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Collective genomic segments with
differential pleiotropic patterns between
cognitive dimensions and psychopathology

Max Lam 1,2,3,4,5, Chia-Yen Chen6, W. David Hill7, Charley Xia7, Ruoyu Tian8,
Daniel F. Levey 9,10, Joel Gelernter 9,10,11,12, Murray B. Stein 13,14,15,
Alexander S. Hatoum16, Hailiang Huang3,4, Anil K. Malhotra1,2,17,18, Heiko Runz6,
Tian Ge3,19,20 & Todd Lencz 1,2,17,18

Cognitive deficits are known to be related to most forms of psychopathology.
Here, we perform local genetic correlation analysis as a means of identifying
independent segments of the genome that show biologically interpretable
pleiotropic associations between cognitive dimensions and psychopathology.
We identify collective segments of the genome, which we call “meta-loci”,
showing differential pleiotropic patterns for psychopathology relative to
either cognitive task performance (CTP) or performance on a non-cognitive
factor (NCF) derived from educational attainment. We observe that neurode-
velopmental gene sets expressed during the prenatal-early childhood period
predominate in CTP-relevant meta-loci, while post-natal gene sets are more
involved in NCF-relevant meta-loci. Further, we demonstrate that neurodeve-
lopmental gene sets are dissociable across CTP meta-loci with respect to their
spatial distribution across the brain. Additionally, we find that GABA-ergic,
cholinergic, and glutamatergic genes drive pleiotropic relationships within
dissociable meta-loci.

Cognitive impairment is one of the core features of psychopathology
and is associated with the debilitating nature of many psychiatric
disorders1,2. In schizophrenia, for example, cognitive impairments are
predictive of known functional impairments even in the prodromal

stage of the illness3,4. Cognitive deficits are not only confined to adult
psychiatric illnesses, but also extend to childhood disorders like aut-
ism spectrum disorders (ASD) and attention-deficit hyperactivity dis-
order (ADHD)5. Individuals who suffer from psychiatric disorders tend
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to report sequelae of cognitive problems throughout their lifetime6. In
many cases, there is an emergence of cognitive deficits before a formal
diagnosis of mental illness7.

Prior to the era of well-powered GWAS in psychiatry, the idea of
using cognitive function as an endophenotype to understand the
biology of psychopathology was proposed8. We then presented the
molecular genetic evidence for overlap between cognitive task per-
formance and schizophrenia9. Since then, evidence suggesting wide-
spread pleiotropy across psychopathologic traits has emerged,
indicating shared biological mechanisms10–12. Pleiotropy, a phenom-
enon where a genetic variant might affect several traits at once,
appears to be ubiquitous in biology; 44%of the loci reportedwithin the
GWAS catalog have been shown to be associated with more than one
trait13 (although in some cases this may be a function of vertical
pleiotropy or linkage disequilibrium rather than horizontal
pleiotropy14). A more recent study indicated that trait associated loci
cover more than half of the genome, among which 90% implicate
multiple traits15.

We recently exploited pleiotropy to dissect biology underlying
the counter-intuitive positive genetic correlation between educational
attainment and schizophrenia, and were able to parse separate neu-
rodevelopmental and synaptic mechanisms underlying the disorder,
based on association patterns within GWAS significant loci16. Our
results complemented earlier findings that (at least) two distinct bio-
logical processes appeared to subserve schizophrenia17. Shortly after,
Demange and colleagues18 demonstrated that it was possible to
leverage global genetic correlation within a structural equation mod-
eling framework to derive a latent non-cognitive factor (NCF) by
removing variance related to cognitive task performance (CTP) from
educational attainment GWAS. The ensuing NCF factor showed posi-
tive genetic correlation with schizophrenia, consistent with our earlier
findings16 (It should be noted that the content of the latent NCF con-
struct has not yet been fully specified and may capture, in part, cog-
nitive phenotypes that are separate fromCTP, such as reaction time, as
well as personality traits such as conscientiousness).

These two reports, utilizing somewhat orthogonal but com-
plementary approaches, leveraged pleiotropic phenomena to study
the intersection of cognition and psychopathology. Nevertheless,
these studies are limited by following a global genetic correlation
approach19 on the one hand, and a SNP-by-SNP approach16,18 on the
other. As has been demonstrated20, the assumption that genetic cor-
relations for complex traits are homogeneously distributed across
independent genomic regions may not be true. At the same time,
typical locus-based GWAS comparisons tend to be defined by ”top”
SNPs followed by LD clumping; this invariably results in loss of infor-
mation from regions of the genome that fall short of genome-wide
significance. Studies using partitioned heritability or gene set analysis
have demonstrated the biological relevance of regions of the genome
that need not contain genome-wide significant loci21.

In the present study, wedevelop amethod, intermediate to global
and SNP-based approaches, that examines the structure of local
genetic correlations across the genome and identifies “meta-loci”,
which we define as combined genomic segments sharing pleiotropic
patterns. We then interrogate these meta-loci, using rich annotations
and gene set analysis, to identify and dissociate biological pathways
underlying different patterns of cognitive-psychopathologic
pleiotropy.

Results
Study design and methods overview
We have recently reported the largest GWAS meta-analysis for CTP
(N = 373,617) and utilized this well-powered phenotype for pleiotropic
analysis with an expanded list of psychopathology phenotypes22.
Expanding on earlier analytic strategies16,18, we carried out three broad
stages of analyses (Fig. 1).

First, as both a data reduction step and a benchmark for sub-
sequent steps, we examined the global pleiotropic relationships
between multiple cognitive and psychopathological phenotypes via
LD score regression23,24. We amalgamated all available summary sta-
tistics from recent GWASof cognitive function (N = 19). These included
CTP22, and other reported derivatives of cognition including NCF18,
Executive Function25, and GWAS of individual cognitive tests admi-
nistered as part of the UK Biobank. Similarly, traits related to psy-
chiatric illnesses or psychopathology in the recent studies from the
Psychiatric Genomics Consortium, UK Biobank, Million Veterans Pro-
gram and elsewhere were curated (N = 17; Supplementary Data 1). Data
reduction approaches indicated that it was appropriate to focus on
CTP and NCF traits for the purpose of the current study (Fig. S1).
Specifically, PC1 and PC2 capture the majority of the cognitive GWAS
variance (out of 19 cognitive GWAS considered); moreover, CTP and
NCF are the strongest individual correlates of PC1 and PC2, respec-
tively (Fig. S1b, c). We re-estimated NCF using the largest CTP GWAS22

to increase statistical power (Methods).
Second, we carried out local genetic correlation analyses between

each of the psychopathology traits and CTP, and separately between
each psychopathology trait and NCF. A series of positive and negative
local genetic correlation patterns emerged across these analyses,
which we then classified via the “meta-locus” approach. A meta-locus
was defined as a set of LD-independent regions that showed similar
local genetic correlation profiles across psychopathological traits.
Therewere 15 distinctmeta-loci (median length = 123.75Mb) identified
for CTP and 10 identified for NCF (median length = 161Mb).

Third, CTP and NCF GWAS summary statistics were functionally
prioritized to identify genes and biological mechanisms harbored
within the meta-loci. A series of gene-based genome-wide association
(GBGWA) and transcriptome-wide association (TWA) strategies were
applied to CTP and NCF GWAS summary statistics. We leveraged brain
eQTLs from a range of databases, including GTEx v8 brain tissue
expression26, Brain-eQTL-meta27, and PsychEncode28,29 eQTL databases
that index brain (Online Methodology and Supplementary Informa-
tion). We adopted a broadly inclusive approach to the gene prior-
itization stage of the analysis, excluding from consideration only those
genes with no supporting evidence from any of these procedures.
Next, we performed a series of gene set analyses30–33 and gene scoring
procedures34, to which we applied strict filtering criteria in order to
arrive at a high-confidence biological characterization of each meta-
locus. We evaluated the high-confidence genes emanating from the
GBGWA, TWA and gene set analysis approaches for longitudinal gene
expression across lifespan to further differentiate neurodevelop-
mental vs adult functionalmechanisms, and further examined regional
distribution of these genes across the brain. Finally, we annotated
“driver genes” (the core of a gene set accounting for the enrichment
signal) with informationon the propensity for psychiatric or nootropic
drug re-purposing (Fig. 1 and Methods).

Stage 1: Global genetic architectures
As an initial data reduction step, due to the very high level of overlap
between many of the cognitive measures, a wrapper function within
GenomicSEM11 was used to conduct LD score regression23,24 and create
a global 19 × 17 genetic correlation matrix of cognitive and psycho-
pathological traits (Supplementary Data 2). Two dimensionality
reduction techniques, PCA and partitioned cluster analyses (K-
Medoid), were applied to the global genetic correlation matrix to
identify underlying pleiotropic patterns. PCA and partitioned cluster
analysis indicated that CTP was most pleiotropic with psychopatho-
logical traits followed by NCF (Fig. S1a). The first principal-component
captured the similarity of each cognitive trait to cognitive task per-
formance (CTP) in context of its relationship to the vector of 19 psy-
chopathological traits (Fig. S1b). The second principal-component
represented the degree to which a cognitive trait is similar to NCF
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Fig. 1 | Data analysis workflow. CTP cognitive task performance, NCF non-
cognitive factor. The flow chart is divided in three columns. The first column from
the left describes the analytic objectives across study stages. The middle column

lists themethod/software used for the analysis. The right column points the reader
to the Table, Figure, Supplementary Data or Supplementary Figure that reports the
results of the analysis.
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given its relationship to the vector of 19 psychopathological traits
(Fig. S1c). Consequently, for all subsequent analyses, we focused on
CTP andNCF as the primary cognitive phenotypes of interest; we leave
a more detailed exploration of the cognitive phenotypic space to
future work. We re-extracted the NCF latent factor by using GWAS-by-
subtraction parameters18, and a better-powered CTP meta-analysis22.
We confirmed that our newly calculated CTP and NCF factors were
globally similar to those originally reported by Demange et al.18 (rg = 1
using LD score regression).Weutilized the current versions of CTP and
NCF in subsequent sections detailing functional annotation, gene
prioritization and gene set analyses. At the global level, we also
observed that psychopathological traits separated into five best-fitting
clusters (Supplementary Data 2c) that varied according to the degree
of the strength of relationshipwithCTP andNCF (Fig. S1d, inset). There
was much more variation across psychopathological traits than the
cognitive traits, so we decided to analyze each trait separately in the
local genetic correlation analyses described below. We utilized the
clustering results depicted in Fig. S1d as background information for
our interpretations of subsequent results (and as color-coding in
subsequent figures in this report).

Stage 2: Local genetic correlations to investigate pleiotropic
relationships
Local genetic correlation analyses were carried out across 2353 LD-
independent regions of the genome using ρ-HESS20. 4,469,149 SNPs
were included for CTP and 4,372,398 SNPs were included for NCF.
Region-specific heritability estimates of CTP and NCF were expectedly
small (median h2

CTP-Region = 8.36e-5, median h2
NCF-Region = 1.18e-4, Sup-

plementary Data 3). The sum of heritability across LD independent
regions was consistent with previous reports for these phenotypes
(h2

CTP = 0.23, h2
NCF = 0.31) (See Methods), except in the case of anor-

exia nervosa andOCD, for which ρ-HESS recovered a greater degree of
correlation with NCF (Fig. S2).

Local genetic correlations showed widespread pleiotropy for
both CTP and NCF with psychopathology (Supplementary Data 4 &
Supplementary Data 5). Aside from re-capitulating global Rg trends
across psychopathology phenotypes, several noteworthy observa-
tions emerge from the local genetic correlations. First, for each
psychopathological trait, local genetic correlations were not always
in the expected direction, across LD-independent regions, compared
to global genetic correlations (Fig. S3a, b). Second, the magnitude of
the local genetic correlation signals is markedly stronger for schi-
zophrenia than for any other trait. Third, schizophrenia is the only
trait (with the potential exception of anxiety, see “Anxiety MVP”) that
demonstrates strong, widespread differences in direction between
CTP and NCF correlations (Fig. S3 and Supplementary Data 6).
Fourth, local genetic correlations for CTP were especially strong
within the Major Histocompatibility Complex (MHC); notably, anor-
exia nervosa and ADHD show the opposite pattern of local genetic
correlations within the MHC locus relative to other psychopatholo-
gical traits (see Fig. S4).

To examine pleiotropy across multiple traits and regions in the
genome, we first started with the local genetic correlationmatrices (17
psychopathologic traits x 2330 LD-independent regions, excluding the
MHC) for CTP and NCF, respectively (Supplementary Data 4 and
Supplementary Data 5; these are two separate 2353× 17 matrices). We
then reduce the high-dimensional data using Uniform Manifold
Approximation and Projection for Dimension Reduction (UMAP) to
derive 20-dimensional features for CTP and 10-dimensional features
for NCF; the number of features extracted was determined empirically
for each of the two phenotypes based on optimized fit statistics.
Clusters within the resulting UMAP space were then identified using a
two step-process: Density-Based scanning (DBSCAN) sequential clus-
tering (“bottom-up” approach) yielded intermediate localized clusters
(bottom-up clustering) for CTP and NCF; this initial clustering solution

was then optimized with more commonly used hierarchical clustering
methodology (“top-down approach”).

The resulting final set of clustered genomic regions, each ofwhich
contained between 43 to 210 LD-independent segments (ranging in
total length from45MB to 243MB) are termed “meta-loci”; thesemeta-
loci represent clusters of LD-independent regions with distinct pleio-
tropic patterns for CTP and NCF, respectively, across the various
psychopathologic traits. Importantly, both UMAP and DBSCAN meth-
odologies were calibrated before we applied them to the local genetic
correlation matrices, and the meta-loci demonstrated good-excellent
stability, uniformity and separation (see Methods for further discus-
sion on investigating latent structure, and details for meta-loci iden-
tification; see also Supplementary Data 8, Supplementary Data 9, and
Fig. S5). We identified 15 meta-loci for CTP and 10 meta-loci for NCF
(Fig. 2; Methods). Critically, the extracted meta-loci were not simply a
function of highly localized effects but were distributed across the
genome (Fig. 2). Characteristics of eachof themeta-loci shown in Fig. 2
demonstrate that that LD independent segments are generally simi-
larly distributed between CTP and NCF phenotypes.

The distribution of local genetic correlations for LD segments
included in each meta-locus between the psychopathological traits
and CTP or NCF, respectively, is displayed in Fig. 3 as violin plots; in
addition, clustered Manhattan plots for local genetic correlation by
meta-loci are also displayed in Figs. S6 and S7 for CTP and NCF,
respectively. As expected, schizophrenia showed strong trends of
negative genetic correlation in most CTP meta-loci; it is notable,
however, thatpositive local genetic correlationswereobserved for 3 of
the 15 CTP meta-loci. Schizophrenia and bipolar disorder showed
similar local genetic correlation profiles for theNCFmeta-loci butwere
differentiated on severalCTPmeta-loci. Attention-deficit/hyperactivity
disorder (ADHD) was negatively associated with CTP and NCF across
meta-loci, whereas obsessive compulsive disorder (OCD) was posi-
tively associated with both cognitive dimensions across all meta-loci,
except for a few showing no association (z~0). Affective and anxiety
traits showed expected broad negative associations with both cogni-
tive dimensions. Autism spectrum disorder (ASD) demonstrated a
relatively unique pattern of relationships, with relatively modest
effects acrossmost meta-loci, except for a positive genetic correlation
with CTP at meta-locus CTP-1.

It was important to determine if the pattern of results was driven
by socioeconomic status, given that prior literature35 has indicated
that educational attainment exhibits shared biology with socio-
economic status. ρ-HESS analyses were carried out between CTP and
NCF with the Townsend Deprivation Index to examine the associa-
tion with socioeconomic status (SES); preliminary results regressing
CTP and NCF Z-scores indicate that neither CTP or NCF is system-
atically associated with SES (R2 = 0.0039) (See Supplementary
Data 6). As displayed in Fig. S8, most meta-loci (except NCF-1)
showed only modest associations with socioeconomic status; Sup-
plementary Data S6 further shows that few chromosomal regions
demonstrated strong (Z ≤ −2) local genetic correlations with the
Townsend Social Deprivation index, and these were not con-
centrated in any single meta-locus (except again for NCF-1). Thus,
confounding with socioeconomic status appears insufficient to
account for the relationships observed for individual meta-loci with
psychopathologic traits displayed in Fig. 3.

Stage 3: Functional annotation and gene prioritization for CTP
and NCF-meta-loci
Tocharacterize eachmeta-locus, we applied a series of gene-based and
TWAS methods to the CTP and NCF GWAS summary statistics
(MAGMA and PoPs gene-based results: Supplementary Data 10; SMR,
S-PrediXcan and FOCUS fine-mapping TWAS results: Supplementary
Data 11, Supplementary Data 12, & SupplementaryData 13). As an initial
loose filter, genes were ranked based on multiple complementary
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transcriptome analyses (Supplementary Data 14), applying a 50th
percentile cutoff for gene association p-values; any genes with no
evidence of transcriptomic association to the cognitive phenotypes
were removed from further consideration. PoPs gene prioritization
scores34 was inverse-ranked (Supplementary Data 15) for each
remaining gene within a given meta-locus, and then subjected to gene
set analyses, using annotations obtained from the GO Gene Sets

(Cellular Component, Molecular Function and Biological Process)
included in the Molecular Signature Database v 7.236. Detailed
descriptions of the parameters applied to each of the methods are
described in the Methods section. Gene-set analyses were carried out
via three methods [Gene-Set Enrichment Analysis (GSEA31),
WebGestalt32, and GENE2FUNC (part of the Functional Mapping and
Annotation of Genetic Association—FUMA—pipeline33)].

Fig. 2 | Karyotype plots for genomic locations of meta-loci and descriptive
statistics for meta-loci. a Karyotype plot for CTP (b) number of LD segments,
length, and percentage of heritability estimated for each meta-loci for CTP (c)

karyotype plot for NCF (d) number of LD segments, length and percentage of
heritability estimated for each meta-loci for NCF.
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Fig. 3 | Violin plots forZ-score distributions of local genetic correlationswithin
each meta-locus. GlobalRgClusters: Phenotype clusters derived from partitioned
clustering of global genetic correlation. CTF cognitive task performance, NCF non-
cognitive factor. a Prioritized meta-loci for cognitive task performance.
b Prioritized meta-loci for non-cognitive skills. a, b Bipolar: bipolar disorder,

Anorexia: anorexia nervosa, Tourette’s: Tourette’s syndrome, MDD: major
depressive disorder (Howard et al., 2019)63, Dep-Aff: depressive-affect, MDD_MVP:
major depressive disorder (Million Veteran Project), Anxiety_mvp: anxiety disorder
(Million Veteran Project), PTSD_mvp/pcl: post-traumatic stress disorder (Million
Veteran Project; Total PCL: total PCL symptom scores).
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Focusing on gene sets specific to CTP vs NCF meta-loci, or those
specific to individual meta-loci, might allow more targeted parsing of
the biological mechanisms underlying the relationship between psy-
chopathology and cognition. While numerous brain-related gene sets
were observed across meta-loci (Fig. 4 and Supplementary Data 16),
several notable distinctions were observed as well. First, there were
multiple gene sets featuring a predominately neurodevelopmental
theme that were shared across multiple CTP meta-loci yet not
observed in NCF meta-loci; these included “GOBP Central Nervous
System Development,” “GOBP Head Development,” and “GOCC Neu-
ron Projection.” By contrast, gene sets related to actin filament-based
processes (essential for synaptic structure and function) and apoptotic
signaling were associated with multiple NCF meta-loci, but no CTP
meta-loci.Moreover,weobserved adissociationbetweenCTPandNCF
meta-loci with respect to synaptic gene sets; the GO cellular compo-
nent gene set localized to the presynaptic component was associated
exclusively with several CTP meta-loci (CTP-1, CTP-5, CTP-7, CTP-11,
and CTP-14), whereas several postsynaptic gene sets were exclusive to
one specific NCF meta-locus, NCF-2.

The dichotomy between neurodevelopmental and apoptotic
pathways underlying CTP and NCF, respectively, suggested an addi-
tional hypothesis to be tested. If CTP was primarily driven by neuro-
developmental genes,wewould expect to see gene expression profiles
that are active prenatally or early in the lifespan, whereas for NCF,
genes responsible for synaptic structure and function as well as
apoptosis are likely to be expressed later in post-natal life. Leveraging
the BrainSpan dataset37, which characterized brain expression profiles
at various developmental stages, we tested if CTP and NCF driver
genes might demonstrate differential expression across the lifespan.
By fitting a linear mixed model, with individual as random effect,
cognitive phenotypes and time as fixed effects and sex as a covariate,
we found developmental differences between CTP and NCF driver
genes (for further details, see Methods, results for BrainSpan analysis:
Fig. 5 and Fig. S9). Setting the nullmodel simplywith time as predictor,
we observed a significant improvement in model fit when an indicator
of the cognitive phenotype (CTP vs. NCF) for the driver gene was
included in the model (χ2 = 595.74, df = 2, p = 4.33 × 10−130). A main
effect for differences in CTP and NCF genes was found (β = −5.07,
se = 0.18, p = 1.96 × 10−130), and an interaction between CTP and NCF
genes with time (weeks) (β = 0.0032, se = 0.0002, p = 2.46 × 10−41) was
also observed (Fig. 5 and Fig. S9). As hypothesized, genes harbored
within NCF-meta-loci were expressed predominantly in early adult-
hood and adulthood, whereas CTP meta-loci genes were expressed
prenatally.

As shown in Fig. 4, brain-related gene sets such as “Axon
Development” and “Neurogenesis”were significantly enriched across
numerous CTP meta-loci. While these biological pathways are com-
monly enriched in studies of cognitive and neuropsychiatric phe-
notypes, our meta-locus approach also permits a further dissection
of these gene sets, beyond that permitted by conventional genome-
wide analysis. Specifically, the individual genes driving the enrich-
ment of a given set necessarily differ across meta-loci, since the
meta-loci are mutually exclusive carvings of the genome. We can
then examine the spatial distribution of those genes, using data from
BrainScope, to determine if a given biological pathway manifests
regional differences across the brain (Figs. S10–S14). For example,
the gene set “Axon Development” is significantly enriched in 7 CTP
meta-loci. As shown in Fig. S10, the genes comprising this enrich-
ment for meta-locus CTP-1 are broadly expressed in cortex, whereas
those formeta-locus CTP-5 are concentrated in the parahippocampal
gyrus, hippocampus, and subcortical structures; by contrast, genes
involved in axon development for meta-locus CTP-2 are distributed
across all brain compartments including the white matter. Similar
patterns are observed across other neurodevelopmental gene sets
(Figs. S11–14).

Finally, we further annotated each meta-locus as a function of
individual “driver” genes, unique to each CTP or NCF meta-locus, as
identified from the GSEA analysis. These genes were further examined
if they were potentially actionable in terms of encoding proteins for
putative drug targets, using chemoinformatic annotations providedby
Finan et al.38 (Supplementary Data 15). For each meta-locus, Tier 1
druggable genes (i.e., genes with current evidence of having existing
compounds that are FDA approved and being utilized for various
indications), summarized alongside other information specific to each
meta-locus, are listed in Tables 1 and 2. For example, multiple gluta-
matergic genes, as well as DRD2 (dopamine D2 receptor) were sig-
nificant drivers at the CTP-11 meta-locus, in which genes reducing
cognitive test performance are strongly associated with risk for schi-
zophrenia (as well as many other forms of psychopathology). By
contrast, the gene encoding the glycine transporter (SLC6A9) is a sig-
nificant driver at CTP-15, which is almost exclusively associated with
schizophrenia risk. Notably, the NCF-2 meta-locus implicates several
GABA receptor genes, as well as the GABA transporter SLC6A1, sug-
gesting the possibility that GABA-ergic treatment approaches may
enhance NCF while simultaneously ameliorating the correlated affec-
tive and anxiety symptoms that load on this meta-locus. This inter-
pretation of NCF-2 is further strengthened by results of drug-based
gene set analysis conducted using WebGestalt32 (final column of
Tables 1 and 2; full details in Supplementary Data S16b). Two anti-
epileptic medications commonly used for the treatment of bipolar
disorder, lamotrigine and valproic acid, are significantly enriched in
the drug-based gene set analysis for NCF-2; both medications have
indirect/downstream effects on GABA transmission39. Similarly, mul-
tiple cholinergic genes are implicated at CTP-2, and nicotine was sig-
nificant in the drug-based gene set analysis for this meta-locus.

Discussion
In the last several years, the accumulation of evidence from single-trait
GWAS has pointed broadly toward neurodevelopmental and synaptic
biology for psychiatric phenotypes, although gene set analyses of
individual psychiatric disorders have sometimes failed to identify
one40,41 or both42 of these pathways. Other single-trait GWAS in psy-
chiatry have implicated both thesebroadmechanisms, butwithout the
ability to dissociatemore refinedbiological subsets43,44. Similarly,while
numerous recent studies have demonstrated shared genetic under-
pinnings amongst multiple forms of psychopathology, as well as
between psychiatric and cognitive phenotypes10,11,25,45, these studies
have provided limited additional biological insights concerning the
sources of this pleiotropy10,11,15 (Supplementary Data 18). As cognitive
impairment is a nearly ubiquitous feature of psychopathology, and
cognitive performance is a robust clinical indicator of brain function,
we hypothesized that leveraging cognitive phenotypes along with
pleiotropic investigation of psychopathological traits was an approach
that could aid in dissecting the neuropsychiatric biology. The present
study was designed to parse the genetic overlap into separable bio-
logical pathways with specific psychiatric and cognitive sub-
components. The present study extends our previous work, in which
we leveraged cognitive pleiotropy to differentiate early neurodeve-
lopmental mechanisms from adult synaptic dysfunction in the etio-
pathogenesis of schizophrenia16.

Here, we demonstrated that prenatal neurodevelopmental
mechanisms shape the relationship between cognitive task perfor-
mance and multiple forms of psychopathology, while pathways
expressed later in life underlie the paradoxical association between
higher scores on a non-cognitive factor (relating to educational
attainment) and greater risk for psychotic disorders. Moreover, we
were able to further specify individual gene sets with distinct patterns
of association to psychiatric and cognitive/non-cognitive phenotypes,
and we localized some of these gene sets to specific brain regions. As
an example, we demonstrated specific involvement of genes

Article https://doi.org/10.1038/s41467-022-34418-y
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expressed subcortically in CTP-5, which was primarily marked by
loadings for affective and anxiety-related traits, whereas genes that
were expressed in a more widespread distribution were associated
with meta-loci featuring strong loadings for psychotic disorders.

The discoveries in the current report were made possible by our
construction of “meta-loci”, defined by the concatenation of LD-
independent genomic regions with shared patterns of local genetic
correlations acrossphenotypes.Withinmeta-loci, we further identified

Fig. 4 | Unique and overlapping gene sets within cognitive task performance
and non-cognitive factor meta-loci. CTP cognitive task performance. NCF non-
cognitive factor. a Circle plot for general cognitive ability and notable meta-loci.
b Circle plot for non-cognitive skills and notable meta-loci. Turquoise lines within

each circle plot represents unique gene sets to either general cognitive ability or
non-cognitive skills. Orange lines within the circle plot indicates that the gene set
overlaps across both cognitive task performance and non-cognitive factor.
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genes that may serve as actionable targets, or at least actionable entry
points into relevant biological pathways, for psychiatric and nootropic
drug re-purposing (Tables 1 and 2); a few examples are
described below.

TheCTP-11meta-locus was characterizedmost significantly by the
“Presynapticmembrane” gene set, with notable driver genes including

DRD2. While the DRD2 locus is significant in GWAS of schizophrenia46,
and the dopamine D2 receptor plays a central role in antipsychotic
medications47, the pattern of local genetic correlations at CTP-11 sug-
gest that this mechanism is pleiotropic across multiple forms of psy-
chopathology, consistent with the utility of D2-antagonizing
antipsychotic medication in the treatment of bipolar and unipolar

Fig. 5 | Temporal gene expression within prenatal cognitive task performance
and adulthood non-cognitive factor meta-loci. CTP cognitive task performance.
NCF non-cognitive factor. a Top cognitive task performance gene sets for each
indicatedmeta-locus bmeta-loci showing significant trajectories for prenatal gene
expression implicating cognitive task performance c aggregated temporal gene

expression for cognitive task performance and non-cognitive factor across meta-
loci d meta-loci showing significant trajectories for adulthood gene expression
implicating non-cognitive factor e top non-cognitive factor gene sets for each
indicated meta-locus.

Article https://doi.org/10.1038/s41467-022-34418-y

Nature Communications |         (2022) 13:6868 9



Ta
b
le

1
|C

o
g
n
it
iv
e
ta
sk

p
er
fo
rm

an
ce

(C
TP

)
m
et
a-
lo
ci
,b

io
lo
g
ic
al

an
d
d
ru
g
g
en

e
se

ts
,a

n
d
d
ru
g
g
ab

le
g
en

e
ta
rg

et
s

M
et
a-

lo
cu

s
ID

N
LD

se
g
m
en

ts
h2

Le
n
g
th

(M
B
)

B
io
lo
g
ic
al

g
en

e
se

ts
a

D
ru
g
g
ab

le
g
en

es
c

D
ru
g
-b
as

ed
g
en

e
se

ts
b

1
9
6

0
.0
0
79

10
3.
73

G
O
B
P
re
sp

on
se

to
g
ro
w
th

fa
ct
or

G
O
B
P
tr
an

sm
em

b
ra
n
e
tr
an

sp
or
t

G
O
B
P
io
n
tr
an

sm
em

b
ra
ne

tr
an

sp
or
t

A
B
C
C
5
A
PH

1B
A
TP

1A
3
B
C
L2

D
C
LK

1
D
R
D
4
ES

R
2
G
R
IK
5

G
S
K
3A

H
R
A
S
PL

K
1
PR

K
C
B

-

2
16
5

0
.0
14
9

18
7.
30

G
O
B
P
ce

ll
cy

cl
e

G
O
B
P
ce

ll
cy

cl
e
p
ro
ce

ss
G
O
C
C
ve

si
cl
e
m
em

b
ra
ne

B
C
L2

L1
B
M
PR

1B
C
D
K
19

C
H
R
M
2
C
H
R
N
A
3
C
H
R
N
A
4

C
H
R
N
B
4
C
S
N
K
1E

G
A
B
R
A
1
G
A
B
R
G
2
G
R
IA
4
K
C
N
Q
2

LA
M
C
3
M
A
P3

K
7
M
ET

N
PC

1
O
PR

M
1
PD

E4
D
R
O
C
K
1

R
PS

6
K
A
5
R
TN

4
R
X
R
G

S
O
D
1
S
TK

25
TP

B
G

TU
B
B
4
A

TR
O
G
LI
TA

ZO
N
E;

PH
EN

O
L;

EZ
O
G
A
B
IN
E;

N
IC
O
TI
N
E;

H
ES

PE
R
ET

IN
;

PR
O
PO

FO
L;

4
-M

ET
H
YL

U
M
B
EL

LI
FE

R
O
N
E;

M
YC

O
PH

EN
O
LA

TE
_M

O
FE

-
TI
L;

IS
O
TR

ET
IN
O
IN

3
12
5

0
.0
0
9
1

12
9
.7
5

G
O
B
P
ca

rb
oh

yd
ra
te

ho
m
eo

st
as
is

G
O
M
F
TR

an
sf
er
as
e
A
ct
iv
ity

Tr
an

s-
fe
rr
in
g
Ph

os
p
ho

ru
s

C
on

ta
in
in
g
G
ro
up

s
G
O
B
P
re
sp

on
se

to
lip

id

A
B
L2

C
A
M
K
2G

D
N
M
T1

D
PY

D
EP

H
A
6
H
S
P9

0
A
A
1
IN
S
R

M
A
P3

K
3
M
A
P3

K
9
M
A
PK

13
M
A
PK

14
M
A
R
K
3
N
TR

K
3
PD

E4
A

PD
PK

1
PK

N
1
PR

K
A
C
A
PR

K
C
E
S
IR
T1

S
R
PK

1
TE

S
K
1
TY

K
2

A
N
G
IO

TE
N
S
IN
_I
I_
A
N
TA

G
O
N
IS
TS

4
4
3

0
.0
0
36

4
4
.8
7

-
-

-

5
14
8

0
.0
13
2

19
7.
22

G
O
B
P
lo
co

m
ot
or
y
b
eh

av
io
r

G
O
B
P
lo
co

m
ot
io
n

G
O
B
P
an

im
al

or
g
an

m
or
p
ho

g
en

es
is

A
K
T3

B
C
R
B
R
A
F
C
A
M
K
2A

C
D
74

C
H
S
T1
1
C
LK

1
C
S
F1
R

C
S
N
K
1A

1
D
R
D
3
D
S
TY

K
D
YR

K
1A

ER
B
B
4
G
A
K
G
R
IN
3A

H
IP
K
2
H
TR

1A
IN
H
B
A
L3

M
B
TL

1
M
A
P2

K
1
M
A
P2

K
7
M
A
PK

3
M
IN
K
1
M
M
P1
7
M
TO

R
PA

K
2
PD

E1
0
A
PH

K
G
2
PI
P4

K
2B

PP
A
R
A
PR

K
A
A
2
PR

K
C
A
PS

EN
EN

TS
H
R
U
LK

1
V
K
O
R
C
1

PR
O
TE

IN
_K
IN
A
S
E_
IN
H
IB
IT
O
R
S

D
R
U
G
B
A
N
K
C
N
S
A
G
EN

TS

6
6
8

0
.0
0
51

8
0
.6
4

-
-

C
IT
R
IC
_A

C
ID

A
LP

H
A
-L
IN
O
LE

N
IC
_A

C
ID

Q
U
IN
IN
E

7
16
8

0
.0
13
6

19
7.
24

G
O
M
F
R
N
A
b
in
d
in
g

G
O
C
C
g
ol
g
im

em
b
ra
ne

G
O
B
P
re
g
ul
at
io
n
of

lip
id

m
et
ab

ol
ic

p
ro
ce

ss

A
K
T1

C
D
K
4
C
H
S
T8

EI
F2

A
K
4
EI
F4

E
EP

H
B
6
FK

B
P1
A
FK

B
P4

M
A
P3

K
4
M
ET

A
P1

M
K
N
K
1
PC

S
K
9
R
X
R
A
S
LC

6
A
1

S
TK

33
TP

53

-

8
10

5
0
.0
11
4

12
7.
26

G
O
B
P
em

b
ry
o
d
ev

el
op

m
en

t
A
PH

1A
A
R
N
T
C
H
R
N
B
2
M
A
P3

K
13

PI
P5

K
1A

S
IG
M
A
R
1
S
V
2A

-

9
4
6

0
.0
0
51

8
0
.6
4

-
-

-

10
9
1

0
.0
0
71

9
8
.6
2

-
A
H
R
C
TS

B
D
N
M
T3

A
G
R
IN
2C

H
D
A
C
9
H
M
G
C
R

-

11
13
2

0
.0
22

1
17
6
.1
5

G
O
C
C
p
re
sy
na

p
tic

m
em

b
ra
ne

G
O
M
F
ub

iq
ui
tin

lik
e
p
ro
te
in

tr
an

s-
fe
ra
se

ac
tiv

ity
G
O
B
P
re
g
ul
at
io
n
of

ce
ll
d
ea

th

B
A
C
E1

C
A
C
N
A
1D

C
A
M
K
K
2
C
C
N
B
1
C
D
K
7
C
D
K
9
C
IT

C
X
C
R
5
D
A
PK

3
D
M
PK

D
R
D
2
EE

F2
EG

FR
EP

H
A
10

EP
H
B
1

G
IP
R
G
R
IK
1
G
R
IK
3
G
R
M
2
H
D
A
C
5
H
R
H
3
IM

PD
H
2
IT
G
A
2B

K
M
T2

A
M
A
P2

K
2
M
A
P2

K
6
M
A
R
K
4
N
IS
C
H
P4

H
TM

PA
R
P1

PD
E4

C
PI
K
3C

A
PO

LD
1
PR

K
D
1
PS

M
B
2
PT

K
2

S
LC

O
3
A
1
V
A
M
P2

-

12
8
2

0
.0
0
78

9
8
.6
9

G
O
B
P
m
ic
ro
tu
b
ul
e-
b
as
ed

p
ro
ce

ss
C
N
R
1
C
S
N
K
1D

D
A
G
LB

FA
S
N
H
D
A
C
2
N
C
FT

N
PI
K
3C

B
A
M
IF
A
M
PR

ID
IN
E

13
9
9

0
.0
0
8
5

11
1.
18

-
EP

H
A
5
EP

H
A
8
EP

H
B
2
H
IP
K
1
M
A
P4

K
4
TA

O
K
3
TN

IK
-

14
10

0
0
.0
12
2

13
2.
29

G
O
B
P
R
N
A
sp

lic
in
g
vi
a
tr
an

se
st
er
-

ifi
ca

tio
n
re
ac

tio
ns

G
O
M
F
ac

tin
b
in
d
in
g

G
O
B
P
su

p
ra
m
ol
ec

ul
ar

fi
b
er

or
g
an

iz
at
io
n

A
B
C
C
8
C
A
C
N
A
1B

C
A
C
N
A
1G

G
R
IN
1
G
R
M
3
H
D
A
C
1
M
A
R
K
2

N
O
TC

H
1
PA

K
6
PO

R
PP

P3
C
A
PR

K
C
IR

A
F1

S
TA

T3
U
LK

2
-

15
10

1
0
.0
13
7

12
3.
75

G
O
B
P
ce

llu
la
r
re
sp

on
se

to
D
N
A

d
am

ag
e
st
im

ul
us

G
O
B
P
D
N
A
m
et
ab

ol
ic

p
ro
ce

ss
G
O
B
P-
ne

g
at
iv
e
re
g
ul
at
io
n
of

p
ro
-

te
in

m
et
ab

ol
ic

p
ro
ce

ss

A
K
T2

B
R
S
K
2
C
A
C
N
A
1I
D
YR

K
1B

EG
LN

2
G
PX

4
H
D
A
C
3

M
A
P3

K
10

M
A
P3

K
12

M
A
R
K
1N

TR
K
2
PD

E7
B
PR

K
C
G
S
LC

6
A
9

S
R
PK

2
S
TK

11
TL

K
2

-

a T
op

3
b
io
lo
g
ic
al

g
en

e
se

ts
,r
an

ke
d
b
y
lo
w
es

t
no

m
in
al

m
ar
g
in
al

p
-v
al
ue

fo
r
ea

ch
m
et
a-
lo
cu

s.
b
D
ru
g
-b
as
ed

g
en

e
se

ts
se

le
ct
ed

b
as
ed

on
D
ru
g
B
an

k
an

no
ta
tio

ns
an

d
FD

R
<
0
.0
5
si
g
ni
fi
ca

nc
e
le
ve

ls
fo
r
g
en

e
se

t
an

al
ys
is
,a

s
w
el
la

s
p
ot
en

tia
lf
or

no
ot
ro
p
ic

fu
nc

tio
n.

O
nc

ol
og

y
d
ru
g
s
se

ts
ar
e
ex

cl
ud

ed
d
ue

to
co

m
p
le
x
d
ru
g
d
el
iv
er
y
p
ro
ce

d
ur
es

.
c T
ie
r
1
d
ru
g
g
ab

ili
ty

an
no

ta
tio

ns
fr
om

Fi
na

n
et

al
.(
20

17
)3

8 .

Article https://doi.org/10.1038/s41467-022-34418-y

Nature Communications |         (2022) 13:6868 10



Ta
b
le

2
|N

o
n
-c
o
g
n
it
iv
e
fa
ct
o
r
(N

C
F)

m
et
a-
lo
ci
,b

io
lo
g
ic
al

an
d
d
ru
g
g
en

e
se

ts
,a

n
d
d
ru
g
g
ab

le
g
en

e
ta
rg

et
s

M
et
a-

lo
cu

s
ID

N
LD

se
g
m
en

ts
h2

Le
n
g
th

(M
B
)

B
io
lo
g
ic
al

g
en

e
se

ts
a

D
ru
g
g
ab

le
g
en

es
c

D
ru
g
-b
as

ed
g
en

e
se

ts
b

1
12
5

0
.0
27

1
19
6
.8
5

G
O
B
P
ap

p
en

d
ag

e
d
ev

el
op

m
en

t
G
O
B
P
ce

ll–
ce

ll
ju
nc

tio
n
or
g
an

iz
at
io
n

G
O
B
P
ce

ll
fa
te

co
m
m
itm

en
t

PD
PK

1
A
K
T3

A
PH

1A
A
R
N
T
PI
P5

K
1A

S
V
2A

IM
PD

H
2
P4

H
TM

EP
H
A
5

A
D
O
R
A
2A

A
N
G
PT

1
C
A
C
N
A
2D

2
ES

R
1
G
A
B
R
A
2
G
A
B
R
A
4
G
A
B
R
B
1

G
A
B
R
G
1
G
PX

1
G
R
IN
2B

LA
M
B
2
LA

M
C
1
M
A
PT

M
S
T1
R
V
EG

FA

C
IP
R
O
FL

O
X
A
C
IN

d

2
20

8
0
.0
30

3
24

3.
30

G
O
B
P
re
g
ul
at
io
n
of

p
os

ts
yn

ap
tic

m
em

b
ra
ne

p
ot
en

tia
l

G
O
B
P
in
tr
in
si
c
ap

op
to
tic

si
g
na

lin
g

p
at
hw

ay
G
O
B
P
se

ns
or
y
or
g
an

m
or
p
ho

g
en

es
is

H
R
A
S
G
A
B
R
A
1
G
A
B
R
G
2
PD

E4
D
R
X
R
G

C
A
M
K
2G

EP
H
A
6
PK

N
1
S
LC

6
A
1

TP
53

B
A
C
E1

C
IT

K
M
T2

A
PT

K
2
TN

IK
N
TR

K
2
C
A
C
N
A
1C

C
H
R
M
1
C
H
R
N
B
1

C
S
K
D
A
PK

2
D
D
O

G
A
B
R
A
6
H
D
A
C
7
H
IF
1A

K
IT

N
C
O
R
2
N
T5

E
PD

E7
A

S
N
A
P2

5
TN

N
I3
K

V
A
LP

R
O
IC
_A

C
ID

d
;P

O
LY

M
YX

IN
S

d
;L

A
M
O
TR

IG
IN
E;

PR
O
PO

FO
L;

PU
R
IN
E_
D
ER

IV
A
TI
V
ES

3
13
5

0
.0
20

5
16
4
.4
3

G
O
B
P
m
et
al

io
n
tr
an

sp
or
t

G
O
B
P-
p
os

iti
ve

re
g
ul
at
io
n
of

in
tr
a-

ce
llu

la
r
tr
an

sp
or
t

G
O
B
P
re
g
ul
at
io
n
of

tr
an

sm
em

b
ra
ne

tr
an

sp
or
t

PL
K
1
PR

K
C
B
C
H
R
M
2
C
A
C
N
A
2D

1
C
A
S
P1

C
C
N
D
1
C
D
K
13

C
H
R
N
D
C
H
R
N
G

G
R
IN
2D

G
S
K
3B

H
C
R
TR

2
JA

K
2
M
A
G

N
FK

B
1
S
IK
3

-

4
12
3

0
.0
15
8

13
8
.0
1

G
O
B
P-
ne

g
at
iv
e
re
g
u
la
tio

n
of

in
tr
a-

ce
llu

la
r
si
g
n
al

tr
an

sd
uc

tio
n

G
O
B
P-
p
os

iti
ve

re
g
ul
at
io
n
of

in
tr
a-

ce
llu

la
r
si
g
n
al

tr
an

sd
uc

tio
n

G
O
B
P
re
sp

on
se

to
ex

tr
ac

el
lu
la
r

st
im

ul
us

C
H
R
N
A
3
C
H
R
N
B
4
O
PR

M
1
A
B
L2

N
TR

K
3
C
D
K
4
R
X
R
A
PR

K
D
1
V
A
M
P2

S
LC

6
A
9
A
U
R
K
B
B
C
H
E
C
YP

27
B
1
EP

H
A
1
G
PB

A
R
1
G
PR

17
IL
1A

K
C
N
N
4

M
A
S
T1

M
G
M
T
O
PR

D
1
PD

E4
B
S
1P
R
4
TN

K
2

A
N
A
K
IN
R
A

5
11
3

0
.0
16
8

13
5.
20

G
O
B
P
re
g
ul
at
io
n
of

p
ep

tid
yl
ty
ro
si
ne

p
ho

sp
ho

ry
la
tio

n
R
PS

6
K
A
5
PR

K
C
A
H
D
A
C
2
H
D
A
C
1
M
A
R
K
2
PP

P3
C
A
C
H
R
N
A
2
D
R
D
1
ES

R
R
A

G
R
M
5
IT
G
B
3
LM

N
A
M
A
P3

K
11

M
A
P4

K
2
M
U
C
1
PA

K
1
PD

E5
A
PS

EN
1
PT

K
2B

S
C
N
4
A
V
EG

FB

S
IL
V
ER

d

6
10

5
0
.0
14
6

12
8
.7
9

-
-

-

7
21
0

0
.0
19
9

23
1.
0
7

G
O
B
P
g
lu
co

se
m
et
ab

ol
ic

p
ro
ce

ss
G
O
M
F
ca

tio
n
ch

an
ne

la
ct
iv
ity

C
H
R
N
B
2
C
A
C
N
A
1I
C
H
R
N
E
ER

B
B
2
G
R
IA
2
H
TR

1B
IT
G
A
V
N
G
FR

L-
PR

O
LI
N
E;

TO
LB

U
TA

M
ID
E;

S
A
R
IL
U
M
A
B

8
14
3

0
.0
18
9

15
7.
57

G
O
B
P
tu
b
e
d
ev

el
op

m
en

t
G
O
C
C
ce

ll
su

rf
ac

e
G
O
B
P
st
ri
at
ed

m
us

cl
e
ce

ll
d
iff
er
en

tia
tio

n

ES
R
2
C
S
N
K
1E

N
PC

1
R
O
C
K
1
D
N
M
T1

PD
E4

A
PR

K
C
E
TE

S
K
1
D
R
D
3
G
R
IN
3
A

H
D
A
C
5
IT
G
A
2B

A
C
V
R
1
D
PP

9
EP

H
A
2
FS

H
R
G
A
B
R
B
2
IC
A
M
1
IC
A
M
3

LH
C
G
R
PD

E6
C
R
O
C
K
2
S
O
D
2
TN

K
S

H
ER

O
IN

d
;L

-A
LA

N
IN
E

9
16
7

0
.0
18
7

20
1.
30

G
O
B
P
se

x
d
iff
er
en

tia
tio

n
S
O
D
1

C
A
R
B
O
N
IC

A
N
H
YD

R
A
S
ES

;T
R
IH
EX

Y
PH

EN
ID
YL

d
;

D
EU

TE
TR

A
B
EN

A
ZI
N
E;

M
YR

R
H
;P

H
EN

EL
ZI
N
E

10
77

0
.0
12
4

9
3.
58

-
-

-
a T
op

3
b
io
lo
g
ic
al

g
en

e
se

ts
,r
an

ke
d
b
y
lo
w
es

t
no

m
in
al

m
ar
g
in
al

p
-v
al
ue

fo
r
ea

ch
m
et
a-
lo
cu

s.
b
D
ru
g
-b
as
ed

g
en

e
se

ts
se

le
ct
ed

b
as
ed

on
D
ru
g
B
an

k
an

no
ta
tio

ns
an

d
FD

R
<
0
.0
5
si
g
ni
fi
ca

nc
e
le
ve

ls
fo
r
g
en

e
se

t
an

al
ys
is
,a

s
w
el
la

s
p
ot
en

tia
lf
or

no
ot
ro
p
ic

fu
nc

tio
n.

O
nc

ol
og

y
d
ru
g
s
se

ts
ar
e
ex

cl
ud

ed
d
ue

to
co

m
p
le
x
d
ru
g
d
el
iv
er
y
p
ro
ce

d
ur
es

.
c T
ie
r
1
d
ru
g
g
ab

ili
ty

an
no

ta
tio

ns
fr
om

Fi
na

n
et

al
.(
20

17
)3

8 .
d
D
ru
g
re
p
or
te
d
to

b
e
as
so

ci
at
ed

w
ith

co
g
ni
tiv

e
im

p
ai
rm

en
t
ra
th
er

th
an

no
ot
ro
p
ic

fu
nc

tio
n.

Article https://doi.org/10.1038/s41467-022-34418-y

Nature Communications |         (2022) 13:6868 11



affective disorders. Similarly, we found that CTP-8, characterizedmost
strongly by “Dendrite Development” and “Embryonic Development”
gene sets, was associated with most forms of psychopathology. Driver
genes in this meta-locus included DCC and CTNNA2, among many
known genes that implicate psychopathology. In their most recent
report, the PGC Cross Disorder group reported that the DCC region
was most pleiotropic in psychopathology. The DCC gene was a known
master regulator of early neurodevelopmental biology via interactions
with netrin-1 and draxin and has been implicated in developmental
processes of white matter tracts in the brain48,49. Consequently, the
PGC authors suggested that DCC is likely to affect childhood devel-
opmental disorders such as ADHD and ASD, which they have demon-
strated to cluster together. Importantly, our evidence showed that
similar processes are not limited to neurodevelopmental disorders but
are implicated in other psychopathological phenotypes and are linked
through a shared effect on cognitive task performance.

By contrast, meta-locus CTP-3, which spans 130MB across
165 segments, demonstrated a unique pattern of pleiotropy, in which
cognitive task performance was positively associated with risk for
autism, yet inversely associated with risk for anorexia. As shown in
Table 1 (and in more detail in Supplementary Data 16), this meta-locus
is uniquely characterized by genes associated with carbohydrate
metabolism and response to lipid, including the insulin receptor gene
INSR. This finding is consistent with recent GWAS evidence indicating
that anorexia is (in significant part) ametabolic disorder50, and extends
this finding to demonstrate pleiotropy of this result with cognitive
performance and autism. Similarly, an association between risk for
anorexia and lower non-cognitive factor scores at meta-locus NCF-7 is
driven (in part) by the gene set representing glucose metabolic
processes.

The meta-locus approach also extends and refines prior work on
the structure of psychopathology. Recently, both the PGC Cross Dis-
order Group10, as well as Grotzinger and colleagues45 utilized global
genetic correlations to show converging evidence for several latent
factors underlying current nosological constructs in psychiatry: (i)
Psychosis factor (schizophrenia and bipolar disorder); (ii) Neurode-
velopmental factor (alcohol use, ADHD, ASD, PTSD); (iii) Compulsive
factor (anorexia nervosa, OCD, and Tourette’s Syndrome); and (iv)
Internalizing factor (MDD, anxiety disorders). In the current report,
schizophrenia andbipolar disorder generally demonstrated congruent
patterns of pleiotropy globally, consistent with the factor structure
described above; nevertheless, distinctions were observed at several
meta-loci (e.g., CTP-8), where schizophrenia more closely resembled
major depression and other affective phenotypes. Further, schizo-
phrenia appears to harbor LD-independent segments strongly asso-
ciated with CTP beyond that of other psychopathological phenotypes.
These results support the notion that schizophrenia is potentially a
more cognitively loaded disorder compared to other psychiatric
conditions, including bipolar disorder. Though the genetic correlation
between schizophrenia and cognitive dimensions appears modest
(rg ≈ −0.2) at the global level, thismay reflectmutually negating effects
at the regional level across the genome, as indicated by counter-
intuitive-positive correlations between cognitive task performance
and risk for schizophrenia noted at CTP-1 andCTP-2. Broadpleiotropic
profiles for CTP/NCF within ADHD, PTSD, MDD, Anxiety disorder and
Tourette’s Syndrome support cross factor loadings observed by
Grotzinger and colleagues45 between “Internalizing” and “Neurodeve-
lopmental factors”. However, in the present study, ADHD and ASD
exhibited quite different local genetic correlation profiles acrossmost
meta-loci—ADHD being negatively correlated across nearly all meta-
loci for CTP and NCF, while ASD demonstrated null or positive corre-
lations with both CTP and NCF meta-loci.

Although the MHC region was excluded from most of the down-
stream work due to its complicated LD patterns (and resulting chal-
lenges in distinguishing relevant genes and gene sets), it is worth

mentioning that the MHC showed stronger CTP-psychopathology
local genetic correlations than other genomic regions. Also note-
worthy is that anorexia nervosa and Tourette’s syndrome showed
opposite local genetic correlations within the MHC region relative to
all other CTP/NCF—psychopathology trait pairs. Evidencepoints to the
MHC region as potentially a vital aspect of etiopathogenesis in psy-
chopathology. The MHC region harbors the strongest genome-wide
signal to date for psychotic and affective disorders. It also harbors a
known synaptic pruning mechanism as part of the C4 complex. The
strong association with cognitive ability makes MHC a candidate
region for further extensive investigation.

Results in the current report demonstrate that it is possible to
deconstruct the genetic architecture of psychopathology via pleio-
tropy with cognitive phenotypes. Nonetheless, the methods repor-
ted here are not without limitations. First, we have restricted
investigation to GWAS summary statistics derived from studies of
European ancestry as a matter of availability. Local genetic correla-
tional methods require relatively large sample sizes for estimation.
As more well-powered GWAS become available in other ancestries, it
would be necessary to examine if the genetic architecture across
cognitive and psychiatric traits would replicate. Relatedly, high-
dimensional methodologies such as those reported in the current
study tend to be dependent on the statistical power of the trait. As
GWAS summary statistics become more powered across the board,
genomic clusters not previously discovered may likely emerge.
Additionally, it should be noted that the present study utilizes cur-
rently available GWAS that are based on common genetic variation
and community sampling; in the future, well-powered family-based
GWAS may ultimately provide more accurate estimates of genetic
effects, including rare variation51, independent of “genetic nurture”52.
Additionally, there may be measured and unmeasured confounders
to the GWAS included in our analysis; for example, meta-locus NCF-1
may demonstrate inflated or biased results due to associations with
socioeconomic status and should be interpreted with caution.
Moreover, CTP and NCF are relatively broadly defined phenotypes
that may be further refined by future research, and only capture a
portion of the relevant phenotypic space (Fig. S1a); these were
selected for our primary analyses because they are relatively well-
powered and capture the largest portion of the variance of interest.
Finally, high-dimensional data reductionmethods, such as UMAP and
DBSCAN employed in the present report, can be controversial inso-
far as they are (by definition) simplifications of data subject to
potential over- and under-fitting53. Consequently, we employed
methods that have been recently demonstrated to be superior to
other approaches to reduction of high-dimensional genetics data54,55

and we rigorously tested the assumptions of our approaches (see
Methods) and their ability to recover structure in ground truth
datasets. Our approach to deconstructing the genetic architecture of
correlated complex traits via pleiotropy complements other meth-
odologies in the GWAS toolkit, and future work might focus on
extending the approach.

To conclude, we have leveraged pleiotropy between cognitive
dimensions and psychopathology to dissect biological mechanisms
underlying these phenotypes. By compiling local genetic correlations
across the genome into “meta-loci,” we identified specific regions of
the genome that harbor gene sets representing dissociable biological
processes linking psychopathological traits to cognition. Follow-up
efforts such as increasing the power of the input trait GWAS and the
accuracy of transcriptomic reference panels may increase the resolu-
tion of such approaches. Our findings further demonstrate the
importance of the recently identified non-cognitive factor to under-
standing the biology of neuropsychiatric phenotypes; it may be useful
for future research to devise a way in which this latent factor could be
operationalized andmeasured tangibly in clinical populations. Results
of the current report underscore the need to develop additional
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statistical methodology to exploit the phenomena of pleiotropy and
polygenicity that are characteristics of psychiatric genetics.

Methods
Data curation
To thoroughly examine the pleiotropic relationship between cognitive
dimensions and psychopathology, we consolidated 19 Cognitive
Traits, 17 Psychopathological Traits, Education Attainment, and
Socioeconomic Status GWAS summary statistics for the current study.
Cognitive Traits included General Cognitive Ability22 (indicated as
MTAG_GCA in the report), ASSET Discordant16, DeMange-Cognition18

(shown as GSEM_GCA currently), and DeMange-Non-cognitive Skills18

(shown as GSEM_NCS currently). It should be noted that we retained
the previously utilized labeling of “general cognitive ability” and “non-
cognitive skills” to describe the summary statistics entered in our
initial data reduction step, to be consistent with the literature in which
the summary statistics were produced. However, for all subsequent
analyses,we employ the terms “cognitive task performance” (CTP) and
non-cognitive factor (NCF), respectively, which we believe are more
accurate descriptively, and reduce opportunities for misunderstand-
ing or misrepresentation of the research.

We also curated GWAS summary statistics for other cognitive
traits. These include the GWAS summary statistics obtained via colla-
boration with Biogen Inc.: Full-Scale IQ, Numeric Reasoning, Verbal
Reasoning, General Cognitive Ability (Computed using approaches
detailed in Davies et al. (2018)), Pairs Matching, and Reaction Time.
Data from Biogen Inc. were the most recent UK Biobank data freeze of
cognitive tests. Similar cognitive traits were also available via our col-
laboration with the Institute of Behavior Genetics (IBG). Both sets of
GWAS summary statistics were included for exploration because, for
the latter, missing data were imputed for the entire UK Biobank data.
(Further details of the imputation method were reported in Hatoum
et al.25). The following GWAS summary statistics were included from
IBG, Executive Function, Digit Symbol, and Trail Making Test. Two sets
of Education Attainment GWAS summary statistics were included; the
first was reported by Lee et al.56, and the second set was from UK
Biobank’s latest data freeze. Finally, for follow-up and post-hoc inves-
tigation, GWAS summary statistics for the Townsend Deprivation
Index were also included.

GWAS summary statistics for psychopathological traits included
Attention-Deficit/Hyperactivity Disorder40, Anorexia Nervosa50, Gen-
eralized Anxiety Disorder57,58, Bipolar Disorder59, Insomnia60, Tour-
ette’s syndrome61, Autism Spectrum Disorder62, Major Depressive
Disorder44,63, Post-Traumatic Stress Disorder, and Schizophrenia43.
Notably, two Mood disorder definitions were included. The first was
reported by Howard et al.63, and the second was obtained via colla-
boration with the Million Veterans Project44. The rationale for includ-
ing both sets of Major Depressive Disorder GWAS was that the sample
combinations were slightly different—the latter including data from
the FinnGen study44. Similarly, for Generalized Anxiety Disorder,
GWAS summary statistics from ANGST consortium57 and the Million
Veterans Project58 were included. Over and above psychiatric traits,
several personality dimensions (i.e., Neuroticism, Depressive-Affect,
and Worry)42 were added to accentuate the analysis. Details and
descriptions of GWAS summary statistics are reported in Supplemen-
tary Data 1.

Global genetic correlations (cognitive traits vs.
psychopathology)
Wecarried out global genetic correlation analysis between the set of 19
cognitive traits and 17 psychiatric traits via LD score regression23,24

implemented in Genomic SEM11. Pairwise LD score regression was
carried out via the genetic correlation matrix wrapper function found
in the GenomicSEM::ldsc(), stand=TRUE function (GenomicSEM ver-
sion 0.0.2, https://github.com/GenomicSEM/GenomicSEM). The

global genetic correlation matrix was reported in Supplementary
Data 2a. GenomicSEMperforms initial data alignment to theHAPMAP3
SNPs and conducts pairwise LD score regression with each pair of
input phenotypes for the estimationofglobal genetic correlations. The
global genetic correlations between all cognitive and psychopatholo-
gical traits were organized into a 19 × 17 matrix and subsequently used
as the input for principal components analysis (PCA) and clustering
analyses reported subsequently. The first two principal components
were extracted from the 19 × 17 matrix representing the relationship
between each psychopathology trait and the top two cognitive
dimensions. The loading of each cognitive trait on the principal com-
ponent was estimated by performing bivariate Pearson correlation
between the genetic correlation profile of each cognitive trait and each
principal component (columns U and V in Supplementary Data 2a).
The dissimilarity matrix estimated based on Euclidean distance from
the global genetic correlation matrix was used to generate the parti-
tioned k-medoid clusters. The clustering procedures were carried out
using fviz_cluster() in R as part of the “factoextra” package (https://
www.rdocumentation.org/packages/factoextra/versions/1.0.3).

Cluster analyses for the global genetic correlation matrix
Global genetic correlation analysis was first read into R as matrix x—
from which we proceeded to estimate the Euclidean distance matrix.
We selected two broad categories of clustering methodology that had
been widely reported in academic literature: (i) partitioning methods;
(ii) hierarchical clustering methods. Within partitioning clustering
methodology, we estimated fit statistics for k-means and k-medoid
clustering. Moreover, within hierarchical clustering methodology, we
calculated fit statistics for agglomerative and divisive clustering. Initial
clustering analyses were carried out via the FactoMineR and FactoEx-
tra R packages (version 1.07.999, Le et al.64). The strategy for the
clustering analysis was as follows—we started with a 2-cluster solution,
and gradually increased the number of clusters until any of the
methods reached a singleton cluster. Across methodologies, a
7-cluster solution resulted in a singleton cluster, hence we set the
maximum number of clusters to 6 and the minimum number of clus-
ters 2.We tested cluster solutions starting from k = 2 and increased the
number of cluster solutions until one of the four methods yielded a
cluster with a single data point. The cluster prior to that was then
designated as kmax. In this case, the maximum number of clusters was
defined as kmax = 6. Fit statistics for each set of cluster analyses were
estimated using the cqcluster.stats and cluster.boot() modules from
the fpc R package (version 2.2-9, Akhanli and Hennig65). The fit statis-
tics used in the current report were extensively discussed by Akhanli
and Hennig. For straightforward interpretation of the fit statistics, we
scaled the fit statistics such that larger metrics always meant better fit.
All fit statistics were summed, based on previously established
approaches9, to get overall fit statistics for the cluster solutions. A five-
cluster solution computed by k-means and k-medoids appeared to
have comparable fit statistics. However, k-medoid cluster appeared to
have slightly better stability after bootstrapping compared to the k-
means solution. The cluster analysis results allowed further annotation
of the genetic correlation matrix (see Supplementary Fig. 1 and Sup-
plementary Data 2c).

After closely reviewing the global genetic correlation profiles for
cognitive features and psychopathological traits described above, CTP
and NCF emerged as two candidate traits that were well differentiated
across clusters of psychopathological traits. Partitioning cluster ana-
lysis (k-medoids and k-means) and hierarchical clustering were
employed to examine the latent genome-wide genetic architecture of
psychopathological traits in relation to cognitive features.

GWAS-by-subtraction: defining the non-cognitive factor
In addition to GWAS summary statistics obtained from publicly avail-
able repositories, and/or obtained from closed access datasets, we
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generated new summary statistics for the “Non-Cognitive Factor”
(NCF) via the GWAS-by-subtraction steps reported by Demange et al.18

described at https://rpubs.com/MichelNivard/565885. The input
GWAS summary statistics differed slightly from the initial report by
Demange et al.18 We used the publicly available Lee et al.56 Education
Attainment GWAS summary statistics (without the 23andMe data) and
the most powered cognitive task performance GWAS (Lam et al.22).
Thiswas recommendedby the original authorswhere new information
should be added to aid in the definition of the non-cognitive factor.We
also note that that the GWAS summary statistics that were included in
GWAS-by-subtraction procedures were first quality controlled by ear-
lier summary statistics QC procedures described above. As a sanity
check to ensure that GWAS summary statistics were similar to those
reported by Demange and colleagues18, we carried out LD score
regression23 on the extracted latent factor scores compared to those
that were reported on previously. The results indicate that the genetic
correlation between the newly estimated summary statistics and those
previously reported by Demange and colleagues18 were the same
(Rg = 1). Nevertheless, we noted that the power of the non-cognitive
factor was slightly reduced. This could be related to two concurrent
reasons. First, Demange and colleagues utilized data from Education
Attainment that included the 23andMedata, which was larger. Second,
the GWAS summary statistics used earlier was a less powered version
for cognitive task performanceat 257K individuals, compared to that
in the current report at 373k estimated sample size. Nonetheless,
because the primary objectives of the present report were not loci
discovery at the level ofGWASp-values, wemade no further loci-based
comparisons with the earlier study18.

Local genetic-correlation analysis
Local genetic correlations were carried out via ρ-HESS, based on ana-
lytic steps described in https://huwenboshi.github.io/hess/local_rhog/.
Local genetic correlations were computed on 2353 LD-independent
regions across the genome. The LD independent regions were calcu-
lated via LD detect66 using variants with minor allele frequencies
greater than 0.05. Further details of the estimation of LD independent
regions were previously reported67. Local genetic correlations were
carried out with cognitive task performance and, separately, the non-
cognitive factor, with each of the 17 psychopathological traits selected
for the current report (ρ-HESS version 0.5.4). For the present report,
we wrote a wrapper for ρ-HESS that produces a series of helper scripts
that allowed us to scale the analysis. The wrapper scripts could be
found at https://github.com/maxzylam/rho-HESS-wrapper.

ρ-HESS technical results and benchmarks
Heritability of LD independent regions for cognitive task performance
(CTP) and the non-cognitive factor (NCF) was reported in Supple-
mentary Data 3. We noted that the summed heritability of each of the
cognitive dimensions was consistent with those estimated by global
genetic heritability. Summed heritability was calculated by taking the
total heritability across all LD independent regions. Local genetic
correlations were represented in covariances and Z-scores by ρ-HESS.
We chose to use the standardized Z-scores for downstream analysis to
standardize the scaling of the effect sizes. Also, scaled scores tend to
be preferred for cluster analyses. The results of CTP and NCF were
reported in Supplementary Data 4 and Supplementary Data 5.

The heritability estimates for CTP and NCF summary statistics
were comparedwithwhat is currently reported in the literature, as well
as across LDSC and ρ-HESS.

Cognitive task performance
Reported by Davies et al.68: “The report included all common SNPs
using GCTA-GREML in four of the largest individual samples: English
Longitudinal Study of Ageing (ELSA: N = 6661, h2 = 0.12, SE = 0.06),
Understanding Society (N = 7841, h2 = 0.17, SE = 0.04), UK Biobank

Assessment Center (N = 86,010, h2 = 0.25, SE = 0.006), and Genera-
tion Scotland (N = 6507, h2 = 0.20, SE = 0.05).”

Reported by Savage et al.69: “SNP heritability estimated for the
entire sample h2

SNP was 0.19 (SE =0.01) estimated by LDSC.”

Estimation of heritability within current study.

h2
CTP�LDSC =0:154 ð0:0059Þ

h2
CTP�HESS =0:231 ð1:11e� 5Þ

Non-cognitive factor
Reported by Demange et al.18: “λNonCog-EA = 0.2565 (Genomic SEM).”

Estimation of heritability within current study.

λNonCog�EA =0:230 ðGenomicSEMÞ

h2
NCF�LDSC =0:204 ð0:0105Þ

h2
NCF�HESS =0:310 ð6:20e� 5Þ

Both CTP and NCF are still in the range of what is reported in the
literature. It is notable that ρ-HESS is estimating heritability slightly
higher than LDSC. This appears consistent between CTP and NCF. The
explanation for that is the additional 10% of heritability is likely related
to ρ-HESS using genome-wide summary statistics rather than the 1.2
million HAPMAP3 SNPs that LDSC uses.

To examine if there was concordance between LDSC and ρ-HESS,
we compared global genetic correlations estimated by both methods.
Default parameters were carried out on LDSC, as part of standard
procedures. Summary statistics were pruned to 1.2 million HAPMAP3
SNPs for global genetic correlation estimations for LDSC. Bivariate
genetic correlations were carried out for CTP and NCF vs. each of the
psychopathological traits included in the current study. To estimate
global genetic correlation via ρ-HESS, we summed the estimated cov-
ariances across all LD-independent regions in the genome and the
estimated heritability for either cognitive dimension (CTP/NCF) and
psychopathological trait. Genetic correlations were estimated in the
following manner

Rg�HESS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PðCovjÞ
Pðh 2

ja *h
2
jbÞ

s

where j is a given set of LD independent regions, Cov represents the
covariance at each LD independent region and, h2

j is the heritability of j
regions; a represents cognitive dimensions, either CTP or NCF, and b
represents psychopathological trait.

A scatterplot was constructed to visualize the concordance
between LDSC and ρ-HESS (Supplementary Fig. 2).

Manhattan plots for the local genetic correlation output (in Z-
scores) were visualized in several ways—first, each local genetic cor-
relation on each LD segment was visualized based on genomic coor-
dinates. Next to show the rangeof local genetic correlationswealigned
the LD segments from lowest local Rg to highest Rg (See Supplemen-
tary Fig. 3). Owing to the complex LD structure harbored within the
MHC region, the region was excluded from subsequent cluster analy-
sis. However, for completeness of the results, we further analyzed the
local genetic correlation within the MHC region to understand how
this region might feature in the pleiotropic relationship between
cognitive traits and psychopathology. The MHC region was visualized
similarly with the rest of the local genetic correlations segments
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Supplementary Fig. 4). There were 23 LD-independent segments that
were part of the MHC region.

Significant local genetic correlations of psychopathology with
CTP and NCF
To further investigate local genetic correlations between cognitive
dimensions (CTP/NCF) and psychopathological traits, we flagged LD-
independent regions showing strong local genetic correlation Z-scores
(|Z | > 4, correcting for multiple testing in 2353 LD independent
regions, assuming Z = 1.96 represents p =0.05 (see Supplementary
Data 6). 88 LD-independent regions showed strong local genetic cor-
relations between CTP and schizophrenia; 27 LD-independent regions
showed strong local genetic correlations between NCF and schizo-
phrenia. 13 LD-independent regions showed strong correlations with
affective traits and CTP, and 27 LD-independent regions showed
strong correlations with affective traits and NCF.

Local genetic correlations for cognitive traits and socio-
economic status (SES)
The relationship between CTP and NCF with SES was further investi-
gated at the local genetic correlation level. Like local genetic correla-
tions for psychopathological traits, we included SES defined by the
Townsend Deprivation Index available as a phenotype within the UK
biobank. These results were later stratified bymeta-loci. Results will be
further discussed in subsequent sections (see Supplementary Data 7).

Conceptual overview of the density-based spatial clustering of
applications with noise (DBSCAN) clustering algorithm in
establishing genomic meta-loci
Density-based spatial clustering of applications with noise (DBSCAN)
procedure70 is a sequential clustering methodology that could be
applied to high-dimensional data that also tends to be noisy. The
DBSCAN algorithm works on data clustering based on a given radius
andminimumpoints per cluster parameter. For each data point, in this
case, for each LD-independent region, DBSCAN estimates the distance
relative to all 2330 LD-independent regions (without theMHC region).
If the distance is less than or equal to the epsilon, then the LD-
independent region would be marked as a neighbor of x. If the LD-
independent region gets a neighboring count greater than or equal to
the minimum points per cluster, DBSCAN marks the region as a core
point. For each core point, if not already assigned to a cluster (meta-
locus), the algorithm then creates a new cluster (meta-locus). DBSCAN
then recursively finds all neighboring points and assign them to the
same cluster (meta-locus) as the core point. These steps are iterated
until all LD-independent regions were either assigned cluster mem-
bership (or all points assigned to a meta-locus) or indicated as an
outlier. For further details, see https://towardsdatascience.com/k-
means-vs-dbscan-clustering-49f8e627de27, and http://www.sthda.
com/english/wiki/wiki.php?id_contents=7940.

Approach for meta-loci identification
To establish the meta-loci from a 2353× 17 matrix, we carried out a
series of procedures to uncover latent cluster structure of the local
genetic correlations across CTP and NCF with psychopathology.
Owing to DBSCAN’s nature of being a fully unsupervised sequential
clustering algorithm, it would be necessary to carry some formof data
reduction procedure prior to the clustering step. There were several
methods that were available for data reduction, e.g., Principal Com-
ponents Analysis (PCA), or UMAP. We decided that UMAP dimen-
sionality reduction is preferred as it permits non-linear combination of
dimensions, that might allow more efficient data reduction for the
large high-dimensional data matrix that we are attempting to decom-
pose. Unless otherwise stated,most of the procedures described in the
current section utilizes the CTP local genetic correlation matrix—for
several reasons (i) The CTP matrix is more powered than NCF (ii)

interpretation of CTP, i.e., cognitive test performance, has been
extensively discussed in literature elsewhere.

Step 1: Identify if a latent data structure exists for cluster
analysis
Prior to carrying dimensional reduction and clustering analysis, it
would be necessary to ascertain if a latent data structure exists. This is
typically established using the Hopkins test statistic71—known to be a
fair estimator for randomness in a dataset72. An estimated value close
to 0.90 is thought to indicate a high probability of the presence of
clustered data structure, whereas an estimated value close to
0.50 suggests that the data is random. We applied the Hopkins sta-
tistics to both CTP and NCF, which returned a value of 0.92 for both
datasets, respectively, suggesting that the data is highly clustered. To
ascertain that the Hopkins statistics is in factmeasuring the latent data
structure, we carried out random shuffling of the CTP matrix. The
shuffle procedure was carried out by the sample() module available in
R. We shuffled the CTP matrix 20 times and evaluated each Hopkins
statistics—the average Hopkins statistic was 0.564 (se = 0.00128)
indicated that the shuffled data is likely random.

Step 2: Identify dimensional reduction strategy for UMAP
Data reduction on the local genetic correlations between the CTP and
NCF dimensions and psychopathological traits was carried out via
Uniform Manifold Approximation and Projection for Dimension
Reduction (UMAP, McInnes, et al.73). The method was implemented in
R 3.6.3 via the uwot package (version 0.1.10). UMAP had previously
been demonstrated to be superior in retaining data structure in
comparison with other similar methods such as t-SNE73. We required
the number of nearest neighbors to be five and estimated the mini-
mum spread value for the 2353 LD-independent regions to be
mindist = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n regions
p . We also assumed that ~70% of the manifolds are

likely to show local connections. One of the issues with utilizing UMAP
as a dimension reduction strategy is that there Is a stochastic element
built into the algorithm.As such, thoughUMAP is effective in capturing
the latent data structure of the local genetic correlation matrix, minor
perturbations of the actual coordinates would invariably affect a
sequential cluster algorithm, where the actual coordinate of the data
pointmatters. To evaluate the stability of the UMAP solutions, we took
into account Trustworthiness and Continuity measures74. Both Trust-
worthiness and Continuity are indexes that range from 0 to 1 and
measure the degree to which the original data structure was retained
after dimensional reduction. Trustworthiness and Continuity close to
0.9 is considered well fitting.

For the current study, we examined the best approach to obtain
UMAP dimensions that allows data reduction and at the same time
retains data structure. First, we attempted to extract 3-dimensional
solutions for UMAP, compared to the more standard practice of using
the default of 2-dimensional UMAP solution. 20UMAPmodels of 3 and
2-dimensional solutions were generated. To constrain the stochastic
nature of UMAPwe constrained the randomnumber generator using a
consistent 20 element vector of seeds. Across 20 solutions,
2-dimensional UMAP solutions are much more consistent for UMAP1
(Pearson raverage = 0.94) and UMAP2 (Pearson raverage = 0.87) as com-
pared to 3-dimensional solutions, which appeared poorly replicated
for each consecutivemodel extracted: UMAP1 (Pearson raverage = 0.55),
UMAP2 (Pearson raverage = 0.51) andUMAP3 (Pearson raverage = 0.55). To
investigate if UMAP procedures had indeed retained the original data
structure we simply took the product of trustworthiness and con-
tinuity—any value that is close to 1 would indicate high data structure
retention. The average of all 20 models generated for the
2-dimensional and 3-dimensional UMAP models was 0.851 and 0.866,
respectively. These initial numbers indicate that the 3-dimensional
model allows for the original data structure to be captured slightly
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better than the 2-dimensional model. However, given that the Pearson
raverage for the replications of the 3-dimensional solutions was sub-
stantially lower than that observed for the 2-dimensional solutions, the
small increase in variance explained is accompanied by a large degree
of additional noise entering the 3-dimensional solutions. Therefore,
considering the subsequent intention to enter the reduced data as
stable cluster features, the data indicate that a 2-dimensional solution
is more appropriate for the objectives in the current report.

Step 3: Generating cluster features for DBSCAN cluster analysis
In the previous step, we found that 2-dimensional UMAP solutions
were stable, with each UMAP model appropriately retaining the ori-
ginal data structure. Nonetheless, due to DBSCAN’s sequential cluster
approach, the procedure is highly sensitive to the actual coordinate of
a given data point. As such DBSCAN reveals a slightly different inter-
pretation of the data structure, depending on the UMAP features
entered. To maximize the stability of the DBSCAN procedures we
increased the UMAP dimensions—not within each UMAP model (i.e.,
increasing extracted dimensions); rather, we increased the number of
2-dimensional UMAP models. However, increasing UMAP models
infinitely is likely to introduce too much noise, and the data structure
could no longer be parsed. The challenge is to identify the best signal
to noise ratio for DBSCAN procedures. As such, we extracted 2-
dimension * 5 model UMAP (10 dimensions), 2d * 10 model UMAP (20
dimensions) and 2d * 20model UMAP (40 dimensions) as input cluster
features. This would allow us to evaluate the silhouette score as a
function of the number of UMAP dimensions entered as features, to
optimize the signal-to-noise ratio for the identification of meaningful
clusters by DBSCAN.

Step 4: Setting up DBSCAN for identification of meta-loci
DBSCAN was carried out for CTP and NCF separately. As previously
indicated, the MHC region was excluded from these analyses. How-
ever, due to reasons that were discussed in Steps 2 and 3, we
attempted to evaluate themethodology to which DBSCANprocedures
might yield themost robust and accurate cluster solutions. To achieve
this, we relied on the Iris Dataset75. The Iris dataset contains 4 features
and the given identity of the flowers. The Iris dataset had originally
been utilized as the ground truth dataset for linear discriminant
function analysis75.

DBSCAN was set up such that nearest neighbors were set to
minimums of 5. To find the optimal set ofmeta-loci represented by the
data, we first computed the k-nearest neighbor distance for all points
using a kd-tree. The “elbow” that emerges plotting nearest distance
and distance between points, would correspond with the most
appropriate eps value for DBSCAN procedures. To further optimize
DBSCAN, we increased eps stepwise using the follow approach:

Neps +Neps*j,

where Neps is the epsilon value derived from visualizing the “elbow” in
the previous step and j ranges from 1 to 5. In most cases, DBSCAN
returns a single cluster solution at j = 5. For purpose of the current
report, we increased eps using the above heuristic mainly to stick to
general fitness of themodel rather than carry outminute fine-tuning of
the model as a form of standardization. Cluster silhouette scores Si
were utilized to evaluate the appropriateness of DBSCAN solutions. Si
ranges from −1 to +176. If the silhouette score is closed to 1, it would
suggest that the clusters are well identified. A score that is close to 0
would indicate clustering that are indistinguishable, and a negative
score would suggest misclassification in the cluster solutions. For
purpose of the current report, we considered median, 75th percentile
and maximum silhouette scores for all clusters identified in each
DBSCAN cluster model. Any models that showed negative silhouette
scores were not further considered. Using this approach, we

attempted to pick the “best-fitting” DBSCAN model for further
investigation.

In the initial phase, we applied UMAP data reduction and DBSCAN
procedures to the Iris dataset to examine if the approach resulted in
the misclassification of the ground truth categories. DBSCAN proce-
dures showed that a 5 model UMAP gave the best-fitting clustering
solutions recovering all original categories with no misclassifications.
Nonetheless, DBSCAN also appeared to have identified two additional
sub-clusterswithin the Iris dataset. Although itwas unclear if therewas
in existence additional sub-clusters of flowers, it was reasonable to
note that DBSCANwasdesigned to optimize localized cluster patterns.
The approach using a combination of UMAP and DBSCAN procedures
were sufficient to recover broad cluster patterns within the data. The
preliminary data investigation is summarized in Supplementary Fig. 5.

Step 5. Procedures for identification ofmeta-loci in CTP andNCF
For the identification of meta-loci within CTP and NCF, we carried out
procedures indicated in the previous step. First, reducing local genetic
correlation matrix 2330 (LD independent segments, MHC removed) *
17 psychopathological traits for CTP and NCF, respectively, via UMAP
data reduction. 5, 10, and 20 UMAPmodel solutions were extracted as
previously described. These were then entered into DBSCAN as clus-
tering features. For each DBSCAN cluster extraction, we note the
number of UMAP dimensions, epsilon value, unclassifiable meta-loci,
number of DBSCAN clusters extracted, the median, mean, 75th per-
centile, and maximum silhouette score. All solutions with negative
median silhouette scores were not further considered. To select the
final DBSCAN model, we considered the number of unclassifiable LD
segments, the number of classified LD segments, and silhouette
scores. Aside from having the “best-fit” model, we also considered
models that preservedmore information for downstreamanalyses.We
report DBSCAN metrics in Supplementary Data 8a for CTP and Sup-
plementary Data 9a for NCF. Finally, to recover global cluster patterns,
we subjected the DBSCAN localized cluster patterns and the input
UMAP model, to hierarchical cluster analysis. Software packages for
hierarchical analysis were similar to those used for global genetic
correlation analysis described in the earlier “Cluster analyses for the
global genetic correlation matrix” section. To standardize hierarchical
cluster solutions, we compared the fit indices for agglomerative hier-
archical clustering solutions in Supplementary Data 8b and Supple-
mentary Data 9b for 5, 10, 15, 25, and 30 global clusters. As there are
multiple fit indices available for each hierarchical cluster solution, the
final hierarchical cluster solution was selected based on the criteria of
having themost fit indices being in the top 3 ranked across hierarchical
cluster models. Descriptive statistics for the final model were reported
in Fig. 2, Supplementary Data 8c for CTP and Supplementary Data 9c
for NCF.

The expectation was that DBSCAN procedures clustered LD-
independent regions with distinct local genetic correlation profiles
and localized by LD. To further examine if each LD-independent region
was indeed clustered via local genetic correlation patterns, we visua-
lized each meta-locus for CTP and NCF on genome-wide karyogram
(see Fig. 2). The visualization showed that regional distributions were
well distributed across the genome anddidnot appear to be varyingby
LD or localized effects in the genome. These results increased our
confidence that regional local genetic correlations were likely driving
the DBSCAN clustering rather than LD patterning across the genome.
To further understand the nature of local genetic correlation dis-
tributions underlying each meta-locus, distributional patterns of the
local genetic correlations with each set of LD-independent regions
defined by the meta-loci in CTP or NCF were visualized. First, we re-
sorted the Manhattan plots showing the local genetic correlation
patterns by coordinates, stratifying them by each meta-locus. Within
each meta-locus, we visualized the distributional patterns for local
genetic correlations for each cognition-psychopathological trait pair
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(doing the same for both CTP and NCF) (see Fig. 3, Supplementary
Fig. 6, and Supplementary Fig. 7).

We also carried out additional local genetic correlations to
examine the potential effect of SES on CTP and NCF. The local genetic
correlation distributions across LD segments were stratified by meta-
loci and reported in Supplementary Fig. 8.

Functional annotation and gene prioritization
Functional annotation and gene prioritization was carried out only
for GWAS summary statistics indexing cognitive task performance
and the non-cognitive factor. The rationale for carrying out gene
prioritization in thismanner was such that we could have a signal that
is cognitive-centric rather than driven by factors that might be spe-
cific to or related to the psychopathological conditions investigated.
Both CTP and NCF were estimated from the general population,
hence, less likely to be influenced by extraneous clinical factors (e.g.,
illness trajectories and medication) that might have been uniquely
driven by the psychopathological condition. Gene prioritization
approaches used are considered standard in GWAS downstream
analysis. These could be categorized into gene-based genome-wide
association approaches (MAGMA and POPs), and transcriptome-wide
association approaches (S-PrediXcan, SMR/HEIDI, and FOCUS
transcriptome-based finemapping). In the current report, results of
the downstream analysis were additionally assigned to the respective
CTP or NCF meta-loci.

MAGMA gene-based genome-wide association (GBGWA) and
polygenic priority score (PoPs)
MAGMA gene-based genome-wide association analysis30 was carried
out for CTP and NCF. GWAS SNP-based summary statistics were used
as input data for the MAGMA GBGWA analysis. Gene definitions
based on b37 were utilized (see https://ctg.cncr.nl/software/magma).
Note that for the current analysis, the latest version of MAGMA v1.08
was utilized using SNP-Wide Mean mode. Further data analysis steps
could be found on the provided website. Results of GBGWA are
reported in Supplementary Data 10. PoPs is a gene prioritization
method that leverages genome-wide signal from GWAS summary
statistics and incorporates data from an extensive set of public bulk
and single-cell expression datasets, curated biological pathways, and
predicted protein-protein interactions. Methodological details of
PoPs were previously described by Weeks and colleagues34. Data
analytic steps are provided at (https://github.com/FinucaneLab/
pops). PoPs leverages 57,543 gene features for prioritization.
40,546 features were derived from gene expression data, 8718 fea-
tures extracted from protein-protein interaction network, and 8479
features based on pathway membership. PoPs was carried out for
both CTP and NCF.

Summary statistics Mendelian Randomization and hetero-
geneity in dependent instruments analysis
SMR allows the indirect mediating effect of gene expression to be
incorporated into the SNP/Variant phenotype effects, while HEIDI
allows potential heterogeneity of the mediating effect caused by
linkage to be also modeled in the analysis77. For the current report,
we used eQTL annotations from the Brain e-META database (meta-
analysis of GTEx, Common Mind Consortium, and ROSMAP brain-
eQTL data), see Supplementary Data 11a; and the PsychENCODE data.
Two versions of the PsychENCODE data were used: HCP (Supple-
mentary Data 11b) and PEER (Supplementary Data 11c) adjusted. The
union of results from all three annotation databases was considered
to minimize prioritization related to methodological variance. Note
that because HEIDI assumes that genes with significant results were
less likely to have eQTL mediating the SNP-phenotype effect due to
linkage, we inverted the significant effects during the gene prior-
itization procedures.

Summary statistics PrediXcan (S-PrediXcan) transcriptome-
wide analysis
S-PrediXcan, (formerly known as MetaXcan) was carried out to lever-
age eQTL data for gene prioritization (Oct 16, 2020, version). Details of
the S-PrediXcan methodology are now well established and can be
found in the report by Barbeira and colleagues78. For the current
analysis, we leveraged the latest GTEx826 eQTL database. However, to
allow more focused functional annotations and gene prioritization
processes, weonly selected eQTLdata for neural tissues. These include
Anterior Cingulate Cortex, Amygdala, Caudate—Basal Ganglia, Cere-
bellum, CerebellarHemisphere, Cortex, Frontal Cortex, Hippocampus,
Hypothalamus, Nucleus Accumbens, Putamen—Basal Ganglia, Spinal
Cord, and Substantia Nigra (Supplementary Data 12a-m).

FOCUS transcriptome finemapping analysis
The FOCUS79 (Fine-mapping Of CaUsal gene Sets) transcriptome fine-
mapping analysis was designed to identify credible genes based on
eQTL annotations, leveraging state-of-art GWAS and transcriptomic-
based statistical finemapping approaches. For our analysis, we inclu-
ded all genes that were identified as credible genes as part of gene
prioritization procedures. FOCUS finemapping procedures and eQTL
annotations are available at https://github.com/bogdanlab/focus. To
keep consistent with the eQTL annotations of other transcriptomic
association methods that were used in the current report, we only
selected finemapping results based on brain tissue expression of the
Anterior Cingulate Cortex, Amygdala, Caudate—Basal Ganglia, Cere-
bellum, CerebellarHemisphere, Cortex, Frontal Cortex, Hippocampus,
Hypothalamus, Nucleus Accumbens, Putamen—Basal Ganglia, Spinal
Cord, and Substantia Nigra. We note that in the case of FOCUS tran-
scriptome finemapping, the software outputs only the credible genes
per eQTL (Supplementary Data 13a, b). All credible genes were inclu-
ded in the final gene list for prioritization.

Gene ranking and prioritization
To rank and selectpertinent genes for downstreamanalysis,we carried
out a series of gene ranking procedures. This was achieved by taking
the 50th percentile cutoff for MAGMA GBGWA, PoPs gene scores,
transcriptome association methods, and taking the union of gene lists
emerging from these methods with credible genes identified by
FOCUS transcriptomic finemapping (Supplementary Data 14a–c). For
transcriptomic association methods that utilized more than one eQTL
annotation database for prioritization, we used the average gene rank
across annotations. The 50th percentile cutoff and corresponding
gene rank for MAGMA GBGWA was 8867CTP/8870NCF, PoPs was
9164CTP/9170NCF, and TWAS 3806CTP/3771NCF (see Supplementary
Data 14a, b). We then attempted to annotate genes that have been
prioritized via the HUGO gene annotation database80, at this stage,
each gene was assigned to their respective meta-locus based on their
genomic coordinates (Supplementary Data 14c). To prepare for
downstream gene set analysis, we carried out inverse rank score
transformation of PoP score ongenes that were selected from the 50th
percentile from gene prioritization and transcriptomic analyses. The
inverse rank score ranges from 0 to 1, and is derived as follows:

1� rankn=ranki

where rankn is the rank for a given gene, and ranki is the highest-
ranking gene for a given trait. The resultant scorewould reflect 0 as the
lowest ranking gene, and 1 as the highest-ranking gene. Inverse rank
scores are provided in Supplementary Data 15.

Gene-set analyses
To further annotate putative biological mechanisms and processes
underlying eachmeta-locus for either cognitive dimension (CTP/NCF),
we carried out gene set analysis on gene lists assigned to each meta-
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locus. Three separate gene set analysis approaches were then applied
to the remaining, filtered gene list for each meta-locus (i) Broad
Institute Gene-Set Enrichment Analysis (GSEA31,81) (ii) WebGestalt
ORA32 (iii) FUMA GENE2FUNC33. GO ontologies within the Molecular
Signature Database 7.2 (Biological Processes, Molecular Function and
Cellular Component36,82) were used as gene-set analysis annotations.

Of the three gene set analysis methods, GSEA was arguably the
most robust. GSEA first walks down the ranked list of genes, increasing
a running-sum statistic when a gene is in the gene set and decreasing it
when it is not. The enrichment score is the maximum deviation from
zero encountered during that walk. Details of the GSEA methodology
has been reported elsewhere31. GSEAprioritizes genes via the following
heuristic: given a defined gene list L, GSEA determines if the genes are
randomly distributed throughout pathway S or primarily found at the
distributional tails. This is achieved via estimating an enrichment score
based on any given metric that represents correlation with a given
phenotype. In the current study, the selected phenotypes were CTP
and NCF. The gene-phenotype correlation was denoted in the current
study via gene scores estimated by PoPs, where the higher the metric,
themore likely the genewas associatedwith CTP orNCF.However, it is
necessary to note that PoPs gene score is unidirectional, unlike gene
expression. For gene expression, strong effect sizes in either direction
represent strong gene-phenotype associations. However, for PoPs
gene score, negative scores do not denote stronger associations with
the phenotype. Rather, negative scores denote poor gene-phenotype
associations. Hence, for the PoPs gene score to be incorporated into
the GSEA gene scoring algorithm, we carried inverse rank scoring to
scale the PoPs gene score to represent the unidirectionality of the
metric, such that 0 represented poor gene-phenotype association and
1 represented the strongest gene-phenotype relationship. The proce-
dure had been described in the earlier sections.

GSEA allows permutation testing for the selection of gene sets,
which in this case was set to n = 1000 permutations. GSEA analyses
were based on the “preranked” procedure, where enrichment scores
were normalized. Default filter parameters for minimum (>15) and
maximum (<500) gene set size were used.MSigDb version 7.2 gene set
definitions36 for Gene Ontology were used as indicated above. The
gene list for each meta-locus was ordered by PoPs gene score. GSEA
then compares each gene within the meta-locus against each gene
sequentially within pre-defined pathway genes. If a gene within a given
meta-locus and pathway matches, the gene score is summed. If the
gene is not represented in the pathway, the gene score is subtracted.
The running hypothesis is that if a list of genes is random, the
enrichment scorewould be likely to tend towards the null.Whereas if a
list of genes iswell representedwithin a given pathway, therewould be
a significant deviation from the null. The null enrichment score was
estimated by randomly ordering the association metric with the gene
list and re-computing the enrichment score. This was repeated 1000
times to get a null distribution. Significance testing was carried out by
testing if a given enrichment score for a particular gene set sig-
nificantly deviated from its null distribution. In addition to the
enrichment score for each gene set, it was possible to identify “driver
genes” via GSEA. Driver genes are the core of a gene set accounting for
the enrichment signal. Driver genes could be identified as thosewhose
running-sum statistic deviates for a given gene set, farthest from the
null. GSEA gene sets that are FDR <0.05 were considered significant.

This is followed by WebGestalt ORA83. WebGestalt uses a more
specifically curated “noRedundant” set of Gene Ontologies based on
the 2017 data freeze of the MSigDb. In addition, the method relaxes
gene set sizes to permit minimum (>5) and maximum (<2000). We set
significance to the top 50 gene sets to be extracted for WebGestalt. In
addition to theGeneOntologieswe also enteredDrugBank (https://go.
drugbank.com/) annotations to further allow us to understand how
biological mechanism within each meta-loci might relate to known
genes that are targets of pharmacological compounds. It would alsobe

necessary to note that due to the “noRedundant” feature of Webges-
talt’s ORA analysis, we considered gene sets with FDR <0.1 as sup-
porting evidence—if a gene set was previously identified as significant
within GSEA, and FUMA::GENE2FUNC, then a nominal significant
p-value for WebGestalt would be taken into consideration. FUMA
GENE2FUNCuses a hypergeometric approach to gene selection, which
relies only on the overrepresentation of gene symbols for the identi-
fication of gene sets. For FUMA GENE2FUNC we set a minimum of 3
genes per gene set and FDR <0.05 for a gene set to be significant.

To select candidate gene sets for each meta-locus, we required a
“consensus” approach. As GSEA is a more robust approach, the results
were considered primary. Webgestalt ORA and FUMA::GENE2FUNC
approaches were considered secondary evidence for gene set asso-
ciation. For a gene to be included for further consideration it had to be
significant forGSEAand at least supportedbyoneothermethod.Using
GSEA as a strategy to identify driver genes for each gene set identified
per meta-locus, coupled with the requirement for multiple gene set
analysis to identify converging gene set, over and above earlier
MAGMAGBGWAand transcriptomicmethods,wewere able to identify
a very specific list of genes for each meta-locus that were putatively
responsible for biological mechanisms thatmight be subserved within
each CTP or NCF meta-locus.

We reported the gene-set analysis Gene Ontology (Biological
Process, Molecular Function and Cellular Component) results in Sup-
plementary Data 16a, and Drug pathway gene-set analysis results in
Supplementary Data 16b.

BrainSpan spatial-temporal gene expression analysis
As a function of earlier gene set analysis and gene prioritization
approaches, we were able to identify that potentially CTP could have
been associated with neurodevelopmental mechanisms, while NCF
could have been associated with synaptic function. We tested the
hypothesis, using driver genes identified by GSEA earlier, that the
spatial-temporal gene expression of driver genes indexing neurode-
velopmental mechanisms were likely to be significantly expressed
prenatally, whereas driver genes thatwere responsible for the synaptic
function would potentially be stable across the lifespan, if not show a
preponderance of expression in adulthood.

BrainSpan data preparation
BrainSpan data was access via https://www.brainspan.org/static/
download.html. RNA-Seq Gencode v10 summarized to genes data-
base, that include normalized gene expression was utilized for the
analysis. For purposes of data analysis, we recoded the developmental
stage into “Weeks” of development so that we could obtain a higher
resolution of the spatial-temporal gene expression profile. All post-
natal stages were converted to weeks using Weeks = Years*52Weeks +
37 Gestational Weeks, which resulted in the Weeks variable ranging
from 8 to 2117 weeks. Gene expression for driver genes within the
prioritized meta-loci for CTP and NCF were extracted and aggregated
by taking the mean expression of all driver genes within a given
meta-locus.

Linear mixed modeling for evaluating longitudinal spatial-
temporal gene expression trajectories
To test for gene expression trends over the lifespan for CTP and NCF,
and for each meta-locus, we carried out linear mixed modeling using
the lme484 and lmeTest85. For the overall comparisons of cognitive task
performance and the non-cognitive factor, we dummy coded genes
falling into each respective category and the dummy coded variable as
a Trait variable (CTP vs. NCF). Random effect estimator was denoted
for individual subjects within the BrainSpan database. As Weeks was a
variable of interest, we did not covary the analysis for the develop-
mental stage. Sex was included as a covariate. The null model was
specified as Expression ~ β1 Weeks + β2 Sex + (1|subject) and the
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alternative model to test for the effect of the trait was Expression ~ β1
Weeks*Trait + β2 Weeks + β3 Trait + β4 Sex + (1|subject). A significant
interaction effect in the alternativemodel would suggest that different
profiles of spatial-temporal gene expression across the lifespan were
present between CTP and NCF, respectively. Post-hoc analysis was
carried out to examine specificmeta-lociwithinCTP andNCF thatwere
driving the interaction effect. The model Expressionmeta-locus ~ β1
Weeks + β2 Sex + (1|subject), where meta-locus represented each of the
prioritized meta-loci, for CTP and NCF, respectively, was used to
evaluate if gene-expression within the meta-locus was prenatal,
adulthood, or lifetime. The corresponding expectation for each sce-
nario would be a significant positive effect, significant negative effect,
and not significant.

Aggregated gene expression trajectories for each meta-locus are
displayed in Supplementary Fig. 9. Overall interaction effects of CTP
andNCF by time are presented in Fig. 5. Results of linearmixedmodels
examining the significance of longitudinal trajectories are reported in
Supplementary Data 17.

Allen Human Brain Atlas BrainScope visualization
To further understand results from the meta-locus concept, we
annotated driver genes being expressed in each meta-locus. This is
especially important for any particular gene set that had been identi-
fied as significant across multiple meta-loci. For instance, the Axon
Development gene set was identified by gene set enrichment analysis
atmeta-locus 1, 2, 5, 11, 12, 13, and 15 for CTP. Since each driver gene list
for meta-loci are mutually exclusive, the results would have indicated
that a critical number of genes within each meta-locus would have
been identified for the gene set. This is especially true for large neu-
rodevelopmental gene sets.

We utilized gene expression data from the Allen Human Brain
Atlas (AHBA86,87) available via the BrainScope88 web visualizer. Gene
expression within the BrainScope visualizer is displayed as red for
upregulation and blue for downregulation. Brain regions are displayed
on three coronal slices that allows clear visualization of subcortical and
cortical regions. Results would allow visualization of putative gene
expression networks that might be subserved within each meta-locus.
Brain regions with annotated gene expression from BrainScope are
displayed in Supplementary Figs. 10–14. Neurodevelopmental gene
sets that constitute 6 or moremeta-loci were selected for BrainScope/
AHBA visualizations.

Driver gene annotations
Finally, driver genes were annotated with GWAS catalog information
and Druggability tier information for the reader’s reference. GWAS
catalog (r2022-03-23) was downloaded on March 23, 2022. Drugg-
ability tier information is based on Finan et al. (2017)38.

Software utilized
(1) GWAS Summary statistics quality control: SumstatsQC v0.1 (https://
github.com/maxzylam/SumstatsQC). (2) Global Genetic Correlations:
GenomicSEM version 0.0.2 (https://github.com/GenomicSEM/
GenomicSEM); (3) k-Medoid clustering and Principal Components
Analysis: FactoMineR and FactoExtra R packages (version 1.07.999, Le
et al., 2008); fpc R package (version 2.2-9). (4) GWAS-by-Subtraction:
GenomicSEM version 0.0.2 (https://github.com/GenomicSEM/
GenomicSEM). (5) Local Genetic Correlations: ρ-HESS version 0.5.4
(https://huwenboshi.github.io/hess/local_rhog/); Wrapper script for
p-HESS (https://github.com/maxzylam/rho-HESS-wrapper). (6) UMAP/
Density-Based Scan: uwot package (version 0.1.10); dbscan package
(version 1.1.5) (7) Transcriptome Wide Analysis: MAGMA Gene-Based
Genome-Wide Analysis; MAGMA v1.08 (https://ctg.cncr.nl/software/
magma); PoPs Gene Polygenic Priority Score-PoPs v0.1 (https://github.
com/FinucaneLab/pops); Summary Statistics Mendelian Randomiza-
tion/HEIDI-SMR/HEIDI version 1.03 (https://cnsgenomics.com/

software/smr/#Download); Summary statistics PrediXcan TWAS-
SPrediXcan (Oct 16, 2020 version) (https://github.com/hakyimlab/
MetaXcan); FOCUS transcriptomic finemapping-FOCUS (Aug 21, 2020
version) (https://github.com/bogdanlab/focus). (7) Gene-Set Analysis:
FUMA::GENE2FUNC-FUMA v1.36a https://fuma.ctglab.nl/; WebGestalt-
Version 2019 http://www.webgestalt.org/; Gene-Set Enrichment-GSEA
4.10 (https://www.gsea-msigdb.org/gsea/index.jsp); (8) Spatial-
Temporal Gene Expression: BrainSpan-RNA-Seq Gencode
v10 summarized to genes database https://www.brainspan.org/static/
download.html; Linear Mixed Model analysis for BrainSpan Data-
lmerTest package (version 3.1.3) (9) General biostatistics/data wran-
gling: R-statistics version 3.6.3 (10) Allen Human Brain Atlas visualiza-
tions: BrainScope https://brainscope.lumc.nl/brainscope.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
(1) The GWAS summary statistics for Cognitive Task Performance and
Non-Cognitive Factor data generated in this study are available at
https://storage.googleapis.com/broad_institute_mlam/brainstorm-v2-
local-gencor-1/03_quality_control_sumstatsqc/07_Data_Release_GWAS_
Catalog_01/Lam_et_al_2021_CognitiveTaskPerformance.tsv.gz; https://
storage.googleapis.com/broad_institute_mlam/brainstorm-v2-local-
gencor-1/03_quality_control_sumstatsqc/07_Data_Release_GWAS_
Catalog_01/Lam_et_al_2022_NonCognitiveFactor.tsv.gz; The individual
genotype data are protected and are not available due to data privacy
laws. The processed individual genotype data can be obtained by
contracting respective laboratories that contributed to the data. The
meta-data for Cognitive Task Performance and Non-Cognitive Factor
GWAS summary statistics generated in this study are provided in
Supplementary Data 1. (2) Previously unpublished GWAS data that was
closed access to Biogen Inc. would now be made available. GWAS
summary statistics for EducationAttainment, General Cognitive Ability,
Numeric Reasoning, Pairs Matching, Reaction Time, Verbal Reasoning,
and Social Deprivation used in this study are available at https://
storage.googleapis.com/broad_institute_mlam/brainstorm-v2-local-
gencor-1/03_quality_control_sumstatsqc/07_Data_Release_GWAS_
Catalog_01/Biogen_2022_Education_Attainment.tsv.gz; https://storage.
googleapis.com/broad_institute_mlam/brainstorm-v2-local-gencor-1/
03_quality_control_sumstatsqc/07_Data_Release_GWAS_Catalog_01/
Biogen_2022_General_Cognitive_Ability.tsv.gz; https://storage.
googleapis.com/broad_institute_mlam/brainstorm-v2-local-gencor-1/
03_quality_control_sumstatsqc/07_Data_Release_GWAS_Catalog_01/
Biogen_2022_Numeric_Reasoning.tsv.gz; https://storage.googleapis.
com/broad_institute_mlam/brainstorm-v2-local-gencor-1/03_quality_
control_sumstatsqc/07_Data_Release_GWAS_Catalog_01/Biogen_2022_
Pairs_Matching.tsv.gz; https://storage.googleapis.com/broad_institute_
mlam/brainstorm-v2-local-gencor-1/03_quality_control_sumstatsqc/07_
Data_Release_GWAS_Catalog_01/Biogen_2022_Reaction_Time.tsv.gz;
https://storage.googleapis.com/broad_institute_mlam/brainstorm-v2-
local-gencor-1/03_quality_control_sumstatsqc/07_Data_Release_GWAS_
Catalog_01/Biogen_2022_Social_Deprivation.tsv.gz; https://storage.
googleapis.com/broad_institute_mlam/brainstorm-v2-local-gencor-1/
03_quality_control_sumstatsqc/07_Data_Release_GWAS_Catalog_01/
Biogen_2022_Verbal_Reasoning.tsv.gz. The individual genotype data
are available under restricted access, access can be obtained by appli-
cation to the UK Biobank. The meta-data for the cognitive summary
statistics are provided Supplementary Data 1. (3) Polygenic Priority
Score gene features used in this study are available at https://github.
com/FinucaneLab/pops. Results from the Polygenic Priority Score
analysis is available in Supplementary Data 10 (4) eQTL annotations
from the Brain e-META, PsychENCODE PEER methodology and Psy-
chENCODE HCP methodology are available at the Summary Statistics
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Mendelian Randomization website found here (https://yanglab.
westlake.edu.cn/software/smr/#DataResource). The Summary statis-
ticsmendelian randomizationdata generated in this study areprovided
in the Supplementary Data 11a-c. (5) eQTL annotations used in the
TranscriptomeWide Analysis as part of the current study is available at
https://github.com/hakyimlab/MetaXcan. Results of the TWAS data
generated in this study are provided in the Supplementary Data 12a-m.
(6) eQTL annotations for FOCUS transcriptome-wide fine-mapping
analysis used in the study is available at https://github.com/bogdanlab/
focus. The FOCUS fine-mapping data generated in this study are pro-
vided in the Supplementary Data 13a, b. (7) Gene Ontologies within the
Molecular Signature Database 7.2 used in this study are available at
https://www.gsea-msigdb.org/gsea/msigdb. Gene-set analysis results
based on the Molecular Signature Database are provided in the Sup-
plementaryData 16a. (9) DrugBank annotations forWebGestalt analysis
is available at. https://go.drugbank.com. Webgestalt analysis results
based on the Drugbank annotations are provided in Supplementary
Data 16b. (10) Brainspan data used in this study are available at https://
www.brainspan.org/static/download.html. The results generated in this
study based on the BrainSpan data Supplementary Data 17. (11) Data
from the Allen Brain Atlas was visualized through the BrainScope
Visualizer. Image annotations reported in the current study is available
at https://brainscope.lumc.nl/brainscope. Results based on Brainscope
visualizer is reported in Supplementary Figs. 10–14. (12) GWAS catalog
annotations for gene annotations are available at https://www.ebi.ac.
uk/gwas/docs/file-downloads. Gene annotations based on GWAS cata-
log is reported in Supplementary Data 18. (13) All other GWAS summary
statistics pertaining to psychopathology traits described in Supple-
mentary Data 1 is available for download at https://pgc.unc.edu/for-
researchers/download-results/. Individual level genotype data are
restricted due to data privacy laws. Requests for de-identified genotype
data should be made to respective data-access committees.

Code availability
Wrapper forGWAS summary statisticsQC is available at https://github.
com/maxzylam/SumstatsQC. Wrapper for local genetic correlations is
available at https://github.com/maxzylam/rho-HESS-wrapper. Other
codes are available as part of their software packages indicated in the
following section.
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