Skip to main content
. 2022 Nov 11;12:19350. doi: 10.1038/s41598-022-23327-1

Table 2.

Overview of the literature using the UCI-concrete dataset. SVM (Support Vector Machine), GBT (Gradient Boosted Trees), BNN (Bagged NN), GBNN (Gradient Boosted NN), WBNN (Wavelet Bagged NN), WGBNN (Wavelet Gradient Boosted NN), Regression Forest (RF), Decision tree (DT), Gridsearch (GS), Gridsearch + Feature construction (GS+).

Source Year Model Param. Tuning Train-Test-Split R2 RMSE
Yeh30 1998 Linear Regression Manual 75/25 0.770 N/A
Yeh 1998 Neural Network (NN) Manual 75/25 0.914 N/A
Chou45 2011 SVM Manual 10-fold CV − avg 0.8858 5.619
Chou 2011 GBT Manual 10-fold CV − avg 0.9108 4.949
Erdal46 2013 BNN GS 90/10 0.9278 4.870
Erdal 2013 GBNN GS 90/10 0.9270 5.240
Erdal 2013 WGBNN GS 90/10 0.9528 5.750
Golafshani47 2019 Symbolic Regression Manual 75/25 0.8008 10.6984
Han43 2019 RF + 1 const. Feat. GS+ 50×90/10 split − avg 0.9322 4.434
Nguyen-Sy48 2020 GBT [XGBoost] GS 10-fold CV − avg 0.93 4.270
Feng42 2020 AdaBoost with DT GS 10-fold CV − avg 0.952 4.856
Chakraborty44 2021 GBT [XGBoost] GS + RFE 90/10 0.979 2.650