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Benchmarking AutoML 
for regression tasks on small 
tabular data in materials design
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Machine Learning has become more important for materials engineering in the last decade. Globally, 
automated machine learning (AutoML) is growing in popularity with the increasing demand for data 
analysis solutions. Yet, it is not frequently used for small tabular data. Comparisons and benchmarks 
already exist to assess the qualities of AutoML tools in general, but none of them elaborates on the 
surrounding conditions of materials engineers working with experimental data: small datasets with 
less than 1000 samples. This benchmark addresses these conditions and draws special attention to 
the overall competitiveness with manual data analysis. Four representative AutoML frameworks are 
used to evaluate twelve domain-specific datasets to provide orientation on the promises of AutoML in 
the field of materials engineering. Performance, robustness and usability are discussed in particular. 
The results lead to two main conclusions: First, AutoML is highly competitive with manual model 
optimization, even with little training time. Second, the data sampling for train and test data is of 
crucial importance for reliable results.

Machine Learning (ML) is applied in materials science for materials property analysis, the discovery of new mate-
rials or quantum chemistry1. However, the application of ML remains a time-consuming effort. Moreover, the 
constant advancement of new ML models makes it difficult to keep up with the latest developments. A solution 
to these issues could be automated machine learning (AutoML), which simplifies the ML modeling process for 
various application domains, including healthcare, engineering or education2. AutoML provides a chance to open 
up ML to non-experts, improving the efficiency of ML and accelerating the research with ML. Overall, AutoML 
is increasingly applied by data scientists. A Kaggle survey from 2021 states that about 58% of data scientists use 
AutoML frameworks, trending upwards3. In addition, data scientists who actively use AutoML encourage more 
widespread application of automated techniques in ML2. The growing adaptation also widens the scope of related 
fields for AutoML. In this respect, explainable artificial intelligence (XAI) is of rising interest to help users to 
interpret the models and results generated by AutoML. However, automation of the data processing pipeline in 
materials engineering is applied only at low automation levels in the definition of Karmaker et al.4. Automation 
is encountered most frequently for hyperparameter optimization5,6 or neural architecture search7. The automa-
tion of data preprocessing, feature engineering or model explainability is hardly covered until now. Looking at 
experimental materials design in particular, a reason for the low spread of AutoML might be caused by frequently 
occurring data characteristics. The benefits and drawbacks of AutoML have been generally discussed in multiple 
benchmarks and reviews, yet, a practical analysis focusing on materials science and its often very small tabular 
datasets is not publicly known.

Two points of view are relevant for the following considerations: a domain specific perspective (“What prob-
lems can be solved with ML in materials design?”) and a technical perspective (“What behavior do AutoML 
frameworks show for small datasets?”). Several recent reviews proposed the use of machine learning for the 
prediction of mechanic, electrical, thermodynamic and other material properties8–13. These studies show the 
specifics and challenges of applying ML in the materials domain. Available datasets are often very small because 
the data points are based on costly experiments. Common features specify material composition and processing 
parameters, and feature types may be numeric or categorical. AutoML has emerged as a simplifying solution 
for repetitive optimization loops in the increasingly complex modeling workflow, displayed in Fig. 1. Hyperpa-
rameter optimization (HPO) was the starting point and still is the topic at the core of AutoML. It culminated in 
ways to deal with what Hutter et al.14 refer to as combined algorithm selection and hyperparameter optimization 
(CASH) problem. There are multiple approaches to solving the CASH problem, Bayesian optimization, genetic 
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programming or heuristics based ones. Until now, AutoML has been extended to also include meta-learning15, 
neural architecture search16 and data preparation17–19 in order to cover more steps of the data processing pipe-
line by a single tool. The highlighted parts of the pipeline in Fig. 1 can be automated and hence be treated as a 
single step in the workflow of materials researchers. Ideally, AutoML reduces time and effort as well as increases 
robustness and reliability throughout the data mining process.

The state of the art on the capabilities of individual AutoML frameworks can be taken from recent surveys and 
benchmarking studies: He et al. provided a thorough discussion in 202120. They identify eight open challenges, in 
sync with earlier reviews21,22. The challenges consist of search space flexibility, a broadening of application tasks, 
interpretability, reproducibility, robustness, joined hyperparameter and architecture optimization and learning 
transferability. Elshawi et al.23 additionally make note of a need for higher user-friendliness, to gain widespread 
acceptance. Robustness, especially the facet that He et al. refer to as a higher modeling resilience in real datasets, 
plays a vital role in this study. In the following, it is intended to contribute to a better understanding of robustness 
in a domain-constrained manner. A noteworthy approach towards more clarity for AutoML robustness is taken 
by Halvari et al.24. They set up an AutoML benchmark with different intentionally introduced data corruptions 
and observe training behavior as well as individual sensitivities for the resulting pipelines. A broader and more 
general evaluation was given by Truong et al.25 containing several AutoML tools and nearly 300 datasets. They 
grouped multiple research questions into segments and discussed the framework behavior for open source and 
commercial tools. Truong et al. use fixed train-test splits and divide datasets with sample sizes above and below 
10,000 samples. Gijsbers26 provided an open-source framework for benchmarking various AutoML Frameworks, 
which is used to compare 39 datasets. A comparison between AutoML frameworks and manual data analysis is 
evaluated by Hanussek et al.27. They encourage the use of AutoML for general purposes, showing that human 
performance is in most cases matched if not surpassed. Although there are detailed framework comparisons, 
a focus on small datasets with sample sizes between 10 and 10,000 data points is still missing. Also missing are 
domain-specific evaluations in general, let alone evaluations in materials engineering. Lastly, thorough discus-
sions of human evaluations as opposed to AutoML based ones are rare.

This contribution addresses three identified gaps. AutoML is evaluated with respect to small dataset sizes, the 
constrained domain and traditional approaches. A variety of datasets from materials engineering is analyzed by 
four different AutoML frameworks. Each of the datasets is related to at least one scientific publication including 
a manual ML analysis, and most contain less than 1000 datapoints. Observation shows that AutoML is applica-
ble and simplifies ML application in materials science. Thereby, AutoML often improves or achieves almost the 
same performance of top state-of-the-art ML applications. The combination of AutoML frameworks proposed 
in this study can further enhance performance. As a substantial contribution, it is shown that robustness and 
trustworthiness of ML models is improved through nested cross-validation (NCV). The implementation of the 
study is provided alongside this publication. It allows to use the four AutoML frameworks in combination in 
an easily extensible way.

The next chapters describe the details in the following order: First, the choice of datasets and AutoML frame-
works is introduced. Second, the implementation strategy is explained before third, a performance comparison 
for the AutoML frameworks is presented. Fourth, the observations and their implications are discussed, and 
lastly, conclusions and future prospects are presented. Framework details and information about data and code 
availability are appended.

Results
To begin with, the datasets that will be used in the remainder of this paper are presented in detail. This is followed 
by an explanation of the selection process for the AutoML frameworks. NCV and the unified data preparation 
are introduced before the actual benchmarking comparison is presented.

Materials engineering datasets.  The criteria for the selection of the datasets were the availability in tabu-
lar format, the existence of at least one publication showing a manual data-mining investigation, the formability 
as a regression task and the affiliation to the domain of materials design. The restriction to tabular data is chosen 
as this is necessary for applying the AutoML frameworks without manual intervention. However, it is important 
to mention that certain tasks in materials engineering (e.g. the majority of MatBench datasets28) need featuriza-
tion of the chemical composition as preprocessing to get a tabular dataset. So far, this preprocessing step has not 
been implemented in any AutoML framework. For this reason, datasets that require featurization have not been 
considered. The restriction to focus only the highlighted steps in Fig. 1 allows to evaluate the possibilities and 

Figure 1.   Data processing pipeline for a typical data mining workflow in materials design, starting with a 
material dataset and ending with model testing. Steps within the highlighted space can be automated by use of 
AutoML tools.
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limitations of what can already be fully automated. Regression tasks are predominantly present in the domain 
of materials design29, which is why an additional restriction was made to just those. Transferability of the results 
to classification tasks is expected due to high similarity of the algorithms. Unsupervised learning is out of scope 
for this study and not further addressed as it would imply an inherently different evaluation workflow. Twelve 
datasets from recent literature as well as public data repositories match these criteria.

As seen in Table 1, the selected datasets vary with respect to the sample and feature size and have up to six 
target properties. They contain experimental data exclusively, which limits the size of the datasets. Only Yin-2021 
contains a few simulated data points. The datasets were grouped into three categories to emphasize different 
sample sizes. Very small datasets contain less than 200 samples, small datasets more than 200 and large with 
significantly more than 1000. The threshold was chosen following Zhang et al.8, so that the scaled error (mean 
absolute error scaled by the value range) is more than 10% for the very small datasets, between 5 and 10% for 
the small datasets and less than 5% for the large datasets. Codenames were given to the datasets in order to allow 
easier referencing. The naming scheme follows the rule “first author dash publication year”, with UCI-concrete 
and Matbench-steels being exceptions given their widespread acceptance under these names.

The selected datasets stem from three different material categories: concrete, metal and fibre reinforced poly-
mers (FRP). The dataset UCI-concrete, assembled by Yeh30, stands out as it has been published in the University 
of California (UCI) machine learning repository since 2007. It was discussed in over 20 publications regarding 
the use of ML for prediction of material properties. Table 2 provides information on the most important pub-
lications in this regard. UCI-concrete is renown for being one of the main reference models for tabular data in 
materials engineering. The features in UCI-concrete are all numerical, representing the composition and age of 
concrete. Other datasets describing composition, age and material properties of concrete aggregates are Atici-
2011, Bachir-2018, Huang-2021 and Koya-2021. For Atici-201131 only the data for ’Model 1’ was fully available 
and used in this study. Bachir-201832 is a dataset investigating the use of rubber as an aggregate in concrete. 
Huang-202133 analyzes the mechanical properties of carbon nanotube reinforced concrete. It contains categori-
cal features that are already encoded. In Koya-202134 the data-mining results from the dataset provided in the 
mechanistic-empirical pavement design guide from the American Association of State Highway and Transporta-
tion Officials35 are presented.

Datasets containing the chemical composition and information about the material manufacturing process 
from the metal domain are Guo-2019 and Hu-2021. Guo-201936 is by far the largest dataset in this study, describ-
ing steels from industrial environments. Hu-202137 considers aluminum alloys. Matbench-steels28 considers only 
the composition of steel alloys, the dataset was first published by Bajaj et al.38. The results and the dataset version 
from the materials benchmark by Dunn et al.28 are used in this study. Another dataset from the metal category 
is Xiong-201439. It describes the relationship between the process parameters in gas metal arc welding and the 
single weld bead geometry for usage in additive manufacturing (AM).

The scope of the Yin-202140 dataset is to characterize the interfacial properties of fibre reinforced compos-
ites based on the material properties of the components and test conditions. The dataset Su-202041 is used for 
the investigation of the interfacial bond strength between concrete and FRP. Two different experiments were 
conducted, thus a distinction as Su-2020-1 and Su-2020-2 is included. Su-2020-1 analyzes the bond of FRP on 
plane concrete and Su-2020-2 analyzes FRP on concrete with a groove.

The datasets show significant differences in the value distribution within the feature space and target variables 
even after normalization. A principal component analysis (PCA) visually highlights the distribution differences. 
A selection of dataset visualizations is displayed in Fig. 2 to represent the conclusions across all datasets. For 
the two rightmost larger datasets, the histograms in Fig. 2a depict a smoother distribution of the target variable. 
However, the targets are not normally distributed even for the largest dataset Guo-2019, which shows three 

Table 1.   Overview of investigated datasets ordered by size and their properties in the published version, the 
large, small and very small datasets are divided by the dashed line categorical features (cat.), interfacial shear 
strength (IFSS), coefficient of thermal expansion (CTE). *Exact train-test-split available.

Alias + Source Domain Targets Size Features Cat. HP. Tuning Train-Test-Split R
2 RMSE

Guo-201936 Steel tensile strength, yield strength, elongation 63162 27 ✗ None 5-fold CV � �

UCI-concrete30 Concrete compressive strength 1030 8 ✗ See Table 2 See Table 2 � �

Yin-202140 FRP IFSS, pullout force 900 11 ✗ Manual 89/11 � ✗

Hu-202137 Aluminum tensile strength, yield strength, elongation 896, 860, 783 27 � GS 80/20 � �

Matbench-steels28 Steel yield strength 312 14 ✗ Automatminer 5-fold NCV * ✗ ✗

Atici-201131 Concrete compressive strength 140 3 ✗ Manual 85/15 � �

Su-2020-241 FRP + concrete bond force-2 136 5 ✗ RS+GS 80/20 � �

Su-2020-141 FRP + concrete bond force-1 122 7 ✗ RS+GS 80/20 � �

Huang-202133 Concrete compressive strength, flexural strength 114 13 ✗ Manual 80/20 � ✗

Bachir-201832 Concrete compressive strength 112 3 ✗ Manual 85/15 � �

Koya-201835 Concrete
compressive strength, Young’s modulus, modulus 
of rupture, split tensile strength, Poision’s ratio, 
CTE

110 10 � Manual 10-fold CV � �

Xiong-201439 AM of steel width, height 43 4 ✗ Manual 72/28 * ✗ ✗
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modes. For the smaller datasets, the data is more sparse. Su-2020-1 shows a significant concentration and some 
outliers. Fig. 2b shows the value distribution of the first two principal components (PCs) for the full dataset. To 
emphasize possible clusters regarding the target variable, the true label (target variable) is encoded in the color 
of the sample points. Additionally, the explained variance from the first two principal components is given as 
an annotation in Fig. 2b. In summary, large datasets are more centered and more evenly distributed than small 
and very small datasets, also showing less outliers.

In all but one studies, hyperparameter optimization (HPO) was used to improve data modeling. The tech-
niques applied were not disclosed (manual HPO), grid search (GS) or random search (RS). The same observa-
tion can be made for studies related to UCI-concrete, for which only two publications hinted at a different HPO 
technique, cf. Table 2. The result of Feng et al.42 is used as reference performance further on since it is the best 
literature result obtained via cross-validation (CV). A noteworthy observation is that recent studies applied 
feature engineering before the modeling process. Han et al.43 constructed several additional features by dividing 

Huang-2021 - 114 samples

40.7% explained variance 73.7% explained variance 44.1% explained variance 26.1% explained variance

Su-2020-1 - 122 samples UCI-concrete - 1030 samples Guo-2019 - 63162 samples

ytilibaborP
2

CP

Small Datasets Large Datasets

high

low

(a)

(b)

Figure 2.   Design space visualisation from chosen datasets. (a) Histogram of one target value normalized 
via standard scaler. (b) Representation of the standardized input feature space for the selected datasets via 
visualization of the first two principal components , the color of the points represents the target value.

Table 2.   Overview of the literature using the UCI-concrete dataset. SVM (Support Vector Machine), GBT 
(Gradient Boosted Trees), BNN (Bagged NN), GBNN (Gradient Boosted NN), WBNN (Wavelet Bagged NN), 
WGBNN (Wavelet Gradient Boosted NN), Regression Forest (RF), Decision tree (DT), Gridsearch (GS), 
Gridsearch + Feature construction (GS+).

Source Year Model Param. Tuning Train-Test-Split R
2 RMSE

Yeh30 1998 Linear Regression Manual 75/25 0.770 N/A

Yeh 1998 Neural Network (NN) Manual 75/25 0.914 N/A

Chou45 2011 SVM Manual 10-fold CV − avg 0.8858 5.619

Chou 2011 GBT Manual 10-fold CV − avg 0.9108 4.949

Erdal46 2013 BNN GS 90/10 0.9278 4.870

Erdal 2013 GBNN GS 90/10 0.9270 5.240

Erdal 2013 WGBNN GS 90/10 0.9528 5.750

Golafshani47 2019 Symbolic Regression Manual 75/25 0.8008 10.6984

Han43 2019 RF + 1 const. Feat. GS+ 50× 90/10 split − avg 0.9322 4.434

Nguyen-Sy48 2020 GBT [XGBoost] GS 10-fold CV − avg 0.93 4.270

Feng42 2020 AdaBoost with DT GS 10-fold CV − avg 0.952 4.856

Chakraborty44 2021 GBT [XGBoost] GS + RFE 90/10 0.979 2.650
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two of the given input features. Furthermore, Chakraborty et al.44 performed a feature selection via recursive 
feature elimination (RFE).

AutoML frameworks.  Tools used in similar benchmarks21,24–27 as well as those mentioned in a low-code 
AutoML review from 202149 were accumulated to an initial set of candidates for use in this study. Several selec-
tion criteria were applied to identify representative candidates. Two task independent design decisions were 
applied at first: Commercial and proprietary tools were excluded to ensure accessibility and transparency. Not 
actively maintained frameworks (without substantial commits or releases within the last year) were excluded 
to ensure actuality. Additional criteria were derived from the tasks used in this study. The two following exclu-
sions are justified by the exclusive use of regression tasks based on small tabular data in this benchmark: Tools 
targeted at unrelated ML tasks (e.g., image segmentation or reinforcement learning) were excluded to ensure 
applicability. Tools with a focus on neural networks and neural architecture search (NAS) were excluded due to 
the required data size. Two of the remaining frameworks, H2O and TPOT, were used in all five, Auto-sklearn 
in four of the above mentioned benchmarks. These were included. Auto-sklearn15 is among the first academic 
tools that is still actively maintained. H2O19 is of interest due to the possibility to run on distributed machines. 
TPOT17 differs from the others by using a genetic algorithm for HPO. Additional promising candidates were 
MLjar, AutoGluon, Polyaxon and PyCaret. Each of these can have individual benefits depending on the area of 
operation (e.g. cloud-integration, low-code focus or permissive licensing), which is out of scope for this research. 
MLjar18 was added to the selection due to a particularly intuitive ML explainability function as well as suppos-
edly good performance in a (not scientifically reviewed) benchmark50.

With the analysis of feature importance, all frameworks offer a minimal entry towards XAI. H2O and MLjar 
offer extended functionality with SHAP values and corresponding plots for further analysis (“Advanced” XAI). 
Information about the used frameworks beyond the condensed comparison in Table 3 is given in the “Methods” 
section.

Implementation and experimental setup.  Several procedures regarding the data and its processing 
were fixed to ensure comparability and reproducibility in this study. First, the datasets were extracted from their 
original publications. Some invertible modifications have been made to use SI units and resolve mixed fractions 
into floating-point numbers. All datasets were saved as CSV files with separate text file descriptors pointing to 
the input and output vector columns. No further data preparation or feature engineering was applied. These 
tasks were deliberately given to the AutoML frameworks as part of automated data preprocessing. A manual 
data modification was only necessary for the Hu-2021. In this case, multiple categories were assigned to a single 
categorical feature. Common encoding strategies would fail otherwise (e.g., one-hot encoding). Second, the 
datasets were handed to an automated training routine to train the AutoML models (see “Methods” section for 
a detailed description of the training routine). For all AutoML frameworks, the training metric was set to R2 . All 
other training parameters were set to default values. Third, the training results were verified and compared to 
the results from the original publications.

All datasets were transformed into single output regression problems, referred to as task. Datasets with mul-
tiple prediction values were trained with separate models for each prediction variable (task). Only input features 
from the corresponding literature were used. Modified codenames were given to the tasks in analogy to the 
abbreviations for the datasets. The naming scheme follows the rule “first author underscore prediction variable”. 
The choice of train and test splits can heavily impact the prediction result, especially for small datasets. Identical 
sample allocations in train and test data are used to compare literature and AutoML results, if available. However, 
as shown in Table 1, not all studies provide the exact sample allocation. The problem was circumvented by the 
implementation of an outer loop via NCV with five folds. For each fold, the train data is used for the combined 
algorithm selection and hyperparameter optimization via CV. The test data from the outer loop is used for the 
performance evaluation. The train-test proportion in the outer loop is adapted to match the settings from the 
original publications. In this way, the problem of unknown sample allocations is addressed by repeating the 
experiment five times with different train-test splits in the outer loop. The aggregated results can be used for an 

Table 3.   Features of the applied AutoML framework.
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estimate of the true predictability. The number of inner folds is set to 10 for all experiments. Compared to the 
simple CV, where the outer loop is omitted and the evaluation is performed on the inner splits, any bias through 
possible data leakage can be eliminated with the NCV51,52. Additionally, the NCV is an appropriate means to avoid 
overfitting and to evaluate the overfitting effect of the HPO53 even though it is more computationally expensive. 
The outer split was initialized with sklearn.ShuffleSplit(seed = 1) for all frameworks.

In terms of hardware, all experiments were conducted on virtual machines, using 8 isolated CPU-cores 
(Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz). The machines had access to 20GB RAM, with RAM not being a 
bottleneck parameter. A macroscopic view on the implementation routine is depicted in Fig. 3. Each framework 
had exclusive access to the hardware during the experiments of 15 and 60 min of training time per dataset and 
cross-validation split.

However, as of Auto-sklearn v0.14.2 an implementation bug was present that required manual reset of the 
framework between runs to free memory. Further noteworthy is that all but one dataset contain only numerical 
inputs. Only Koya-2018 contains categorical inputs. As TPOT cannot handle categorical inputs, it is removed 
from the comparison for the Koya-2018 dataset.

Performance comparison.  As with the sample allocations, identical performance measures in the related 
literature is used for the comparisons. Hence, the results are evaluated with R2 and root mean square error 
(RMSE) for most datasets. Matbench-steels was evaluated with the mean absolute error (MAE) and the Xiong 
tasks with the mean absolute percentage error (MAPE). A normalized expression is used further on to establish 
comparability. The performance scores for comparison across datasets are expressed as relation between the 
AutoML and best literature score, given by

Achieving the same performance as the literature will lead to a relative score of 1. Better performance yields 
a relative score above 1 and worse below 1, for all performance measures.

Four tasks from Koya (coefficient of thermal expansion, Poisson’s ratio, Young’s modulus, split tensile strength) 
were neglected in the evaluation because no valuable model ( R2

> 0.10 ) could be found in the literature or by any 
of the frameworks. Thus, neither the literature nor the AutoML frameworks could find a relationship between 
the features and the labels, indicating that this relationship is not mapped in the dataset.

The results from the single prediction tasks are summarized for an overall comparison between the AutoML 
frameworks and literature results. The outer CV results are aggregated into a boxplot for each framework, their 
mean relative scores for every task is shown in Fig. 4. An ensembled result is shown next to the results of the 
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Figure 3.   Workflow for the evaluation process.
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individual frameworks. This represents the AutoML framework with the highest mean relative score for every 
task.

In general, the difference between the AutoML frameworks is within a relatively small margin. Auto-sklearn 
and MLjar have a median of the mean R2

rel
> 1 for both training times, H2O achieves this only for the 60 min 

training time setting (Fig. 4a). Thereby, Auto-sklearn achieves the best average result, with its median R2

rel
= 1.02 

for a runtime of 15 min. MLjar follows with its median R2

rel
= 1.01 for a runtime of 60 min. TPOT, however, 

achieved a median R2

rel
< 1 for either time setting, but only by a small margin. It is to mention that the longer 

training time of 60 min does not ultimately lead to better performances in this experiment. The results vary 
within a wide range. Each framework may achieve a mean relative score of up to 1.36, all for the task Yin_pull-
out_force (see Fig. 5). Apart from that, some tasks perform considerably worse than the literature reference with 
a mean relative score below 0.6.

For RMSErel , all four AutoML frameworks surpassed the literature results for 15 min as well as 60 min training 
time (Fig. 4b). Auto-sklearn achieved the best result with its median RMSErel = 1.16 , followed by TPOT with a 
median of RMSErel = 1.12 , both with 15 min training time The aggregation over all frameworks best AutoML 
achieved a median of RMSErel = 1.19 for 60 min training time, outperforming all tasks compared to the literature 
except Gou_tensile-strength. The performance gain of the best AutoML compared to the individual frameworks 

Figure 4.   The mean relative scores of the four tested AutoML frameworks and the best AutoML aggregation per 
training time. (a) Mean relative score based on R2 (b) Mean relative score based on RMSE.

Figure 5.   The relative score from the outer splits per task. Relative score means MAErel for Matbench-
steels, MAPErel for Xiong and R2

rel
 otherwise. For Hu and Koya the literature provides a performance range, 

represented by a black “error bar”.
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is significantly greater for the relative RMSE than for the relative R2 . Again, the longer training time does not 
appear to enhance performance of the single frameworks and the results vary within a wide range.

Dataset specific results.  The results for the included tasks are shown in Fig.  5. The x-axis is cut at 
relative score = 0 = 0 for better visualization. The results not shown indicate a negative R2 and imply that no 
valuable model was found.

The results for the very small datasets vary the most over the outer splits from the NCV. The large datasets 
show the least variation. For the small datasets, the results are still mostly consistent. However, Hu_elongation 
and Matbench-steels_yield-strength are an exception, which was for Hu_elongation also detected by Hu et al.37. 
Hu_elongation and Matbench-steels_yield-strength have a spread of the relative score of 0.2 on average and are 
the only tasks from the small datasets with a higher spread, compared to task Atici_compressive-strength with 
the smallest spread of 0.1 on average from the very small datasets. The results for both tasks from Koya-2018 
exhibit the largest variation overall with an average of 1.3 for Koya_modulus-of-rupture and an average of 1.8 
for Koya_compressive-strength. Again, Koya et al.34 identified this behavior in their own research. No varying 
performance is presented for Xiong-2014 as no NCV was applied. Xiong et al.39 provide the exact train test split, 
allowing the comparison of AutoML and manual data-mining on an identical train test split, cf. Fig. 3.

Considering the comparison of AutoML with literature results, AutoML outperforms the manual approaches 
for large and small datasets. At least two AutoML frameworks achieve better median results than the literature 
for all tasks except Gou_tensile-strength, for which the relative scores are very close to 1. Auto-sklearn was able 
to outperform the literature in every task of the large and small datasets, except for Gou_tensile-strength. MLjar 
outperformed all of these tasks except Gou_tensile-strength and Gou_yield-strength. The performance for very 
small datasets varies. The AutoML frameworks did not achieve better median results than the literature consist-
ently. As for the global comparison, the AutoML frameworks match closely in performance on the dataset level. 
No framework had a higher score in all runs than the others. The manual approach was not surpassed by any of 
the AutoML frameworks in three tasks.

The datasets examined show that a large ratio between data set size and number of features (shape ratio) 
generally leads to a better prediction performance, cf. Fig. 6b. However, from a shape ratio above 50, there are 
no longer any significant improvements. Prediction tasks with a shape ratio below 30 were prone to a low per-
formance, as all predictions in this study with a R2

< 0.8 come from those tasks. They also have a larger spread 
in the results, meaning that they are more influenced by the specific train-test splits. These are not strict relation-
ships but rather general tendencies. The shape ratio is a better measure than pure data set size in this aspect, as 
the trend is less clear when focusing only on data set size, see Fig. 6a.

Discussion
The following discussion evaluates several implications of the results. Special attention is drawn to the spread of 
the results. Further aspects are training time, usability and algorithm choices.

Data split dependency.  Some tasks in this investigation showed a heavily varying performance because 
of the different random train-test split in the outer loop of the NCV. This can be seen in the results for the very 
small datasets, Hu_elongation and Matbench-steels_yield-strength. For example, in the task Su_bond-1, the 
performance of H2O for a runtime of 60 min varies between R2

rel
= 1.01 and R2

rel
= −1.66 for the nested cross-

validation. This variation strongly influences the interpretation of the obtained results. For a single train-test 
split, the evaluated performance can under- or overestimate the true performance of the model. Furthermore, 
no information can be gained over the performance stability for different random train-test splits. For the cross-

Figure 6.   The performance R2 of with respect to the dataset size and shape, one box represents all outer loop 
runs of one dataset. (a) R2 over dataset size, the boxes are slightly shifted to avoid overlapping, without affecting 
the interpretation of the graphic. (b) R2 over dataset size divided by number of features.
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validation, it is necessary to provide information about the mean performance and the deviation. Only then it is 
possible to get information about the stability of the performance.

For tasks with a high variance in the performance of differently chosen train-test splits, the training data-
set might not capture enough of the available information. Therefore, the trained models are susceptible to 
overfitting and underfitting, as seen in Yin_pullout-force, or, respectively, do not develop generalizability. This 
problem is more likely to occur with small data sets because the sample size used for the train or test split may 
not adequately represent the underlying distribution, indicated by Fig. 6. There have been many scientific con-
tributions describing the observed high prediction error as a consequence of the used sampling strategy: Some 
researchers state that this behavior is to be expected54 and show that the influence of the sampling will decrease 
with an increasing dataset size52,55. Others discuss mitigation techniques, for example non-parametric sampling56 
or bootstrap variants57. Even though it is a known problem, it is seldom addressed. For the very small datasets 
only Koya et al.34 evaluated this aspect. Reason for this lack of popularity might be given in the hidden avail-
ability in data analysis tools such as scikit-learn (only ordered and random sampling is available in convenience 
function sklearn.model_selection.train_test_split58). Therefore, a thorough comparison between AutoML and 
the manual approach is impossible in this context. However, the observations suggest a cautious application of 
ML and hence AutoML to small and very small data sets. For this, careful selection of training and test data is 
essential. In particular, applying nested cross-validation increases the trustworthiness of the results.

AutoML vs. literature.  The higher mean in the relative R2 scores of Auto-sklearn, MLjar and H2O for a 
runtime of 60 min plus Auto-sklearn and MLjar for 15 min show the potential of modern AutoML frameworks. 
The use of AutoML results in higher mean performance than the manual data mining process. The relative 
scores of the single AutoML frameworks compared to the literature vary a lot between the single tasks. This is 
either due to the fact that the manual data mining process could not obtain an optimal task-specific result or 
due to dataset-specific weaknesses of the AutoML frameworks. Another point that can encourage this behavior 
is the dependency of the performance on the train-test split, which is often not considered in the literature. One 
main reason for AutoML frameworks performing so well is their broad model and hyperparameter space and 
the efficient techniques for optimizing in this large space. Combining the AutoML frameworks (best AutoML) 
can further enhance the relative scores since the model and hyperparameter space are even larger than in the 
individual frameworks. For the mean relative RMSE scores the advantage of the AutoML frameworks is even 
greater than for R2 , which indicate fewer outliers in the AutoML models, as the RMSE is more sensitive to outli-
ers compared to R2 . The observation of the median relative scores leads to the same conclusions as shown here.

AutoML frameworks surpassed most results from the literature. Only Huang_flexural-strength, Huang_
compressive-strength and Gou_tensile-strength were not matched. Huang-2021 is the only dataset where the 
regression of multiple outputs is faced with a multi output approach in the literature. Accordingly, a transforma-
tion to a single output problem was not applied. Multi-output approaches can surpass the performance of their 
corresponding single output approaches, which is shown by Ma et al.59 and Kuenneth et al.60. Relations between 
the targets can provide useful prediction-related information, which is completely ignored with the single task 
method. Using a multi output approach is impossible with the investigated AutoML frameworks since each 
output has to be formulated as a separate task. In contrast, the AutoML frameworks greatly outperformed the 
literature result for the task Yin_pullout-force. This is particularly remarkable as the model selection (gradient 
boosting regressor) did not differ significantly. Yin and Liew40 describe a significant overfitting effect in their 
studies, which is less present in the combined AutoML and NCV approach.

There is no clear trend for any of the literature HPO methods affecting the results. In most of the literature, 
no further details on HPO are presented (manual methods), so the actual effort remains unclear. The AutoML 
frameworks could outperform all literature results that use GS, RS or both. Special attention is to draw at 
Gou_tensile-strength. Here, no HPO was applied in the literature, and the default values of a random forest 
were used. However, no AutoML framework achieved better median results in this task. In contrast, the per-
formance of Auto-sklearn and MLjar for the UCI_compressive-strength task should be highlighted. Although 
many researchers analyzed this dataset with various models, HPO and feature engineering techniques, these 
two AutoML frameworks outperformed the best literature result obtained with cross-validation by Feng et al.42.

Framework comparison.  Comparing the four AutoML frameworks shows that Auto-sklearn is the best 
performing AutoML framework overall, closely followed by MLjar. Particularly remarkable is the unmatched 
performance of Auto-sklearn for the 15 min runtimes. The worse performance of Auto-sklearn with 60 min 
runtimes indicates an overfitting effect. The warm start method used by Auto-sklearn promotes its strong per-
formance in the short training time. This advantage disappears for the training time of 60 min, there MLjar can 
surpass the results from Auto-sklearn. The results of MLjar are the most robust in this study, having the smallest 
gap between quantiles. Nevertheless, no AutoML framework was able to outperform the others consistently. 
Furthermore, every AutoML framework was the best performing framework for at least two tasks in the 60 min 
runtime and at least one task in the 15 min runtime. Each AutoML framework investigates a different model and 
HP space and follows a different approach to solve the CASH problem. Hence, the performance of the AutoML 
frameworks differs depending on the task and data. As a result, for achieving the best performance for a given 
data-mining problem, it is beneficial to run several AutoML frameworks compared to just using one framework. 
This performance gain can be seen in Fig. 4, with the superior performance of the best AutoML best AutoML 
aggregation in comparison to the single frameworks.

Training time.  The extended training time of 60 min does not lead to a significantly increased performance 
of the single AutoML frameworks compared to the training time of 15 min. For Auto-sklearn, the median rela-
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tive R2 and relative RMSE are even higher for the short training time. The performance decrease is related to 
overfitting induced by the HPO. Consequently, runtime needs to be treated as a new hyperparameter. Further-
more, the necessity of the nested cross-validation is strengthened. A similar overfitting is also visible in the 
other AutoML framworks. However, H2O and especially MLjar show some improvements for a longer training 
time, which is justified by a finer search using Grid Search or Random Search as HPO. Nevertheless, a further 
extended training time is not expected to improve the results for the single AutoML frameworks. In contrast, the 
best AutoML aggregation showed an increased performance of the median relative RMSE and consistent per-
formance of the median relative R2 . For the relative RMSE, although no single framework was able to increase 
the performance, the aggregation showed the benefit of this approach. The performance only decreases if none 
of the frameworks achieves the best performance of 15 min training time, and increases as soon as one of them 
can surpass it. Nevertheless, due to the general trend of the individual frameworks, a significant performance 
improvement is not to be expected with a further increased training time for best AutoML.

Model selection.  Despite having similar performances for the presented datasets and their tasks, the 
AutoML frameworks identify different types of models as best performing. Auto-sklearn and TPOT, both built 
upon the sklearn library, found gradient boosting regressors as the best performing model in most cases. Other 
often chosen models for TPOT were also tree-based, in particular XGBoost, extremely randomized trees and 
random forests. For Auto-sklearn the follow-up models were not tree-based: stochastic gradient descent (SGD) 
linear regressor, support vector machine (SVM), Gaussian process regression and Bayesian automatic relevance 
determination (ARD) regression. MLjar found almost exclusively tree-based models as the best performing 
models. Extremely randomized trees was the most frequent, followed by Catboost, XGboost, random forest 
and LightGBM. In contrast, H2O found neural networks as best performing ones. Relevant choices were also 
tree-based, namely gradient boosting machine, XGBoost, random forest and extremely randomized trees. The 
tree-based models show more robust results, with less hyperparameter sensitive spread. Overall, tree-based ML 
models were most frequently evaluated as the best performing models. These were followed by neural networks 
(H2O only) and linear regressors.

Usability.  The usability of the AutoML frameworks is similar and comparable to classic ML frameworks such 
as sklearn or XGBoost. In all four cases the API is well documented. Problems can arise with mutually exclusive 
dependencies, hence isolations are necessary for comparison. All frameworks run on multiple operating systems 
(OS), only Auto-sklearn requires a Unix-based OS. The approach presented in this study solves the compatibil-
ity requirements by the use of docker containers, the provided code contains all necessary configuration files. 
AutoML is very computationally intensive due to the broad optimization space (feature engineering, models, 
hyperparameter). A major drawback for the use in the domain of materials design is the need for tabular data to 
apply the automated workflow shown in Fig. 1. The frameworks do not provide any methods for the featuriza-
tion of non-tabular data, which is quite common in this domain. In addition, TPOT does not support categorical 
encoding, so the automated workflow is not applicable to datasets with categorical features. The XAI methods 
are easy to use for all frameworks. The provided methods are listed in the “Methods” section. MLjar stands 
out with its out-of-the-box prepared reports and offers the richest XAI functionality. However, for all AutoML 
frameworks, using ensembles can limit the explainability of the final models.

Conclusion
In conclusion, a benchmark was set up for four different AutoML frameworks to evaluate twelve datasets from 
the domain of materials design. Part of the study was a comparison between the manual data mining process in 
the literature and the AutoML frameworks. The provided scripts allow for an easy transfer of the used methods 
to additional datasets or AutoML frameworks imposing minimal overhead on the upstream code. The observa-
tions prove the following three points: First, modern AutoML frameworks perform slightly better than manually 
trimmed models on average. This can be achieved with 15 min of training time per data split on a regular grade 
CPU machine. Second, overfitting is an issue for small datasets in this domain, even for AutoML tools. Third, 
the sampling strategy highly effects model performance and reproducibility. The implications are not sufficiently 
considered in most of the evaluated studies. As a result, these findings encourage the use of AutoML in general 
and special attention on the sampling choice. The latter is especially important for very small datasets for which 
a nested cross-validation increases the trustworthiness of the results.

The findings and framework from this study can be transferred to other niches. In addition, its impact can be 
broadened by using a greater variety of tools in the comparison. In terms of usability, an extension to commercial 
tools for automated machine learning seems promising. Also, the search space of hyperparameters and model 
types can be extended. Neural architecture search was not included in this study, yet gets a lot of attention in 
recent years. Lastly, a thorough evaluation of sampling techniques in combination with AutoML frameworks is 
motivated by the observations on the performance fluctuation.

Methods
Central task in AutoML frameworks is solving the CASH problem. The four AutoML frameworks applied in 
this study use different approaches for a solution, described in detail below. Special attention is given to XAI 
characteristics as H2O and MLjar provide additional functionality in this area.

Auto‑sklearn.  The method of Auto-sklearn is described in detail by Feurer et  al.15 and summarized in 
the following. Auto-sklearn consists of three major modules: meta-learning, Bayesian optimization (BO) and 
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ensemble building. It is the only framework considered using BO. In order to overcome the slow start of the 
BO in large hyperparameter spaces, Auto-sklearn offers meta-learning. Meta-learning is intended to persist 
optimization knowledge between optimizations. Pre-training with BO was performed on 140 datasets from the 
OpenML repository and the best models as well as dataset characteristics were stored for each task. This serves as 
an initial knowledge base for further studies. The meta-learning makes use of 38 meta-features, describing data-
set characteristics. The distance to the stored datasets in the meta-feature space is calculated when a new dataset 
is given. The ML models of the n closest datasets (hyperparameter n: initial configurations via metalearning, 
default n = 25) are the starting points for the following Bayesian optimization of the new dataset. Auto-sklearn 
uses the model space given by the sklearn library. The Bayesian optimization is data-efficient in finding the best 
hyperparameters. As a result, it is appropriate for the small datasets considered in this study. However, BO is 
computationally inefficient for the following reason: all but the best model trained during the optimization are 
lost in vanilla BO. There is a lot of redundancy as many models performing almost as good as the best model 
are created. Auto-sklearn utilizes these models by calculating weights for an ensemble selection on a hold-out 
set. Ensembles can increase performance by leveraging individual strengths of weak learners61. In terms of XAI, 
Auto-sklearn uses the scikit-learn inspection module. This module provides access to partial dependence (PD) 
plots and individual conditional expectation (ICE) plots, for example.

H2O.  H2O is an AutoML Framework that relies on fast predefined models, random search and stacked 
ensembles. H2O provides several tools for preprocessing. These include automatic imputation, normalization, 
feature selection and feature extraction for dimension reduction. The search space for models contains gener-
alized linear models, random forests, extremely randomized trees (Extra-Trees), gradient boosting machines 
(GBM) and deep neural networks (multi-layer perceptron). Pre-specified models and fixed grid searches are 
used initially to give a reliable default score for each model mentioned above. A random search within these 
models is performed in a second iteration. The hyperparameters and their range for the pre-specified models, 
the grid search and the random search are predefined upon benchmark tests and the experience of expert data 
scientists. Many models are created within this framework, from which ensembles are built. The ensemble build-
ing is done with the training of a meta learner (generalized linear model) to find the optimal combination of the 
base models. H2O provides an XAI wrapper, which can be applied after the training. It offers PD and ICE plots, 
learning curves and SHAP-values with the corresponding visualizations.

MLjar.  MLjar provides four predefined working modes (explain, perform, compete and optuna) but is also 
highly customizable. It offers intuitively prepared result explanations out of the box. The mode compete was used 
in this study as it aims to find the best performing ML pipeline. The search space in compete contains the follow-
ing models: linear regression, nearest neighbour, decision tree, random forest, Extra-Trees and GBM (XGBoost, 
CatBoost, LightGBM). The MLjar framework is defined by four phases. In the first phase, default ML models 
are optimized with a random search over default predefined hyperparameters. In the second phase, feature 
construction and selection are performed. So-called golden features are created by mutual combination of all 
possible unique pairs of features. The feature selection includes original and golden features. A decision tree is 
trained on these and an additional random feature. The feature importance is determined and all features with 
lower importance than the random feature are dropped. In the third phase, the fine-tuning of the best perform-
ing models is conducted via a random one-factor-at-a-time method. For every model one randomly selected 
hyperparameter is changed in both directions (higher and lower). In the final phase, all models from the previ-
ous steps are used to build an ensemble. The explain mode provides a quick and detailed overview on the dataset, 
by only using default HPO and including all explanation methods. The explanation methods include learning 
curves, SHAP values and dependency plots as well as a tree-visualization for the tree-based models.

Table 4.   Availability of the datasets. Link 1: https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​concr​ete+​compr​essive+​
stren​gth. Link 2: https://​github.​com/​Binbi​n202/​ML-​Data. Link 3: https://​matbe​nch.​mater​ialsp​roject.​org.

Alias Availability open access

Guo-2019 data mendeley36 ✗

UCI-concrete UCI data repository (Link 1) �

Yin-2021 GitHub (Link 2) �

Hu-2021 upon reasonable request ✗

Matbench-steels data repository (Link 3) �

Atici-2011 Paper31 ✗

Su-2020-2 Paper41 ✗

Su-2020-1 Paper41 ✗

Huang-2021 Paper33 ✗

Bachir-2018 Paper32 �

Koya-2018 Paper34 �

Xiong-2014 Paper39 �

https://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength
https://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength
https://github.com/Binbin202/ML-Data
https://matbench.materialsproject.org
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TPOT.  The tree-based pipeline optimization tool (TPOT) is an AutoML framework, which is based on an 
evolutionary algorithm using genetic programming17. TPOT build flexible tree-based pipelines from a series of 
pipeline operators. These operators are various data transformation operators or ML models from the sklearn 
library. The root of every tree-based pipeline starts with one or several copies of the input data. The input data 
is fed into the different available pipeline operators. Every pipeline operator modifies the provided data and 
then passes the resulting data further up the tree. The resulting prediction of the TPOT-pipeline is made when 
the data is passed through the final ML model. TPOT provides a wide range of preprocessing options. Among 
those are feature construction, feature selection, feature transformation and feature combination, but the han-
dling of categorical features is not included. The structure of the tree-based pipeline and the hyperparameters 
of the single operators are optimized via genetic programming. A fixed number (population size) of tree-based 
pipelines is generated at the beginning of the optimization. These pipelines represent the initial generation. They 
are evaluated through the optimization criteria, i.e., the regression or classification score. The score is used to 
select pipelines, which are then randomly changed by a broad set of modifications to create the next genera-
tion. Additionally, the best pipelines of the old generation are transferred to the next generation. This process is 
repeated for a user-defined time or number of generations. TPOT offers no further functionality for XAI aside 
from feature importance.

Data availability
The datasets for the presented study are open access or available from the corresponding author on reasonable 
request, see Table 4 for information on the individual datasets.

Code availability
The experimental setup is available on GitHub: https://​github.​com/​mm-​tud/​automl-​mater​ials.
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