Skip to main content
. Author manuscript; available in PMC: 2022 Nov 14.
Published in final edited form as: Org Lett. 2021 Apr 15;23(9):3389–3393. doi: 10.1021/acs.orglett.1c00831

Table 1.

Optimization of the Reaction and Its Conditionsa

graphic file with name nihms-1848827-t0002.jpg
entry base (equiv) solvent (mL) yield (%)b
1 LiOtBu (1.0) PhCF3 (1.0) 42
2 LiOtBu (1.0) PhCl (1.0) 67 (65)c
3 LiOtBu (1.0) CH3CN (1.0) 10
4 LiOtBu (1.0) PhH (1.0) 49
5 NaOtBu (1.0) PhCl (1.0) 24
6 KOtBu (1.0) PhCl (1.0) 2
7 PhCl (1.0)
8 LiOtBu (0.75) PhCl (1.0) 45
9 LiOtBu (1.25) PhCl (1.0) 63
10 LiOtBu (1.5) PhCl (1.0) 35
11d LiOtBu (1.0) PhCl (1.0) 7
12e LiOtBu (1.0) PhCl (1.0) 44
13f LiOtBu (1.0) PhCl (1.0) 60
14g LiOtBu (1.0) PhCl (1.0) 16
a

Reaction conditions: 1a (0.2 mmol, 1 equiv), 2a (1.0 mmol, 5 equiv), base (1 equiv), solvent (1 mL), room temperature around the reaction flask of 35 °C (heating caused by the LED lamp), reaction flask capped, overnight.

b

1H NMR yields using dibromomethane as the internal standard.

c

Isolated yield.

d

Reaction performed at 60 °C without light.

e

With 2.5 equiv of 2a instead of 5 equiv.

f

With 4 equiv of 2a intead of 5 equiv.

g

Reaction performed by adding 20 μL of H2O.