Fig. 6C). The granulocyte branch (GMP
and GR) as well as the terminally differentiated granulocytes (GR)
showed significant enrichment related to the activation and reg-
ulation of neutrophils and granulocytes (Fig. 6D, E). For the mega-
karyocyte branch (MEP, MKP,MK), however, we did not observe any
statistically significant GO term biological process enrichment.

Fig. 5 | Three-way differential compartment analysis of ESCs, NPCs, and CNs.
A The breakdown of the numbers of differential compartment calls belonging to
different types (ESC green, NPC orange, CN red). B The enrichment of signal dif-
ferences in different histone marks and gene expression in dcHiC differential bins
with compartment flips (A->B or B->A) compared to bins with nonsignificant
compartment flips. C Time-series clustering of normalized compartment scores
into six different clusters (n = 548, 972, 369, 1809, 93, 257, respectively) from the
three cell types along with their overlapping gene expression profile. For the
clustering analysis, the quantile normalized PCA scores for each 100kb bin across

ESC-NPC-CN were further z-transformed to focus on relative changes in compart-
mentalization. Data are presented as mean values ±SEM. D Gene term enrichment
results of GO biological functions from genes overlapping with clusters 1, 3, and 6
compartments. E–L Differential compartments overlapping with representative
genes in each of the cell types shown alongwith differential chromatin interactions
involving respective compartments and gene expression values (TPM) across the
ESC-NPC-CN transition for four example genes, each representing one cluster
pattern. Source data are provided as a Source Data file.
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Example genes from mouse hematopoiesis differential com-
partments: After investigating the significance of the differential
compartments from a high level, we examined the genes overlapping
with the differential compartments involved in hematopoietic line-
age differentiation and chromatin dynamics58. Figure 6F shows a set
of important genes overlappingwith differential compartments from

our multivariate analysis. Zhang et al. showed that increased gene-
body associating domain (GAD) scores are linked to active tran-
scription and indicate cell-type specific features. We identified 12 out
of 16 such differential GAD genes between ST-HSC and GR as part of
dcHiC differential compartments identified across the system
(FDR < 0.1; Fig. 6F, marked by cyan stars). In addition, a previous
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analysis by Lara-Astiaso et. al.58 also reported a set of critical genes for
hematopoietic lineage differentiation. We identified 12 of these 26
genes within differential compartments (FDR < 0.1; Fig. 6F, marked
by red stars), supporting dcHiC’s ability to detect changes in regions
harboring genes that are dynamically regulated during hematopoi-
esis. Among these genes, one example is the transmembrane trans-
porter gene Abca13, which was the exclusive differential A
compartment within GR but in the B compartment for all other cell
types (Fig. 6G). Other notable examples includeMeis1, a transcription
factor required to maintain hematopoiesis under stress and over the
long term59. Notably, this particular example was a significant change
solely within the A compartment (Fig. 6H). Apart from Meis1, dcHiC
also detected differences for other transcription factors, such as
Runx2 and Sox6, that are essential for progenitor cell differentiation
(Fig. 6F)60,61. We also identified Myc, known for its role in balancing
hematopoietic stem cell self-renewal and differentiation62 adjacent
to a significant change within the A compartment that encompasses
the Pvt1 gene. The long noncoding RNA Pvt1 harbors intronic
enhancers that interact withMyc and promoteMyc expression during
tumorigenesis63. Overall, this complex system demonstrates the uti-
lity of dcHiC’s multivariate compartment analysis, which discovers
important changes in compartmentalization without requiring a
large number of pairwise comparisons.

Further, we have performed time-series analysis of the differential
compartments on the Long-Term Hematopoietic stem cells (LT-HSC)
to Granulocytes (GR) (6 time-points) and LT-HSC to Megakaryocytes
(MK) (7 time-points) lineage differentiation separately. For LT-HSC to
GR differentiation, the first 3 clusters show a general pattern of dif-
ferential compartmentswith decreasing genomic activitywhile the last
3 shows an increase (Supplementary Fig. S8A). The functional enrich-
ments for genes within each cluster involved general terms such as
‘morphogenesis’, ‘development’ and ‘organization’ (Supplementary
Fig. S8B). When we repeat the same analysis for LT-HSC to MK lineage
differentiation, we observed more nuanced patters involving four
clusters with distinct signatures inMEPs (Supplementary Fig. S9A). For
these clusters (Cluster 1, 2, 4, and 5), the change in compartment score
is most prominent at the MEP stage and is generally prominent after
this stage. We believe this is due to the unique condensed chromo-
somal organization observed in MEP stage along with MKs33. This
previous study proposed that in these cell types, there is a reduction in
long-range chromatin interactions, which resembles the condensed
chromosomestructures found inmitoticmetaphase cells33.We believe
the time-series analysis of differential compartments from dcHiC thus
captured this feature ofMEPswhile also capturing twoclusters (cluster
3 and6)with gradual increaseordecrease in their compartment scores
(Supplementary Fig. S9A). The functional enrichment of genes in each
cluster again involve general terms such as ‘morphogenesis’, ‘devel-
opment’ and ‘differentiation’ (Supplementary Fig. S9B).

Multiway differential compartment analysis across human-
derived cell lines
Measuring the extent to which genetic variation across individuals
influences chromatin features, including 3D organization, has sig-
nificant implications in our understanding of human disease. Previous

studies have revealed that the presence of variations such as quanti-
tative trait loci (QTLs) can affect histone modifications, transcription
factor binding, and enhancer activity across populations64,65. More
recent work by Gorkin et al66. studied variation in chromatin con-
formation across individuals from different human populations. Using
dilution Hi-C, they profiled lymphoblastoid cell lines (LCLs) derived
from 13 Yoruban individuals, one Puerto Rican trio, one Han Chinese
trio, and one European LCL (GM12878). They measured significant
differences in 3D genome organization across individuals using dif-
ferentmetrics, including the Directionality Index (DI), Insulation Score
(INS), Frequently Interacting REgions (FIREs), and compartment
scores66. The study also carried out differential analysis of compart-
ments across individuals and provided both compartment scores and
“variable regions” at 40 kb resolution (after excluding chromosomes 1,
9, 14, 19 and X). To minimize technical variation and ensure a fair
comparison, we started directly from the 40 Kb compartment scores
reported by Gorkin et al. and ran dcHiC on these values (starting from
quantile normalization). dcHiC allows direct utilization of pre-
computed compartment scores, such as in this case, when available.

The Venn diagram (Fig. 7A) of differential compartments from
dcHiC and Gorkin et al. using the same set of 40kb genomic bins
shows a large overlap between the methods. A large fraction of dcHiC
calls (7524 out of 7,876 or ~96%) were also reported by the original
paper. However, Gorkin et al. reported an additional 765Mb of the
human genome as variable compartment regions (Additional_fi-
le_4.xlsx from the original publication filtered for phenotype=PC1 and
discover_set=20 LCLs), which amounts to ~11 K more bins at 40Kb
resolution. To further study the overlap and differences between the
two approaches, we plotted two statistical significance score dis-
tributions (-log10 of the adjusted p-value calculated by Gorkin et al.)
for regions that the Gorkin study reported as differential, one with
regions overlapping with dcHiC calls and the other with non-
overlapping regions (Fig. 7B). Variable compartments from the pre-
vious study that were not deemed significant by dcHiC have sub-
stantially lower statistical significance, as computed by the original
paper suggesting dcHiC calls are enriched for stronger differences.
Next, we compared the full set of differential compartments called by
both methods and their fraction covering each individual chromo-
some (Fig. 7C). The figure shows that Gorkin et al. calls cover a larger
fractionof smaller chromosomes,withmore than half the entire length
reported as variable compartments for some chromosomes (e.g.,
chr18). dcHiC, on theother hand, has amoreuniform representationof
differential compartments across chromosomes, with differential
fractions ranging between 10% and 20% for most chromosomes.
Finally, we compared the top 5000 differential compartment bins
ranked by their significance scores from each approach. Figure 7D
shows that ~61% of these top 5000 differential bins are identical,
suggesting substantial differences in each approach’s ranking with
respect to statistical significance (Spearman rank correlation of 0.55).
Although the ranking is substantially different between the methods,
the overlapping portion of the differential compartments were enri-
ched for higher statistical significances in terms of their differences
(Fig. 7E). Using other chromatin organization metrics that were
deemed variable across individuals by the Gorkin paper, we observed

Fig. 6 | Ten-way multivariate differential compartment analysis of mouse
hematopoiesis. A Summary of overall compartment decomposition and sig-
nificant compartment changes observed across the 10 cell types. The orange and
blue arrows represent A to B and B to A compartment flips, respectively. The
numbers next to the arrows represent the total number of flipping compartments,
and the numbers within the parentheses next to arrows show the significantly
different flipping compartments. The bottom-right plot shows the proportion of A
and B bins among dcHiC differential compartments for each cell type. Figure
adopted from Zhang et al.33. B–E The functional enrichment of genes overlapping
with differential compartments from 10-way comparison that have the strongest A

compartment scores in eitherB LT-HSC or ST-HSC,CMPPor CMP,DGMPorGR, or
EGRalone. FDifferential compartments identified by dcHiC overlap a set of critical
genes previously known to play a role inmouse hematopoiesis (blue/redboxes and
stars indicate genes and their source). G An IGV browser snapshot of the Abca13
gene and its overlapping differential compartment across the 10 cell types. The
Abca13 gene is exclusively found to be a part of the A compartment in GR.HAn IGV
browser view surrounding the Meis1 genic region. This region overlaps with the A
compartment for all cell types but with varying magnitudes of strength. dcHiC
captured this region as a differential compartment. Source data are provided as a
Source Data file.
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that dcHiC calls weremore enriched in FIRE-QTLs (Fig. 7F) aswell asDI-
QTLs (Fig. 7G). Preferential enrichment of such signals suggests a
better concordance of dcHiC identified compartmental differences
and chromatin organization variability at other levels across indivi-
duals. We then asked whether the identified differential compartment
regions were enriched in regions with variability in histone marks

(H3K27ac, H3K4me3, H3K4me1 and H3K27me3) across different indi-
viduals. The variable histone modification regions/peaks identified for
human LCLs by Kasowski et al.65 were mapped on differential com-
partments identified from dcHiC and by Gorkin et al.66. Using the non-
differential compartment regions as background for each method, we
observed nearly no enrichment for regions called differential only by
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Fig. 7 | Twenty-way multivariate differential compartment analysis of human
lymphoblastoid cell lines (LCLs). A A Venn diagram of the overlap of differential
compartments called by dcHiC (blue) and the variable compartment regions from
Gorkin et al. (green). B The distribution of −log10(p-adj) values of dcHiC-
overlapping andnon-overlapping variable regions calculatedby theprevious study,
reported by Gorkin et al. C The total number of chromosome-wise differential
compartments and the fraction of each chromosome (except those filtered by
Gorkin et al.) covered by such calls for dcHiC and the previous study. D, E Venn
diagrams of overlapping compartments of the top 5000 differential regions from

both approaches and the –log10(p-adj) value distribution of the overlapping and
non-overlapping sets from dcHiC. F, G The cumulative number of FIRE-QTLs and
DI-QTLs overlapping the top 5000 differential compartment calls by dcHiC and
Gorkin et al.H–I Two example regions with differential compartments overlapping
genic regions of NR2F2 and THEMIS/PTPRK. Both genes and especially the NR2F2
region were shown to be variable regions across the population through FISH
experiments (Gorkin et al.). In B and E, data are presented as mean values ±SEM.
Source data are provided as a Source Data file.
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Fig. 8 | Differential compartment analysis of pseudo-bulk single-cell Hi-C data
from post-natal mouse brain development. A Single-cell Hi-C summary and our
categorization of 6 time points from each mouse brain region into three groups,
namely – Early (includes Day 1, 7), Mid (Day 28, 56), and Late (Day 309, 347).
B, C The transition of differential compartments in Early, Mid and Late groups
within cortex and hippocampal region. D, E Time-series clustering of differential

compartments in cortex and the functional enrichment of genes overlapping with
these compartments. F, G Time-series clustering of differential compartments in
hippocampus and the functional enrichment of genes overlapping with the com-
partments.H, I Example genes overlapping differential compartments from cortex
and hippocampus. Source data are provided as a Source Data file.
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Gorkin et al. (Supplementary Fig. S10) while calls from dcHiC showed
26–45% of enrichment. The proportion of differential calls that over-
lapped with at least one variable region for each histonemark was also
substantially higher for regions from dcHiC in comparison to Gorkin
et al. specific regions (Supplementary Fig. S11A–D).

Example genes from differential compartments among
human-derived LCLs: Fig. 7H, I show two examples of a variable
region (overlapping with NR2F2 and THEMIS/PTPRK genes) iden-
tified by dcHiC. The NR2F2 region was investigated using FISH by
Gorkin et al., which confirmed individual-specific changes in 3D
chromatin conformation. Two of the individuals from the cohort
(YRI-4 and YRI-8) showed enriched interaction between the NR2F2
FISH and another placed upstream compared to YRI-3 and YRI-5.
The variability of 3D genome organization among individuals is
also apparent from compartment scores for this region. The NR2F2
locus across the cohort was found to be a part of a strong
B-compartment for all Yoruban individuals except for YRI-4, YRI-8,
and YRI-9 (Fig. 7H). Figure 7I shows another example of such a
variable region with coordinated changes in epigenetic marks
across individuals with support from differential compartments
documented in a previous paper. Gorkin et al. identified variations
in different epigenetic marks, such as H3K4me1 and H3K27ac,
binding of CTCF and, most importantly, gene expression patterns
within this region across different individuals (YRI-2 and 13 vs 11
and 12). The PC score track in Fig. 7I also supports the previous
findings, as some of the individuals from the YRI population,
especially YRI-3, YRI-5, YRI-11, and YRI-12, showed a clear flip from
the B to A compartment, and both our approach and Gorkin et al.
labeled this region as a differential compartment. Taken together,
dcHiC identified fewer differential compartment bins with
enrichment towards capturing regions with higher variability in
different levels of chromatin organization and those with addi-
tional evidence for differences among individuals.

Differential compartment analysis of pseudo-bulk single-cell Hi-
C data from post-natal mouse brain development
The post-natal dynamics of mammalian brain development is still a
fundamental question in developmental biology27. Although, gene
expression dynamics has been studied in developing adult and
embryonic brains67–70, the dynamics of 3D genome organization in
conjunction with transcriptional changes remain largely uncharacter-
ized. Tan et al.27 attempted to address the issue by integrating single-
cell gene expression and single-cell Hi-C data from two mouse brain
regions (Cortex andHippocampus). They employeddiploid chromatin
conformation capture (Dip-C) method and generated over 3k single-
cell Hi-C maps from cortex and hippocampus encompassing 6 differ-
ent time points that comprehensively describe the dynamic 3D gen-
ome organization. This high-quality, time-course and single-cell
resolution Hi-C data provided us with an opportunity to showcase the
expansion of dcHiC’s utility in performing differential analysis on the
pseudo-bulk single-cell Hi-C data. Tan et al. 2021 comprehensively
described neuronal sub-types from the single-cell 3D genomedata and
most of their analysis focused on comparisons among the sub-types.
Here we performed differential compartmental analysis among the
time points to demonstrate the utility of dcHiC in identifying dynamic
changes in compartmentalization for both brain regions. To perform
the differential analysis, we first categorized the 6 time points from
each brain region into three groups, namely – Early (includes Day 1, 7),
Mid (Day 28, 56), and Late (Day 309, 347) as shown in the Fig. 8A. The
two time points in each group were treated as replicates and pseudo-
bulk Hi-C maps were analyzed at 250kb resolution. We then used
dcHiC with default parameters to perform differential compartment
analysis and reported compartmental changes below an FDR threshold
of 10% (Fig. 8B, C). Comparing the three groups (Early, Mid and Late),
dcHiC found a total of ~140Mb of the genome (562 Hi-C bins at 250Kb

resolution) in cortex and ~53Mb of the genome (212 Hi-C bins) in
hippocampus to be differential in their compartmentalization (Fig. 8B,
C). The higher number of differential compartments in cortex may be
reflective of its sudden change in compositional structure in the “Mid”
group (i.e., higher fraction of oligodendrocytes) previously identified
by Tan et al. 2021. Intersecting the differential compartments between
the tissues revealed 89 Hi-C bins that are common as well as 473 Hi-C
bins uniquely differential in cortex and 31 Hi-C bins uniquely differ-
ential in hippocampal tissue. The 562/473 bins in cortex overlapped
with 2,973/2,566 genes while 212/31 bins in hippocampus encom-
passed 873/466 genes. A subset of the top cell-type specific marker
and variable genes ranked by PC1 loading identified in the previous
study (Tan et al., 2021) such as Tshz2, Vip, Sst, Sox11, Tubb2b, Nrep, and
Syt1 were also found to be part of dcHiC-identified dynamic changes
(Supplementary Fig. S12A–F).We also observed other important genes
in differential compartments that are either specific to one region or
are common (Supplementary Fig. S12G–L). For example, we identified
Grin2a and Nrg3 (Supplementary Fig. S12) as part of differential com-
partments in both brain regions. Grin2a provides instructions for
making a protein called GluN2A, which is a component of NMDA
receptors. This protein is found in nerve cells of the brain region
involved in speech and language processing71. Neuregulin 3 (encoded
by Nrg3) is structurally related to neuregulin 1 (NRG1)71, which plays a
critical role in controlling the growth and differentiation of glial, epi-
thelial andmuscle cells72. The expression ofNrg3 is known to be highly
restricted within developing and adult nervous system. Tissue-specific
differential compartments encompassing important genes included
the region containing Chrm5, which encodes a muscarinic cholinergic
receptor that binds acetylcholine and was found within a differential
compartment in hippocampus but not in cortex (Supplementary
Fig. S12). On the other hand, Clstn2, which is predicted to bind calcium
ion and help positive regulation of synapse assembly and synaptic
transmission was observed in a differential compartment that is spe-
cific to cortex (Supplementary Fig. S12).

The time-course analysis of three timepoints (early,mid, and late)
also helped us identify significantly differential compartments falling
into similar dynamic patterns (e.g., descending or ascending) for each
brain region. The Fig. 8D, E shows the descending (cluster 1) and
ascending (cluster 2) differential compartments across early, mid and
late group in cortex. The genes overlapping with cluster 1 (descending
pattern) of Fig. 8D showed enrichment in development and morpho-
genesis related GO terms, while differential compartments of cluster 2
(ascending pattern) in Fig. 8E were enriched in terms like membrane
potential and synaptic signaling related biological functions. We also
observed two other cluster patterns for cortex that are worth men-
tioning (Supplementary Fig. S13A, B). The first one corresponded to a
peak in ‘Mid’ stage (cluster 3, Supplementary Fig. S13A) and the second
one corresponded to a dip (cluster 4, Supplementary Fig. S13B).
Cluster 3 genes showed an enrichment of non-specific functional ter-
minologies while genes belonging to cluster 4 showed specific
enrichment of terms related to nervous system (Supplementary
Fig. S13C, D). Tan et.al. 2021 previously described a sudden change in
compositional structure types where they observed a higher fraction
of glial cells in the ‘Mid’ stage (Day 28, 56) within cortex. Interestingly,
we found Cd33, a gene that is known to be expressed inmicroglia73, as
part of cluster 3 (peak in ‘Mid’; Supplementary Fig. S14A). The region
containing Trex1, a gene with enriched expression in glial cells in
human brain74 also belonged to cluster 3 (Supplementary Fig. S14A).
Two example genes overlapping cluster 4 regions were Gabra5 and
Anks1b, both of which were specifically enriched for high expression in
excitatory and inhibitory neurons74 (Supplementary Fig. S14B–D).
Figure 8F, G shows the significantly differential compartments with
descending or ascending patterns in hippocampus. Unlike cluster 1 of
cortex, the genes within differential compartments following a des-
cending pattern in hippocampus are marginally enriched in Wnt
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signaling, cell surface and transmembrane receptor signaling path-
ways. The genes overlapping with cluster 2 (Fig. 8G) in hippocampus,
like those in cortex, are also enriched for biological functions such as
membrane potentials and synaptic signaling terms.

Example genes fromdifferential compartments among different
stages of post-natal mouse brain development: Fig. 8H, I shows a pair
of differential compartments from each region that follows the
descending and ascending pattern of score transition among three
time points and are overlapping with interesting genes. We observed
Sox11 (Fig. 8H, left panel), a gene identified by Tan et al. 202127 as one
of the top variable genes, as part of the cluster 1 (Fig. 8D) in cortex. In
the early stages of cortex, Sox11 resides within an active compart-
ment but with more differentiation the region overlapping with the
gene undergoes a gradual A- > B transition. The right panel of Fig. 8H
shows another gene Csmd1 from cluster 2 in cortex. CUB and SUSHI
multiple domains 1 (Csmd1) is known to be expressed in developing
neurons75 and plays critical role in learning andmemory formation76.
We found this gene as part of a specific differential compartment in
cortex that gradually changes from B in early to A in late stages of
development. The left panel in Fig. 8I shows the differential com-
partment encompassing the Cntnap4 gene in the hippocampus fol-
lowing cluster 1’s pattern shown in Fig. 8F. Cntnap4 is part of the
common set of regions that are differential in both brain regions. The
right panel in Fig. 8I shows a hippocampus-specific differential
compartment that overlapsDennd1a,a protein coding gene known to
be involved in vesicle-mediated transport pathways77 and Rab reg-
ulation of trafficking78. Although highly expressed in neuronal as well
as glial cells of the brain, the specific role of this gene in the hippo-
campus remains to be investigated.

Overall, these results showed that dcHiC addresses a need in the
differential analysis of single-cell Hi-C data by first utilizing pseudo-
bulk profiles from a low number of cells (80–251) to characterize
compartmentalization of each condition, and then systematically
comparing multiple conditions such as timepoints or clusters with the
same approach we use for the bulk cell Hi-C data. Our analysis here
offers an example scenario where comparing multiple conditions with
replicates (three developmental stages) was essential to identify
important known and new genes and to characterize dynamic patterns
shared across different regions.

Discussion
This paper presents an application, dcHiC, to compare compartmen-
talization across Hi-C datasets. dcHiC facilitates comparative analysis
across multiple contact maps and helps identify biologically relevant
compartmentalization differences with statistical confidence scores.
Along with conventional pairwise differential analysis, dcHiC allows a
single multivariate differential comparison of Hi-C datasets, utilizing
replicates when available, and provides an efficient approach to ana-
lyze multiple Hi-C maps without the need for generating many differ-
ent combinations. In terms of its approach, dcHiC first identifies
principal components efficiently using a parallelized partial singular
value decomposition (SVD). It then uses quantile normalization on the
resulting compartment scores followed by computation of a multi-
variate distance measure to systematically identify significant com-
partmentalization changes amongmultiple contact maps. Through an
extensive set of technical comparisons and analyses, we showed that
dcHiC enables high-resolution compartment analysis in a more time-
efficient manner compared to the existing approaches. Using repli-
cates and pseudo-replicates, we show that dcHiC has a low type-1 error
rate and the identified differential compartments are fairly robust to
varied levels of sequencing depths and resolutions.

We applied dcHiC to various biological scenarios, ranging from
neuronal and hematopoietic stem cell differentiation in mice to Hi-C
data from different humanpopulations alongwith pseudo-bulk single-
cell Hi-Cmaps of cells from cortex and hippocampus during post-natal

mouse brain development. Our results confirmed that dcHiC detects
known compartmental changes among cell types, including those
previously shown to play a role in neuronal and hematopoietic dif-
ferentiation. When comparing dcHiC to existing approaches, we
showed that it identifies regions with higher differences in replication
timing, Lamin B1 signals, differentially expressed genes, and histone
marks suggesting a better prioritization of relevant biological changes.
Even though differences in compartmentalization between ESCs and
NPCs are generally aligned with changes in the lamin B1 association, a
recent work highlighted the importance of nucleolus association in
revealing layers of compartmentalization with distinct repressive
chromatin states79. Our initial analysis showed that over 10% of all
significant compartment differences we found between ESC and NPC
belong to nucleolus-associated domains (NADs) that were deemed
exclusive to either ESC or NPC79, providing an explanation for a subset
of differences in compartmentalization during differentiation. In the
same pairwise analysis, we also found that differential compartments
are enriched for sub-compartmental flips (changes in subcompart-
ment labels) especially with an enrichment of strong heterochromatin
ESC sub-compartments transitioning to euchromatin sub-
compartments in NPC as compared to the background. Such chan-
ges were also associated with strong alterations in the transcriptional
activity of overlapping genes.

We next expanded our analysis to a three-way (n = 3) comparison
of cell types during in vitro mouse neuronal differentiation and
showed that dcHiC continues to systematically identify critical marker
genes and can recover cell-specific functions from differential com-
partment analysis alone. Across dcHiC’s differential compartments, we
observed significant and relevant enrichment of biological processes
such as neuron differentiation in NPC and CN cells. More broadly,
dcHiC’s differential compartments also compellingly aligned with
changes in Lamin B1, gene expression, and histone modification data.
Taken together, these results demonstrate dcHiC’s ability to find
regions with the most biologically relevant changes in compartmen-
talization across the genome.

The hierarchical mouse hematopoietic stem cell differentiation
model, consisting of ten different cell types with Hi-C data (n = 10),
provided a unique opportunity to demonstrate a number of different
utilities of dcHiC. A ten-waymultivariate differential comparison of the
hematopoietic system revealed previously known lineage-specific cri-
tical genes overlapping differential compartments. Notably, we iden-
tified vital transcription factors, such as Sox6, Runx2, Meis1, Foxo1, and
many other critical genes, such as Abca13, by solely analyzing the dif-
ferential calls. Our functional enrichment analysis of gene sets over-
lapping with the lineage-specific differential compartments reported
from the apex to the bottom of the hematopoietic model tree recon-
firmed that genome compartments play a contributory role in deter-
mining the accessibility of genes in specific cell types. We also
performed time-series analysis for two different lineages (LT-HSC to
GR and LT-HSC to MK) leading to different compartment change
patterns some of which were gradual increase or decrease and several
others were driven uniquely by the megakaryocyte–erythrocyte pro-
genitor (MEP) state.

Measuring the extent of compartment variability across twenty-
cell human types (n = 20) also highlighted our method’s utility and
strength. Most dcHiC calls overlapped with a subset of variable com-
partments reported by the previous study, but dcHiC calls were enri-
ched for higher variability in a number of different biological signals.
Similarly, the regions encompassing Frequently Interacting Region
(FIRE)-QTLs andDirectionality Index (DI)-QTLs definedby the previous
study were more enriched in the top differential compartment calls of
dcHiC than in the top calls defined in the previous study. The analysis
also demonstrated an important feature of dcHiC: the ability to
directly utilize previously computed compartment scores to run dif-
ferential compartmentalization analysis.
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Genomic compartment identification from single-cell Hi-C maps
is still a major issue in this field due to sparsity of single-cell contact
maps even at coarse resolution. A recent paper (Zhang et al. 2021)
demonstrated the challenges introduced by different technical and
biological factors in reliably calling and comparing A/B compartments
across single cells. Here, by studying a recent single-cell Hi-C (Dip-C)
data characterizing post-natal dynamics of mouse brain development
in two brain regions, we showed that dcHiC is able to call compart-
ments and perform differential analysis from pseudo-bulk profiles of
as low as 80 cells per condition. We observed a higher number of
differential compartments in the cortex region compared to the hip-
pocampus. The differential compartments were overlapping with cell-
type specific marker genes and previously known variable genes
identified through single-cell transcriptomic analysis. The time series
clustering of the differential compartments across three stages (‘Early’,
‘Mid’, and ‘Late’) of development helped us identify other important
genes in differential compartments that were not captured in the ori-
ginal paper. Although we highlighted the use of dcHiC for time course
analysis of single-cell data, the same can be applied to any predefined
set of clusters of cells either with respect to their functional annota-
tions (cell type or subset) or sample conditions (e.g., WT vs KO).

The framework we developed here provides a systematic way to
identify differential compartments and visualize these differences in
different scenarios, including multiway, hierarchical and time-series
settings. Although we focused on human and mouse Hi-C data in this
work, ourmethod is readily applicable to Hi-C data or its variants (e.g.,
Micro-C80) derived from any organism with compartmental genome
organization. dcHiC is also readily applicable to comparative analysis
of other coarse-grain (10 kb to 1Mb resolution) genome-wide signals
such as replication timing and lamin association. With hundreds of
publicly available Hi-C datasets in the 4D Nucleome Data Portal and
others published every day, dcHiC will play an essential role in the
comparative analysis of high-level genome organization. As single-cell
Hi-C data start providing better resolution for compartment analysis,
dcHiC and its future extensions will be critical to enable compartment
comparison across thousands of cells and tens of conditions, clusters
or cell subsets.

Methods
Data processing, result generation, and visualization
In the paragraphs below, we describe our Hi-C, RNA-Seq, ChIP-Seq,
time series, and browser visualization methods.

All the Hi-C data, except for Gorkin et al., were mapped to the
mm10 reference genome and processed using the HiCpro (v2.7.9)
pipeline81. The raw Hi-C interaction maps retrieved after HiC-Pro pro-
cessing are used for downstream compartment score calculation by
dcHiC. In the section analyzing data from the Gorkin et al. study, we
used the provided compartment scores (40 kb resolution) across all
samples mapped to the hg19 reference genome66. Statistically sig-
nificant interactions were called using FitHiC246 with default para-
meters and an FDR threshold of 0.05 for each replicate and/or each
sample.

The RNA-seq data from Bonev et al.39 study concerning mouse
neural development were processed using our in-house and open-
source RNA-seq processing pipeline (https://github.com/ay-lab/LJI_
RNA_SEQ_PIPELINE_V2.git), which utilizes STAR82. The differential gene
expression analysis between mouse ESC and NPC cell lines (two
replicates each) was performed using theDESeq2method41 with all the
default parameter settings.

For ChIP-seq peak calling (H3K27ac, H3K4me3, and H3K4me1
histonemarks), we first mapped the respective fastq files to the mm10
genome using bowtie283 and generated the corresponding bam files
(MAPQ> 20). The aligned files were then used as input to the MACS2
program84 to call peaks (p-value <1e-5) against their respective input
controls. The continuous ChIP-seq peaks were then merged, and the

unique set was mapped to the 100 kb differential compartments to
calculate the average number of peaks. The enrichment of signal dif-
ference was calculated by first quantifying the absolute difference in
signal (number of ChIP-seq peaks and gene expression TPM values)
within ESC toNPC differential and non-differential compartments. The
enrichment of absolute signal difference between the differential and
non-differential compartments between ESC and NPC was then com-
pared by unpaired T-test.

Time-series clustering was generated using the TCseq package50.
For gene-term enrichment analysis, the differential compartments are
scanned against the gene coordinates of the respective genome
defined by the user using the ‘bedtools map’ function85. The unique
overlapping set of geneswas then extracted andused forGObiological
function enrichment analysis using theToppGene suite API function or
directly from their webserver51.

dcHiC generates a JavaScript-based stand-alone dynamic IGV-
HTML page to visualize the compartments and differential compart-
ment calls, with an option to add additional tracks.

Computation and quantile normalization of compartment
scores for comparison
To perform principal component analysis (PCA) on Hi-C maps, dcHiC
utilizes the singular value decomposition (SVD) implementation of the
bigstatsr R package34. The input to SVD is K different distance-
normalized chromosome-wise correlation matrices ðX 1,X2,X3::XK Þ for
each Hi-C data. For each such matrix, dcHiC finds the decomposition:

XK =UK � ΓK � VK
T withUK

T � UK =VK
T � VK = I ð1Þ

ThematricesUK and VK store the left and right singular vectors of
the matrix XK . The singular values of XK are stored in the diagonal
matrix ΓK . The principal components for each matrix are then
obtained as:

PCK =XK � VK ð2Þ

The eigen-decomposition of the Kth correlation matrix provides
the eigenvectors, and the sign of the first principal component (PC1K )
typically represents the genomic compartments A and B for the Kth

chromosome. If PC1K corresponds to chromosome arms or other
broad patterns in the Hi-C matrix, the second principal component
(PC2K ) may represent A and B compartments. The A/B compartment
labels are assigned to the positive/negative stretches of the selected
PCK dependingon the implementationof eigen-decomposition. Itmay
be necessary to reorient these assignments and select the correct PCK

using GC content or gene density. Thus, before the quantile normal-
ization step, dcHiC performs an intermediate correlation analysis of
the first two principal component scores (user-defined) of each chro-
mosome per sample against the GC content and gene density of that
chromosome. The principal component that obtained the highest sum
of GC content and gene density correlation was considered the com-
partment score, and the A/B compartments of the selected principal
components were assigned based on the GC content correlation (A
compartment and positive values representing higher GC content).
These generate a set of compartment score vectors representing each
sample (M samples) for a given chromosome ðC1,C2,C3 . . .CM Þ. Once
the properly labeled compartment scores are obtained, dcHiC per-
forms quantile normalization (QN) using the limma package86 on the
set ðC1,C2,C3 . . .CM Þ per chromosome to even out the scaling across
the group for downstream analysis.

ðq1,q2,q3 . . .qM Þ=QNðC1,C2,C3 . . .CM Þ ð3Þ

In the case of samples with replicates, dcHiC performs the above
steps by including each replicate from each sample (i.e., quantile
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normalizes all replicates together). dcHiC then calculates the average
quantile normalized values of each genomic bin across all replicates of
a given sample to represent sample-wise compartment scores.

Differential compartment identification
Mahalanobis distance (MD) is a multivariate statistical measure of the
extent to which the multivariate data points are marked as outliers
based on a Chi-square distribution87. The Mahalanobis distance of a
point i from a multidimensional distribution defined by set sðsampleÞ
and its center μ is defined as:

MDi
sample = ðsi � μiÞT �

X�1 � ðsi � μiÞ ð4Þ

where si = qi1,q
i
2,q

i
3 . . .q

i
M

� �
is the set of quantile normalized compart-

ment score distributions and μi = μi
1,μ

i
2,μ

i
3 . . .μ

i
M

� �
is the set of weigh-

ted centers for each point i from set s. The inverse of the covariance
matrix of set s is represented as �1. The weighted centers μi are cal-
culated as:

μi = si �wi ð5Þ

where 0 ≤wi ≤ 1 is the cumulative normal distribution probability
associated with the maximum z-score among the z-scores of all sam-
ples for i:

wi = Pr Zi
M

� �n o
ð6Þ

where Zi
N , the z-score for point i for sample N, is computed as:

Zi
N =

ðdi
N � dNÞ
σðdNÞ

ð7Þ

Here,dN and σ dN

� �
represent the average distance and standard

deviation within sample N among all di
N values that are computed as:

di
N =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
t = 1ðqit � qiNÞ

2
q

ðM � 1Þ
ð8Þ

Essentially, the approach provides more weight to the points that
are distant fromothers among the samples (further from the diagonal)
than to points that are closer together in the multidimensional space
(close to the diagonal). Equation (4) is the standard MD formulation,
which we modify using the weighted centers as computed through
Eqs. (6)–(8).

To increase the sensitivity of our difference detection, we imple-
mented an outlier removal step that eliminates genomic bins (or
points) with highMD (as computed above) at the initial pass (1st pass).
For calculation of the covariancematrix, we utilize the covrob function
of the R package robust, which implements the Minimum Covariance
Determinant (MCD) procedure that has been shown to improve mul-
tivariate outlier detection88. We use a predefined upper-tail critical
value of the chi-square distribution with df degrees of freedom as our
threshold for outlier removal (the default value we used is
MD threshold ∼ χ20:90,df ). We then recompute the covariancematrix �1

after removal of these outliers and calculate the MD (through Eq. (4))
one more time for each point (2nd pass). The significance of the cor-
responding MDi

sample (2nd pass) is calculated from the critical chi-
square distribution table as χ2ðMDi

sample,df Þ using the pchisq function
of the R programming language followed by multiple testing correc-
tion to retrieve adjusted p-values.

In the case of samples ðsÞ with replicates, ðrÞ dcHiC calculates an
additional covariate MDreplicate and applies Independent Hypothesis
Weighting (IHW) to adjust the p-values.

The covariate is calculated as follows:

MDi
repl = sri � srμi

� �T � ðdiagð�1ÞÞ � sri � srμi

� �
∣s 2 ð1, . . . MÞ,r 2 ð1, . . .RÞ

n o

ð9Þ
where R is the total number of all replicates combined across all
samples, sri = ri1,r

i
2,r

i
3, . . . r

i
R

� �
is the set of quantile normalized com-

partment score distributions of all replicates from samples s 2
1,2 . . .Mð Þ and srμi = s1μi,s2μi,s3μi, . . . sRμi

� �
is the set of weighted

centers for each point i from R replicates. diag is an operation that
masks all nondiagonal entries (sets to zero) of the covariance matrix.

The weighted centers srμi are calculated as:

srμi = s
r
i � ð1� srwiÞ ð10Þ

where 0≤ s rwi ≤ 1 is calculated as:

srwi = fPrðs rZRÞg ð11Þ

s rZ i for replicate r of sample s is computed as:

s rdi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPR
t = 1ðrit � riRÞ

2
q

ðR� 1Þ
ð12Þ

srZ i =
ðs rdi � srdÞ

σðsrdÞ ð13Þ

Here, the variables are defined as similar to Eqs. (7) and (8), and R
is used to represent the number of replicates of the same sample (i.e.,
distances across replicates of different samples are not taken into
account).

This approach provides more weight to the features that are
closer to each other within replicates of a sample (close to the diag-
onal) and as opposed to the calculation across different samples (Eq.
(5)), where higher weights were given to the points with samples dis-
tant from each other (far from the diagonal). The significance of the
corresponding MD for each point is calculated using the chi-square
distribution as mentioned above. dcHiC applies the IHW approach to
adjust the p-values using FDR correction obtained fromMDsample using
the MDreplicate replicate variation measure as a covariate.

Differential interaction identification
Using the same Mahalanobis distance (MD) measure, dcHiC enables
the user to find differential interactions across samples that are either
linking two differential compartments together or a differential com-
partment with other parts of the same chromosome. The goal of this
feature is to provide more information on the chromatin organization
changes related to or correlated with compartmental differences. For
this analysis, we used FitHiC2 to call significant interactions (FDR 5%)
for each sample or replicate (when available), but users are free to
provide their own set of interaction or loop calls from any other tool.
Using these calls, dcHiC first finds the interaction subset that overlaps
with differential compartments (on either end or both) using the
bedtools ‘pairtobed’ function. dcHiC utilizes the log2ðObservedExpectedÞ values of
a chromatin interaction i to perform differential interaction calling as
follows:

MDi
interaction = oesi � μs� �T � �1 � oesi � μs� �

∣s 2 ð1,2,3 . . .MÞ ð14Þ

where oesi represents log2ðObservedExpectedÞ values for chromatin interactions of
locus pair i for sample s and μs represents the vector of centers of
distance normalized interactions from sample s. Here, �1 represents
the inverse of the covariance matrix of interactions among the sam-
ples. The approach provides more weight to the interactions that are
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distant from the expected interaction strength among the samples
than to the interactions that are closer to the expected range in the
multidimensional space. The significance of the corresponding
MDi

interaction is calculated from the critical χ2 distribution table as
χ2ðMDi

interaction,df Þ using the pchisq function embedded within the R
programming environment followed by FDR correction to retrieve
adjusted p-values.

Statistics and reproducibility
No statistical method was used to predetermine sample size, and no
data was excluded from the main body of the text. The Investigators
were not blinded to allocation during experiments and outcome
assessment. We utilized all biological replicates available to us where
possible, except in one location specified in the manuscript: when
testing the runtime and memory usage of dcHiC, where having evenly
sized input samples helped make data collection more uniform.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mouse ESC, NPC and CN Hi-C data used in this study are available
in the GEO database under the following accession code GSE96107.
The mouse hematopoiesis Hi-C data used in this study are available in
the GEO database under the following accession code GSE152918. The
single-cell Hi-C data used in this study are available in the GEO data-
base under the following accession code GSE146397. The human LCL
Hi-C data used in this study are available in theGEOdatabase under the
following accession codes GSE128678 and GSE50893. These are also
listed in Supplementary Table S10. All reported compartments for all
cell lines, multivariate differential scores, RNA-seq, and ChIP-seq data
used in this manuscript can be viewed interactively at ay-lab.github.io/
dcHiC. These standalone HTML files employ dcHiC’s visualization
utility through the IGV browser. Source data are provided with
this paper.

Code availability
A Python/R implementation of dcHiC is freely available at https://
github.com/ay-lab/dcHiC or at this DOI: 10.5281/zenodo.725604689.
This application is compatible with Hi-C data in HiC-Pro,.hic, and .cool
formats.
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