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Ensemble machine learning 
identifies genetic loci associated 
with future worsening of disability 
in people with multiple sclerosis
Valery Fuh‑Ngwa1, Yuan Zhou1, Phillip E. Melton1, Ingrid van der Mei1, Jac C. Charlesworth1, 
Xin Lin1, Amin Zarghami1, Simon A. Broadley2, Anne‑Louise Ponsonby3, Steve Simpson‑Yap4, 
Jeannette Lechner‑Scott5 & Bruce V. Taylor1*

Limited studies have been conducted to identify and validate multiple sclerosis (MS) genetic loci 
associated with disability progression. We aimed to identify MS genetic loci associated with worsening 
of disability over time, and to develop and validate ensemble genetic learning model(s) to identify 
people with MS (PwMS) at risk of future worsening. We examined associations of 208 previously 
established MS genetic loci with the risk of worsening of disability; we learned ensemble genetic 
decision rules and validated the predictions in an external dataset. We found 7 genetic loci (rs7731626: 
HR 0.92, P = 2.4 × 10–5; rs12211604: HR 1.16, P = 3.2 × 10–7; rs55858457: HR 0.93, P = 3.7 × 10–7; 
rs10271373: HR 0.90, P = 1.1 × 10–7; rs11256593: HR 1.13, P = 5.1 × 10–57; rs12588969: HR = 1.10, 
P = 2.1 × 10–10; rs1465697: HR 1.09, P = 1.7 × 10–128) associated with risk worsening of disability; most of 
which were located near or tagged to 13 genomic regions enriched in peptide hormones and steroids 
biosynthesis pathways by positional and eQTL mapping. The derived ensembles produced a set of 
genetic decision rules that can be translated to provide additional prognostic values to existing clinical 
predictions, with the additional benefit of incorporating relevant genetic information into clinical 
decision making for PwMS. The present study extends our knowledge of MS progression genetics and 
provides the basis of future studies regarding the functional significance of the identified loci.

Multiple sclerosis (MS) is a chronic neurodegenerative disease typified by the accumulation of disability at 
varying rates1. MS occurs in people who have an underlying genetic susceptibility and are exposed to viral and 
environmental risk factors2. While the individual causes of MS are not known, the development of MS involves 
a complex interplay between genetic and environmental factors, particularly exposure to Epstein-Barr virus 
(EBV)3,4. According to the World Atlas of MS (3rd edition), the number of people living with MS globally has 
increased from 2.3 million people in 2013 to 2.8 million people in 20205,6. There is currently no cure for MS. The 
focus has been to develop strategies and interventions to manage or slow disability progression, and to improve 
the quality of life of affected individuals. Disease modifying therapies (DMTs)7–10 and vitamin D treatments 
(VitD)11–15 are currently the only avenues used to prevent relapses, new brain and spinal cord lesions, and perhaps 
prevent worsening of neurological disability16,17.

Significant progress has been made towards elucidating the role of clinical and environmental factors that 
affects MS disability progression. Particularly, older age, male sex, higher body mass index (BMI), higher num-
ber of previous relapses, exposure to higher latitudes, lower median income, higher depression scores, smoking 
status, higher baseline MRI T2 lesion load (T2L), cerebrospinal fluid (CSF) biomarkers, and neurofilament light 
chains (NFL), have been shown to predict the MS disease time-course to some degree18–25. However, despite 

OPEN

1Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, Hobart, TAS  7000, 
Australia. 2Menzies Health Institute Queensland and School of Medicine, Griffith University Gold Coast, G40 
Griffith Health Centre, QLD 4222, Australia. 3Developing Brain Division, The Florey Institute for Neuroscience and 
Mental Health, Royal Children’s Hospital, University of Melbourne Murdoch Children’s Research Institute, Parkville, 
VIC 3052, Australia. 4Neuroepidemiology Unit, Melbourne School of Population & Global Health, The University of 
Melbourne, Melbourne, VIC 3053, Australia. 5Department of Neurology, Hunter Medical Research Institute, Hunter 
New England Health, University of Newcastle, Callaghan, NSW 2310, Australia. *email: bruce.taylor@utas.edu.au

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-23685-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19291  | https://doi.org/10.1038/s41598-022-23685-w

www.nature.com/scientificreports/

these advances, the disease course remains largely unpredictable26, with considerable inter- and intra-individual 
variability27–30.

There have been notable proponents for no effect of currently known risk variants on MS outcomes after 
onset24,31–36. There is, however, a plausible effect of genetic variants on MS progression, in particular relating to 
the severity of primary inflammation and/or relapses37,38. Nevertheless, the genetic determinants of disability 
progression in MS remain elusive. Although the International MS Genetic Consortium (https://​doi.​org/​10.​1126/​
scien​ce.​aav71​88?​url_​ver=​Z39.​88-​2003&​rfr_​id=​ori:​rid:​cross​ref.​org&​rfr_​dat=​cr_​pub%​20%​200pu​bmed)39 have 
identified ∼ 232 genetic loci to be associated with MS risk, limited studies have been conducted to identify those 
that predict future worsening of disability25,40–43. Additionally, genetic decision rules that can be translated to 
aid existing clinical and environmental prognostic models in identifying MS subjects prone to future worsening 
of disability is not yet available.

Notwithstanding, machine learning models have recently been applied in studies of MS disability progression, 
including standard random forest (RF) and gradient boosting machines (GBM)21,22,30,36,40,44–50. Despite their con-
tinued use in predicting disability, past and recent studies15,16 (not related to MS) have shown that these models 
have (1) limited clinical utility as they rely strictly on a discrete-time evolution of disease processes, meanwhile 
in MS, disability progression is characterised by a continuous-time evolution of expanded disability status scores 
(EDSS)1,9; (2) weak predictive power as they do not account for correlated outcomes51 (e.g. correlation due to the 
sporadic time series of EDSS21,50); (3) lack interpretability as it is difficult to understand how such models make 
prediction decisions52. Based on lessons learned from precision medicine53, RF and GBM are prone to overfitting 
and selection bias as their internal variable-splitting mechanisms often generates variables with too many pos-
sible splits/choices. These models also rely on the property of normality, independent, and identically distributed 
outcomes, which are frequently being violated in real-world clinical applications. In addition to RF and GBM 
classifiers, support vector machines, neural network and deep learning algorithms have similar drawbacks51,53.

Recently, Ngufor et al.51 developed a mixed-effect machine learning (MEML) platform that combined the 
properties of RF and GBM with generalised mixed-effects regression trees (GMERT) to predict changes in gly-
caemic control for patients with Type 2 diabetes. Compared to the RF and GBM, their mixed-effect counterparts 
called MErf and MEgbm, respectively, can learn from complex tree ensembles to produce simple, readable, and 
interpretable risk models to assist in clinical predictions47,51. These models are capable of modeling correlated 
outcomes (random effects) and linkage disequilibrium (LD) structure between genetic variants (single nucleotide 
polymorphisms (SNPs)). Compared to standard methods like RF and GBM, MEML models have been shown to 
have better sensitivities and accuracies in predicting the clinical course of type II diabetes47,51.

Using well-established and validated MS genetic loci (risk SNPs) published by IMSGC (https://​doi.​org/​10.​
1126/​scien​ce.​aav71​88?​url_​ver=​Z39.​88-​2003&​rfr_​id=​ori:​rid:​cross​ref.​org&​rfr_​dat=​cr_​pub%​20%​200pu​bmed)39, 
we aimed to identify MS genetic loci associated with worsening of disability over time; and to develop and vali-
date simple, learnable and interpretable ensemble genetic learning model(s) and genetic decision rules to identify 
people with MS (PwMS) at risk of future worsening. To this end, we investigated three hypotheses namely: (1) 
MS related genetic variants will have additional prognostic values to existing clinical and environmental pre-
dictors; (2) Disability worsening based on EDSS scores follows a first-order Markovian process in which future 
disability is predicated on the prior disability history, and genetic predisposition; (3) MEML models will have 
better sensitivities in predicting future longitudinal changes in EDSS scores compared to standard RF and GBM.

Materials and methods
Data, study cohort, and inclusion criteria.  Using prospective data pooled from the multi-centre (Bris-
bane, Newcastle, Geelong and Western Victoria, and Tasmania) Australian Longitudinal Cohort Study (the Aus-
Long Study (https://​www.​menzi​es.​utas.​edu.​au/​resea​rch/​disea​ses-​and-​health-​issues/​resea​rch-​proje​cts/​the-​auslo​
ng-​study-​of-​facto​rs-​that-​contr​ibute-​to-​the-​devel​opment-​and-​progr​ession-​of-​ms))54 of MS, we analysed 279 
prospectively assessed first demyelination event (FDE) participants enrolled between 2003 and 200655. The Aus-
Long Study (https://​www.​menzi​es.​utas.​edu.​au/​resea​rch/​disea​ses-​and-​health-​issues/​resea​rch-​proje​cts/​the-​auslo​
ng-​study-​of-​facto​rs-​that-​contr​ibute-​to-​the-​devel​opment-​and-​progr​ession-​of-​ms)54 has ethical approval from 
the Tasmanian Health and Medical Research Ethics Committee (ref: H0010499, 01/-5/2009); the Queensland 
Institute of Medical Research Human Research Ethics Committee (ref: P1252, 22/05/2009); the Royal Brisbane 
and Women’s Hospital Human Research Ethics Committee (ref: HREC/09/QRBW/299, 19/10/2009); the Hunter 
New England Human Research Ethics Committee (ref: 09/04/15/5.04, HREC/09/HNE/139, SSA/09/HNE/140, 
10/08/2009); and the Barwon Health Human Research Ethics Committee (ref: BH 09/24, BH 03/46, 04/08/2009). 
All experiments (blood collection, genotyping, and clinical examinations) were conducted in accordance with 
the guidelines of each committee at the participating centres. Written informed consent was obtained from 
all subjects and/or their legal guardian(s) in accordance with the Declaration of Helsinki56. EDSS scores were 
acquired prospectively at intervals up to 15 years post FDE by trained and certified neurologists, and a validated 
telephone EDSS was obtained at yearly computer-assisted telephone interviews from 2 to 3  years post FDE. 
Initial data extraction (n = 279 cases) was done using the revised 2017 McDonalds criteria57 in which cases 
were defined at their last review as either remaining as clinically isolated syndrome (CIS), relapsing-onset MS 
(ROMS), secondary progressive MS (SPMS), or progressive-onset MS (POMS). The selection criteria for the 
final cohort were done as illustrated in Fig. 1.

Genotyping, imputation, and quality control.  The Illumina Infinium Global Screening Array-24 v2.0 
BeadChip was used to genotype DNA samples from AusLong Study participants. Genotypes were called using 
Illumina GenomeStudio software. Strict quality control was conducted according to established protocols58. In 
brief, samples were excluded for three reasons: a call rate ≤ 99%, duplicate discordance, or gender error. Fur-
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ther, variants were excluded based on a call rate ≤ 99% or deviation from Hardy–Weinberg equilibrium with 
p < 1.0 × 10–6. Two principal components analyses were conducted, one excluding HapMap samples to identify 
population outliers, and one including HapMap samples to help interpret the outliers58. To maximise genetic 
coverage, the dataset were imputed using the algorithm implemented in IMPUTE version 459 using 1000 
Genomes phase 360 as the reference genotype panel (GRCh37/hg19). Genetic variants having an imputation 
score ≤ 0.5 and minor allele frequency (MAF) ≤ 0.05 were discarded. For the remaining variants, those that were 
previously identified as being related to MS risk by IMSGC (https://​doi.​org/​10.​1126/​scien​ce.​aav71​88?​url_​ver=​
Z39.​88-​2003&​rfr_​id=​ori:​rid:​cross​ref.​org&​rfr_​dat=​cr_​pub%​20%​200pu​bmed)39 were  extracted (n = 208 of 232 
SNPs) and considered in the association analysis. To be clearer, this study uses the IMSGC (https://​doi.​org/​10.​
1126/​scien​ce.​aav71​88?​url_​ver=​Z39.​88-​2003&​rfr_​id=​ori:​rid:​cross​ref.​org&​rfr_​dat=​cr_​pub%​20%​200pu​bmed)39 
risk SNP list as a reference source to identify MS risk variants that may also contribute to the risk of worsen-
ing of disability.

Imputation of missing EDSS measures.  Imputation of missing EDSS (n = 471 of 3065) was based on a 
Bayesian approach using the JointAI R-package61. Conditional on the observed SNPs genotypes, the EDSS scores 
were considered missing at random. The imputation model is a cumulative logit mixed-effect proportional odds 
model1 defined on 8 disability states (1 = EDSS [0–1.5], 2 = EDSS [2–2.5], 3 = EDSS [3–3.5], 4 = EDSS [4–4.5], 
5 = EDSS [5–5.5], 6 = EDSS [6–6.5], 7 = EDSS [7–7.5], and 8 = EDSS [8–9.5]). Based on the results from previous 
studies23,25,62–65, clinical and environmental factors including sex, age at disease onset,BMI, titre of Epstein–Barr 
Nuclear Antigen IgG (EBNA), smoking status, hospital anxiety depression scores (HADS), and previous EDSS 
scores (EDSSPREV), were used as “analysis variables” to impute EDSS levels, whereas latitude (study site), vita-
min D supplementation status (VitD status), and MS disease course subtype (MSTYPE) were used as “auxiliary 
variables” to inform the imputation of any missing value(s) found in the “analysis variables”. These variables 
were included in the imputation model following their importance in predicting worsening of disability25. In the 
cumulative logit mixed model, we posit that

where yij is the EDSS level for subject i  at visit j , γk are 7 intercepts representing the levels of EDSS 
( i.e., k = 2, . . . , 8 ), ZT

ij  is a fixed-effect design matrix containing the clinical and environmental covariates includ-
ing time-varying effects (BMI, HADS, VitD status, and MSTYPE), with a corresponding vector of fixed effects 
regression coefficients β ; and ζTij  is a design matrix containing random effects, bi are random deviations from 
the overall intercepts γk ; µy and σ 2

γ  are hyperpriors61.

(1)logit
(

P
(

yij > k
))

= αk + ZT
ij β + ζTij bi , k ∈ 1, . . . ,K ,

γ1, δ1, . . . , δK−1 ∼ N
(

µγ , σ
2
γ

)

,

µy ∼ N(0, σu),

σ 2
γ ∼ Ŵ(ε, ε)),

γk ∼ γk−1 + exp
(

δk−1

)

, k = 2, . . . ,K ,

Figure 1.   A flow chart of AUSLONG data extraction and case selection criteria.
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Outcome measures, analysis endpoint, and data structure.  Based on the study design, a first-order 
Markov’s assumption for continuous-time EDSS transitions was considered1,66–68, and defined as: “the current 
EDSS state (EDSS score) depends on the previous states (EDSSPREV), and all covariate histories”. In other 
words, using 8 categories (listed above) of the newly imputed EDSS score, we considered a continuous-time 
evolution for each disability state, wherein the state at the previous observation is retained until the current visit. 
Note that an observation may also represent a transition to a different state before arriving at the current state, 
or a repeated observation of the same underlying state at the end of follow-up.

Using these assumptions, we transformed the data and defined our clinical endpoint to capture continuous-
time transitions in disability states as: y = 1 denoting “worsening” events (transitions from a lower to a higher 
disability state) made by an individual from study entry, and y = 0 denoting “improved” events (transitions 
from a higher to a lower disability state). All stable-state transitions or stable disease (no change in EDSS) were 
excluded as these were considered non-informative censoring events, and could lead to likelihood drainage, and 
potentially alter the results. Therefore, only informative (“improved”) events were censored. The event status for 
the i th subject at the j th visit was defined as

Since individuals entered the study at different times, we defined the time-to-worsening of disability as the 
time to switch disability states. Specifically, it is the continuous time elapsed since MS diagnosis until the current 
observation. This was achieved using the “msm2Surv” function in mstate R-package69. To enable comparison of 
baseline hazards, the start time for all cases was set to zero at study entry.

Statistical analysis.  All statistical analyses were conducted before (after) imputation of EDSS, respectively. 
To identify risk SNPs that predicted the time-to-worsening, and/or associated with future worsening events over 
time, a three-stage process was employed.

Stage 1: variable selection, risk estimation, and prognostic modeling.  Variable selection.  We 
randomly split the genotype data into 75% training (n = 202), and 25% test cohorts (n = 67) as depicted in Fig. 2. 
Utilising the training cohort, we first performed a global test to examine the added prognostic values of all 
SNPs ( n = 208) that passed the QC stage using the Goeman’s “globaltest” R-package70. Specifically, we tested the 
hypothesis ( H0 : β1 = β2 =, . . . ,β208 = 0 versus Ha : β1 �= β2 �=, . . . ,β208 �= 0 ) of no additional prognostic 
values of MS related genetic variants on the risk of worsening, conditional on the effects of clinical and environ-
mental modifiers of disease (mentioned above). The significance level for this test was set to p < 0.0571. Following 
the global test results, we applied three widely used penalised multivariable Cox models namely: least absolute 
shrinkage and a selection operator (LASSO), elastic net (ENET), and non-negative garrotte combined with sure 
independent screening (NNG-SIS), with tenfold cross-validation (CV) to select important SNPs. Because a SNP 
can affect one or multiple EDSS transition steps with effects in different directions, we added interactions with 

yij =

{

1, if worsening events,

0, otherwise
.

Figure 2.   Outline of ensemble learning, and genetic risk prediction model construction. PT progressive 
transitions (“worsening” events); RT regressive transitions (“improved” events).
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EDSSPREV. Utilising the training cohort, LASSO and ENET were fitted using the Goeman’s penalised R-pack-
age72, and NNG-SIS using customised survival functions73. SNPs having zero effect sizes were discarded.

Risk estimation and prognostic modelling.  For the remaining SNPs selected across LASSO, ENET and NNG-
SIS, a time-dependent multivariable Cox model with backward elimination (α = 0.05) was further employed to 
identify candidate SNPs8. This was achieved using the “mfp” R function74. Unbiased effect sizes for the candidate 
SNPs were then estimated in a random effects Cox model using the “coxme” R function75. In the Cox model, we 
posit that

where �(.) is the hazard function for the i  th subject at time t  , �0 is an unspecified baseline hazard function; 
XT
i  is a fixed-effects design matrix containing SNPs dosages (including interactions with EDSSPREV), with a 

corresponding vector of fixed-effects regression coefficients β ; ζTi  is a design matrix of random effects, with a 
corresponding vector of random effects estimates b ; and θ is the variance of the random effects. Note that the 
random components are subject identifiers nested within MSTYPE.

Stage 2: constructing genetic risk ensembles.  To classify PwMS according to their disability status, 
we trained widely used RF and GBM models using the candidate genetic variants selected from stage 1 and 
compared their performance with MErf and MEgbm. The time-dynamic area under the receiver operating char-
acteristics curve (AUC) was used to assessed model performance. This was achieved using internal and external 
fivefold cross-validation on the training cohort. That is, we split the entire training cohort into dynamic lagged 
training and internal validation sets (Fig. 2), such that predictors in the current visit were used to predict out-
comes in the next visit51. The prediction model is a mixed-effects logistic model with random intercepts (subject 
identifiers nested within MSTYPE), and random slopes (random time effects). Next, mixed-effects logistics deci-
sion trees were constructed, and genetic decision rules were extracted using the “inTrees” (interpretable trees) 
algorithm in the MEml R-package51. To ensure non-redundant rule sets, we selected all rules of length between 2 
and 5, with frequency < 0.01, and error < 0.25 in predicting future worsening events. In the mixed-effects logistic 
model used to classify MS subjects, we posit that

where yij is the event status for the i th subject at the j th time point; b0i are random deviations from the overall 
intercept (bias term) β0 ; b1i are random deviations from the overall slope β1 , while � is the variance–covariance 
matrix for the random effects. β1 is the regression effect of the observation time ( tij ) since diagnosis; XT

i  is a fixed-
effect design matrix containing SNP dosages (including interactions with EDSSPREV), with a corresponding 
vector of fixed-effects regression coefficients δ.

Stage 3: validation of the ensembles and their prediction rules.  To evaluate the ensembles and the 
generated decision rules obtained in stage 2, we assessed externally the performance of the ensembles on the test 
cohort. Time-dynamic ROC (receiver operating characteristic curves) analysis was used to assess how well each 
model predicted future worsening events. The importance of the SNPs and their genetic decision rules in pre-
dicting future worsening of disability was estimated and evaluated on the training and test cohorts, respectively. 
We prioritised SNPs based on average Gini impurity and relative influence; and by their deleteriousness in the 
human genome using combined annotation dependent depletion (CADD) scores76.

Functional annotation and gene enrichment analysis.  Utilising the candidate prognostic variants, 
functional annotation and gene enrichment analyses were further conducted using the FUMA software as per 
the online manual77. The following parameters were used to further identify independent lead SNPs: maximum 
p-value for lead SNPs < 0.05, maximum p-value for annotation < 0.05, r2-threshold to define LD structure of lead 
SNPs ≥ 0.6, MAF ≥ 0.01, and maximum distance between LD blocks d < 250 kb. Because the raw p-values were 
derived from a multivariable analysis, p < 0.05 was used as the threshold cut-off.

(2)�i(t|x, b) = �0(t)exp
(

XT
i β + ζTi b

)

,

b ∼ N(0,�(θ)),

yij ∼ Bern
(

µij

)

, yij =

{

1, if worsening status
0, otherwise

,

(3)logit(
µij

1− µij
) = (β0 + b0i)+ XT

i δ + (b1i + β1tij),

b0i , b1i ∼ N(0,�), j = 1, . . .mi , i = 1, . . . ,N ,

N
∑

i=1

mi = 2786;N = 269,
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Results
We analysed a total of 269 FDE cases with 2786 EDSS transitions, with subsequent diagnosis as ROMS (n = 149), 
POMS (n = 12); SPMS (74), while 34 remained as CIS by the 10th year review. Of these, 76.8% (n = 205) were 
females, and the mean age at study entry was 37.5 years (SD = 9.9 years). Of the initial 279 cases (Fig. 1), 10 cases 
(seen once) were excluded from the analysis.

Transition probabilities before and after EDSS imputation.  The distribution of the transition per-
centages before and after EDSS imputation are shown in Table 1. We observed 11.4% (11.7%) transitions from 
the first state of disability (EDSS 0–1.5) into the second state of disability (EDSS 2–2.5) before (after) EDSS 
imputation, respectively. There were fewer transitions to and from extreme disability states (see zero entries on 
Table 1). A total of 516 transitions were made from state 1 (EDSS 0–1.5) into higher disability states. Addition-
ally, PwMS were more likely to stay in a particular state of disability than to progress from it. For instance, the 
observed probability to stay in state 1 is 0.52, whereas the observed probability to stay in state 8 (EDSS 8–9.5) is 
0.75. These probabilities were predicted a posteriori to be 0.40 and 0.50, respectively, after imputation. It is perti-
nent to note that the predicted posterior probabilities depend solely on the effects of clinical and environmental 
predictors (the “analysis variables”) included in the imputation model.

Transitions at lower disability states (1, 2, 3, 4 & 5) were more frequent than transitions at higher levels of 
disability (6, 7, & 8). Additionally, previous disability states (EDSSPREV) were key determinants of future states, 
and thus satisfies the first-order Markov’s process described above (see Web Appendix A1). Overall, all variables 
in the imputation model were imputed with high accuracy judging from Gelman-Rubin’s diagnostic criteria (GR-
crit ≤ 1.1, Web Appendix A1), the density plots and the mixing rates of the Markov chains (Web Appendix A2).

Identification and annotation of candidate genetic effects.  After quality control, 208 of the 232 list 
of MS risk loci from the IMSGC (https://​doi.​org/​10.​1126/​scien​ce.​aav71​88?​url_​ver=​Z39.​88-​2003&​rfr_​id=​ori:​rid:​
cross​ref.​org&​rfr_​dat=​cr_​pub%​20%​200pu​bmed)39,60 (including rs3129889 that tags HLA-DRB1*1501 genotype) 
were extracted from our AusLong database. The global test for the null hypothesis of no additional prognos-
tic values of all 208 genetic variants given the effects of the clinical and environment predictors was rejected 
(Z-score = 0.212, p = 7.95 × 10–15). Following this result, all 208 SNPs were included in stage 1. The number of 
genetic variants that resulted from the screening methods is presented in Fig. 3a. A total of 147 genetic variants 
(including interactions with EDSSPREV) were selected across LASSO, ENET, and NNG-SIS, respectively. Nota-
bly, LASSO and ENET produced very similar results within tenfold CV on the training cohort, whereas NNG-SIS 
identified 86 unique associations. Of the 147 genetic variants (Fig. 3a) selected across the penalised Cox models, 
28 candidates (p ≤ 0.05) were retained in the final prognostic model. Positional and eQTL mapping revealed that 
these SNPs were in close proximity to 33 unique genes. We obtained identical results with (without) imputation 
of EDSS, respectively. However, the imputed model performed slightly better (AIC = 10,271.97) than the model 
without EDSS imputation (AIC = 10,272.26, Web Appendix C3). Table 2 shows results for the imputed model 
obtained with 28 candidate variants.

The volcano plot (Fig. 3b) reveals 12 SNPs having p-values below the family-wise threshold (p = 0.002). Most of 
these had minor allele frequencies > 10%. We observed 73% and 63% differences in individual progression rates, 
and progression rates due to MSTYPE, respectively (intra-class correlations). The proportion of total liability 
attributable to the 28 candidate variants at the individual level was 0.47. Further, the proportion of total liabili-
ties conditional on MSTYPE were: 0.49 (CIS), 0.43 (ROMS), 0.36 (SPMS), and 0.42 (POMS). Note that MSTYPE 
liability estimates can be influenced by group size. Functional annotation and gene enrichment analysis using 
FUMA software77 revealed 7 lead SNPs (rs12211604, rs7731626, rs55858457, rs10271373, rs11256593, rs12588969, 
rs1465697), some of which were located near, or tagged to one of 13 genes enriched in peptide hormones and 
steroids biosynthesis, respectively (Web Appendix B).

Table 1.   EDSS transition percentages (%) before (after) imputation. The EDSS levels were categorised into 
disability states as: 1 = EDSS (0–1.5), 2 = EDSS (2–2.5), 3 = EDSS (3–3.5), 4 = EDSS (4–4.5), 5 = EDSS (5–5.5), 
6 = EDSS (6–6.5), 7 = EDSS (7–7.5), 8 = EDSS (8–9.5). Zero entries on the table represents rare transitions.

Number of MS subjects = 269, number of transitions before(after) imputation = 2029 (2786)

To state

From state 1 2 3 4 5 6 7 8 Total

1 51.7 (39.8) 11.4 (11.7) 14.9 (17.5) 18.6 (24.9) 2.7 (4.9) 0.6 (1.2) 0 (0) 0 (0) 516 (691)

2 13.3 (13.6) 40.5 (32.3) 15.0 (12.3) 25.1 (26.8) 4.9 (9.0) 1.4 (5.9) 0 (0) 0 (0) 346 (455)

3 18.8 (21.4) 12.8 (13.8) 44.6 (37.2) 17.0 (18.3) 5.4 (5.4) 1.2 (3.6) 0 (0) 0.3 (0.2) 336 (443)

4 14.4 (20.8) 15.1 (14.7) 12.4 (13.0) 46.0 (39.5) 9.6 (9.3) 2.4 (2.6) 0 (0) 0 (0) 450 (645)

5 7.7 (14.9) 8.8 (9.7) 6.6 (8.9) 14.4 (16.0) 48.9 (37.2) 12.6 (13.0) 0 (0) 0.5  (0.4) 182  (269)

6 0.5 (1.5) 0.5 (5.0) 0 (4.2) 5.9 (9.7) 8.1 (8.5) 81.7 (66.0) 1.6 (3.1) 1.6 (1.9) 186 (259)

7 0 (0) 0 (0) 0 (0) 0 (0) 0 (16.7) 80.0 (58.3) 20.0 (8.3) 0 (16.7) 5 (12)

8 0 (0) 0 (0) 0 (0) 0 (8.3) 0 (8.3) 0 (8.3) 25.0 (25.0) 75.0 (50.0) 8 (12)

https://doi.org/10.1126/science.aav7188?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
https://doi.org/10.1126/science.aav7188?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
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Figure 3.   (a) Number of genetic variations shared among tenfold CV by variable selection methods. 
(b) Volcano plot significance of SNPs in the multivariate prognostic model. Statistical significance at the 
multivariate cut-off level is − log10(α = 0.05) = 1.30 (grey dash-lines), family-wise error rate at − log10(α = 
0.05/28) = 2.75 (grey solid-lines).

Table 2.   A genetic ensemble model for predicting disability progression in multiple sclerosis. Transition-
specific SNPs have superscripts γ(.) indicating their interaction with previous EDSS levels (EDSSPREV). The 
disability states based on previous EDSS levels are define by the parameters: γ1 : state = 1;γ2 :state = 2;  γ3 :
state = 3,γ4 :state = 4, γ5 :stage = 5,γ6 :state = 6,γ7 :state = 7,γ8 :state = 8.

SNP CHR POS Alleles Region Nearest Gene P-value HR β SE avIMP CADD

rs61863928γ 7 10 64,449,549 G/T Exon ADO 1.2e−04 0.94  − 0.07 0.02 1.00 15.36

rs12722559 10 6,070,273 C/A Upstream IL2RA 6.1e−04 0.90  − 0.11 0.03 0.94 6.50

rs4808760 19 18,301,979 G/C Upstream IL12RB1 3.8e−02 0.93  − 0.07 0.03 0.86 8.82

rs9277626 6 33,081,823 G/A Exon DPB2 2.2e−03 0.94  − 0.07 0.02 0.85 9.03

rs12434551 14 69,253,364 A/T Exon ZFP36L1 4.0e−02 1.07 0.07 0.03 0.85 2.39

rs7260482 19 45,143,942 A/C Exon PVR 1.3e−01 0.91  − 0.10 0.06 0.85 1.15

rs12588969 14 103,230,758 C/G Exon RCOR1 2.1e−10 1.10 0.09 0.01 0.84 15.09

rs6032662 20 44,734,310 C/T Exon SLC12A5 9.3e−02 1.11 0.10 0.06 0.84 5.67

rs11256593 10 6,117,322 T/C Upstream IL15RA 5.1e−57 1.13 0.12 0.01 0.84 1.28

rs802730 6 128,280,104 T/C Exon THEMIS 1.1e−02 1.06 0.06 0.02 0.83 11.86

rs962052 2 151,644,203 C/T Exon RBM43 9.7e−02 1.07 0.07 0.04 0.83 3.37

rs1465697 19 49,837,246 C/T Upstream DKKL1 1.7e−128 1.09 0.09 0.00 0.83 2.10

rs2590438 3 187,565,968 T/G Exon BCL6 3.6e−03 1.09 0.09 0.03 0.83 1.45

rs1801133 1 11,856,378 A/G Missense MTHFR 1.7e−02 0.94  − 0.06 0.03 0.80 25.6

rs11852059 14 52,306,091 A/C Upstream FRMD6 8.8e−02 0.93  − 0.07 0.04 0.80 5.06

rs531612 11 65,705,432 C/T Exon EHBP1L1 3.0e−02 1.08 0.08 0.04 0.80 0.13

rs12925972 16 79,111,297 C/T Intron DYNLRB2 6.6e−04 1.09 0.09 0.03 0.79 8.26

rs1177228 2 61,242,410 G/A Upstream PUS10 4.1e−03 1.09 0.09 0.03 0.79 0.08

rs2286974 16 11,114,512 G/A Exon CLEC16A 8.5e−02 1.11 0.11 0.06 0.77 0.43

rs2705616 4 87,862,396 G/C Intron AFF1 2.3e−04 0.89  − 0.11 0.03 0.76 3.36

rs58166386 19 16,559,421 G/A Intron EPS15R 1.5e−04 1.08 0.08 0.02 0.75 0.14

rs10271373 7 138,729,795 C/A UTR-3 ZC3HAV1 1.1e−07 0.90  − 0.10 0.02 0.74 10.90

rs72989863 4 164,493,807 G/A Intron MARCH1 4.1e−03 1.07 0.07 0.02 0.73 0.24

rs55858457γ 5 7 2,443,302 G/T Upstream CHST12 3.7e−07 0.93  − 0.07 0.01 0.71 2.06

rs12211604 6 7,100,029 A/G Upstream RREB1 3.2e−07 1.16 0.15 0.03 0.63 0.05

rs6533052γ 3 4 103,911,781 A/G Upstream SLC9B1 4.4e−03 0.95  − 0.05 0.02 0.62 2.12

rs7731626γ 2 5 55,444,683 G/A Intron ANKRD55 2.4e−05 0.92  − 0.08 0.02 0.50 1.37

rs6589939γ 4 11 122,518,525 A/G Intron UBASH3B 3.0e−02 0.93  − 0.07 0.03 0.41 1.39
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Interpretation of the validated ensembles.  MErf and MEgbm had the highest accuracies in the train-
ing and testing cohorts (Web Appendix C1) and are best suited to describing subject characteristics that influ-
ence disability progression over time. Particularly, as the number of repeated observations increased with time, 
we observed better performance using MErf and MEgbm (Web Appendix C2), whereas the performance of RF 
and GBM deteriorated. Although all ensembles used identical marker sets, the increased performance observed 
with MErf and MEgbm indicated that these methods take advantage of the increasing sample size and cor-
relation induced by multiple observations within a subject to yield more robust models. Overall, the ensem-
ble-derived predicted disability worsening outcomes correlated well with the observed outcomes in both the 
training (r = 0.90, p = 2.2 × 10–16) and testing (r = 0.86, p = 2.2 × 10–16) cohorts, respectively (Fig. 4). Additionally, 
we found consistent results conditional on MS disease course phenotype (Fig. 4). Figure 5 shows the relative 
importance scores (scaled 0 to 1) in predicting disability, with significant changes observed over time. Notably, 
none of the top 7 SNPS have been shown to have a functional role in MS disability accrual, although likely to 
have plausible biological effects.

Interpretation of genetic decision rules.  MEgbm and MErf ensembles produced identical sets of deci-
sion rules constructed using the 28 SNP candidates. Figure 6 shows a decision tree of the top genetic decision 
rules extracted from both methods (shown for the first 4 visits). The importance of these rules in the training 
and testing cohorts are shown at the end of the leafs at each visit. These rules indicate how frequent the indi-
vidual ensembles decision trees combine a set of influential genetic variants among the 28 candidates to make 
prediction decisions regarding future disability status for a person living with MS. For instance, during the first 
clinical visit, the MErf ensemble uses 2 (rs9277626 and rs7731626) of the 28 SNPs candidates to correctly classify 
subjects of different MS subtypes in the training cohort prone to future worsening of disability (score = 100%), 
given that they were previously in state 2 (EDSS 2–2.5). The average time to transition from state 2 into higher 
disability states was 346.8 days. This rule was applicable to 96% of MS subjects in the testing cohort (Fig. 6).

Discussion
In this study, we identified 28 significant MS genetic loci associated with risk of worsening of disability over time. 
We showed that these loci had additional prognostic values when combined with clinical and environmental 
predictors. To predict disability worsening outcomes, we developed and validated simple, learnable, interpretable, 
and robust ensemble genetic machine learning models. Using the derived ensembles, genetic decision rules were 
constructed to identify PwMS prone to future worsening of disability. Future disability states were significantly 
influenced by prior disability histories. Additionally, we showed that the derived ensembles, especially MEgbm 

Figure 4.   Predicting future disability progression. Correlation between the observed and predicted probability 
of worsening events stratified by MS phenotype in the training (a) and test cohort (b).
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Figure 5.   Ranking of genetic markers by 2 methods (a) MErf and (b) MEgbm. These curves shows the relative 
importance of genetic variants in predicting worsening of disability over time. Each line on the plot is a genetic 
marker. The color of the lines matches the color of the genetic variants. From left to right, the importance of a 
genetic marker in predicting worsening events changes over time (clinical visits).

Figure 6.   Genetic decision rules for predicting future worsening of disability for PwMS. These rules indicate 
how the MErf ensemble model combines allele dosages from a set of influential genetic variants amongst the 
28 candidates SNPs to make prediction decisions regarding future disability. Each rule indicates the expected 
EDSS transition time conditional on the effects of genetic variants, MS disease course (MSTYPE), and previous 
disability histories (EDSSPREV). Only rules for the first four visits have been shown.
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and MErf, had better sensitivities and accuracies in predicting worsening outcomes over time. Despite these 
findings, there is little current knowledge on the functional implications of the identified associations.

Different estimates of the variance in disability progression explained by MS related genetic variants have been 
reported in previous studies33,40,41,43,78–80. For instance, using 125 early MS cases with 5 years of follow-up from 
our cohort, Pan et al.41, constructed a genetic risk score from 7 of 116 MS risk variants39,60 to explain 32.7% of the 
variance in annualised EDSS, but did not validate their findings externally; whereas Jackson et al.40, developed 
a RF-based genetic model on MS disease severity scores (MSSS) which included 19 of ~ 200 autosomal SNPs39,60 
to explain 21% of the variability in MSSS, with just 4% chance of validating their results externally. However, 
it is unclear how these models make prediction decisions and/or account for correlation induced by repeated 
EDSS measurements within a subject. Moreover, the AUC used to assess the performance of these models was 
fixed rather than time-dynamic, as would be expected given the dynamic nature of EDSS transitions. Therefore, 
a common drawback to these studies is not the variability explained, but rather the utility and reliability of the 
identified associations and the derived predictions in clinical practice.

In our study, we made a considered and clinically plausible Markov’s assumption (i.e., that future disability 
is predicated on the prior disability history) to study MS disability progression process in continuous time. We 
employed robust MEML ensembles to predict future disability worsening outcomes. Of the 28 common MS risk 
loci identified, 7 were independent non-functional SNPs having the greatest effects on worsening outcomes. 
However as with MS risk, it is very difficult to provide actual biological mechanisms for the identified SNPs asso-
ciations, other than just non-specific genetic markers of disability progression. For instance, the SNP rs12211604 
is located on chromosome 6, upstream of the promoter region of the RREB1 gene. The RREB1 gene is widely 
involved in biological processes including cell proliferation, transcriptional regulation, and DNA damage repair51. 
Specifically, it encodes a zinc finger transcription factor that binds to RAS-responsive elements (RREs) on the 
calcitonin gene promoter, thereby increasing calcitonin expression81,82. In order to ensure proper nerve cell func-
tion, and smooth muscle contractions, the calcitonin hormone lowers blood calcium levels48. However the effect 
of the rs12211604 variant on RREB1 gene expression levels has not been investigated to date.

Instead of relying on the complex predictions generated by the MEML ensembles to make prediction deci-
sions, here we presented simple, readable, and transparent relational rules sets that could be translated to aid 
existing clinical predictions21,44,48,50, or clinical research studies. This can be achieved via a web application deliv-
ering equal prediction accuracy as the original ensemble. Clinicians could use these rules (provided genotyping 
was available) alongside recent clinical predictions21,44,48,50, and identify PwMS at greater risk of disability accrual 
in the short and medium term, and institute more aggressive MS therapies where indicated25. For instance, during 
the first clinical visit (Fig. 6), a person with MS having 2 alleles for rs12722559 and ≥ 1 allele for rs4808760 has 
a faster rate of disability accrual (expected time of transitioning is ~ 33 days), compared to some one having ≤ 1 
allele for rs10271373 and > 1 allele for rs12434551 (expected time of transitioning is 270 days). Further, incorpo-
rating recently established clinical biomarkers such as brain MRI T2L load, baseline blood CSF parameters18,19 
and NFL18,20; and disease modifiable risk factors such as VitD treatments and type of DMT use7–10, will enhance 
the clinical utility of these decision rules. Additionally, combining the effects of the 28 variants into a standard 
polygenic risk score (PRS) may further improve the predictive accuracy of the derived ensembles. However, it is 
important to note that prognostic decisions based on PRS will lead to loss of information and interpretation83,84 
of the individual SNP-based genetic decision rules.

The strengths of this study lies in the assumptions we made regarding the underlying disability process in 
MS (defined above), and the use of novel machine learning platforms capable of analysing the longitudinal 
changes in EDSS scores. By analysing the continuous-time evolution of EDSS transitions, the total genetic 
liability in progression rates attributable to the 28 candidate variants was substantially increased compared other 
studies24,31–36,40,41,43,80. In particular, the high intra-class correlations between the observed and ensemble-derived 
predicted probabilities of worsening revealed a good fit to the model. The obtained p-values for these correlations 
(all p ≤ 5.2 × 10–10) were far smaller than recently reported40,80, suggesting a near 100% chance of replicating our 
results in an external MS cohort.

Nevertheless, we recognise limitations in our study. For instance, our genetic ensemble lacks genome-wide 
coverage, and epistatic interactions amongst the MS genetic loci used. A genome-wide analysis to further iden-
tified novel SNPs associations which are not MS related, could be a fruitful area of future research. Similarly, 
we lack an external validation cohort (an external MS population) that matches our prospective, data dense 
AusLong cohort with genotyping available. Thirdly, as emphasised, the genetic variants utilised here do not have 
any established biological effect making it difficult to elucidate the actual mechanisms underlying MS progres-
sion from these data.

In conclusion, our study provides a simple, learnable, interpretable, and robust ensemble genetic machine 
learning model(s) that aggregates association evidence from 28 candidate MS risk loci to predict future worsening 
of disability in PwMS. Our ensembles provided genetic decision rules which could be translated to provide addi-
tional prognostic values to existing clinical prediction models21,44,48,50, with the additional benefit of incorporating 
relevant genetic information into clinical decision making for PwMS. Finally, modeling the continuous-time 
evolution of EDSS increased the variance in disability progression that is genetically determined.

Data availability
The Auslong SNP genotype datasets generated and/or analysed during the current study are available in dbGaP 
under study Accession: phs000139.v1.p1. Direct access to the Auslong phenotype data can be obtained from the 
AusLong Investigators Research Group (https://​www.​msaus​tralia.​org.​au/​ausim​mune/) through the correspond-
ing authors BVT. 

https://www.msaustralia.org.au/ausimmune/
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