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METHODOLOGY

Tissue dissociation for single‑cell 
and single‑nuclei RNA sequencing for low 
amounts of input material
Gordon Wiegleb1,2, Susanne Reinhardt3, Andreas Dahl3 and Nico Posnien1,4*    

Abstract 

Background:  Recent technological advances opened the opportunity to simultaneously study gene expression for 
thousands of individual cells on a genome-wide scale. The experimental accessibility of such single-cell RNA sequenc-
ing (scRNAseq) approaches allowed gaining insights into the cell type composition of heterogeneous tissue samples 
of animal model systems and emerging models alike. A major prerequisite for a successful application of the method 
is the dissociation of complex tissues into individual cells, which often requires large amounts of input material and 
harsh mechanical, chemical and temperature conditions. However, the availability of tissue material may be limited 
for small animals, specific organs, certain developmental stages or if samples need to be acquired from collected 
specimens. Therefore, we evaluated different dissociation protocols to obtain single cells from small tissue samples of 
Drosophila melanogaster eye-antennal imaginal discs.

Results:  We show that a combination of mechanical and chemical dissociation resulted in sufficient high-quality 
cells. As an alternative, we tested protocols for the isolation of single nuclei, which turned out to be highly efficient for 
fresh and frozen tissue samples. Eventually, we performed scRNAseq and single-nuclei RNA sequencing (snRNAseq) to 
show that the best protocols for both methods successfully identified relevant cell types. At the same time, snRNAseq 
resulted in less artificial gene expression that is caused by rather harsh dissociation conditions needed to obtain 
single cells for scRNAseq. A direct comparison of scRNAseq and snRNAseq data revealed that both datasets share 
biologically relevant genes among the most variable genes, and we showed differences in the relative contribution of 
the two approaches to identified cell types.

Conclusion:  We present two dissociation protocols that allow isolating single cells and single nuclei, respectively, 
from low input material. Both protocols resulted in extraction of high-quality RNA for subsequent scRNAseq or snR-
NAseq applications. If tissue availability is limited, we recommend the snRNAseq procedure of fresh or frozen tissue 
samples as it is perfectly suited to obtain thorough insights into cellular diversity of complex tissue.
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Background
Gene expression is a central molecular process that coor-
dinates various aspects of organismal life, such as behav-
ior [1] and development [2, 3]. Since differences in gene 
expression are often associated with variation in organ-
ismal phenotypes, comparative gene expression studies 
are powerful approaches to establish testable biological 
hypotheses [4]. For instance, differences in the expression 
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of the developmental transcription factor genes pitx1 and 
shavenbaby cause natural variation in armor plate for-
mation in stickleback fish [5] and trichome formation in 
Drosophila [6], respectively. Similarly, natural variation 
in paternal care behavior in Peromyscus mice and density 
related stress behavior in zebrafish are tightly linked to 
differences in the expression of genes coding for the hor-
mone vasopressin [7] and the neuropeptide Parathyroid 
hormone 2 (Pth2) [8], respectively. Advances in sequenc-
ing technologies have been facilitating extensive insights 
into the regulation of gene expression on a genome wide 
scale [9, 10]. A common observation of such studies is 
that gene expression strongly depends on the biological 
context. Spatial and temporal gene expression, for exam-
ple, is tightly regulated throughout development result-
ing in tissue- and even cell type specific expression 
profiles [11–14]. In the light of this context-dependent 
gene regulation, it is becoming increasingly relevant to 
study gene expression on a cellular level.

Nowadays, multiple sequencing technologies are availa-
ble allowing to quantitatively analyze the messenger RNA 
content of single cells [15]. Single-cell RNA sequencing 
(scRNAseq) has been proven powerful to reveal the cell 
type composition of complex tissues or organs in model 
organisms, such as the fruit fly Drosophila melanogaster 
[16, 17], the nematode Caenorhabditis elegans [18] and 
mouse [19]. Also, biological processes, such as develop-
ment of the optic lobe of the fly brain [20], cell–cell com-
munication in tumors [21] and immunity [22, 23] have 
been successfully studied. Since the analysis of scRNAseq 
data does not require prior knowledge of the tissue of 
interest, this method is exceptionally well-suited to study 
the cell type composition of emerging model organisms, 
such as sponges [24], the cnidaria Nematostella vectensis 
[25], Hydra vulgaris [26] and Clytia hemisphaerica [27], 
the annelid Platynereis dumerilii [28] and the planarian 
Schmidtea mediterranea [29, 30], the ant Harpegnathos 
saltator [31] and multiple vertebrates [32, 33]. Compara-
tive studies have been performed to reveal divergent 
and conserved aspects of the motor cortex in human, 
marmoset, and mouse [34] and during early embryonic 
development in pigs, humans and cynomolgus monkeys 
[35].

scRNAseq protocols are composed of the following key 
steps [36, 37]: The tissue of interest is dissociated, and 
individual cells are captured either in microwell plates 
[38] or in micro-droplets [39]. Individual captured cells 
are lysed in the microwell or droplet and the released 
polyadenylated RNA (mRNA) is captured using poly-T 
oligos. The mRNA is reverse transcribed into comple-
mentary DNA (cDNA) and cell and molecule specific 
barcodes are added. Subsequently, sequencing librar-
ies are generated by fragmentation, Illumina sequencing 

adapter ligation and amplification. The amplified libraries 
are eventually sequenced using next generation sequenc-
ing technologies (e.g. Illumina).

While current scRNAseq technologies allow sequenc-
ing up to 10,000 cells in one run [40], many more cells 
are needed as input material. For instance, mechani-
cal stress during dissociation of complex tissue leads to 
increased cell death [41]. Additionally, harsh dissociation 
conditions using enzymes, such as Trypsin, contribute 
to cell damage [42, 43], altered gene expression [43, 44] 
and RNA degradation [45]. Due to the high cell loss dur-
ing dissociation current scRNAseq methods are limited 
if small tissue samples are analyzed because tissue from 
multiple animals must be collected to obtain sufficient 
starting material.

Larval imaginal discs of the fruit fly Drosophila mela-
nogaster are such tiny tissues. These flat epithelial sac-
like tissues are specified as about 20 embryonic cells and 
they grow extensively during larval development to up to 
44,000–60,000 cells [46–49]. During pupae stages, imagi-
nal discs evert and give rise to external adult organs, such 
as wings, walking legs, genitals and compound eyes [50]. 
Imaginal discs are excellent models to study fundamen-
tal developmental and cellular processes, such as cell 
proliferation, tissue patterning and morphogenesis [51, 
52]. Due to its highly heterogeneous cell type compo-
sition, the eye-antennal disc that gives rise to the com-
pound eye, the dorsal ocelli, the antennae, and most of 
the head capsule [53, 54] (Fig. 1) is especially interesting 
for scRNAseq applications. Moreover, recent compara-
tive work on the evolution of compound eye size and 
head morphology in Drosophila species revealed perva-
sive variation in these adult traits [55–62]. Accordingly, 
inter- and intraspecific comparisons of eye-antennal disc 
development have been successful in revealing underly-
ing developmental and molecular mechanisms [59, 60, 
63–65]. While gene expression in late eye-antennal disc 
have been studied at single cell resolution [66, 67], earlier 
stages are less accessible due to low cell numbers. There-
fore, we evaluated different dissociation, tissue preser-
vation and sequencing methods to establish an efficient 
protocol for single-cell transcriptomics in eye-antennal 
discs.

We show that a combination of mechanical and chemi-
cal dissociation works best to obtain sufficient and 
representative cells for single-cell RNA sequencing (scR-
NAseq). However, we observed artificial expression of 
stress related genes, which was most likely due to rather 
harsh dissociation and cell-sorting conditions. As an 
alternative, we tested different protocols to isolate sin-
gle nuclei from fresh and frozen tissue and we show that 
single-nuclei RNA sequencing (snRNAseq) successfully 
allowed identifying key cell types without the drawback 
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of stress-response. We find differences in the relative 
contribution of scRNAseq and snRNAseq to common 
cell types and we discuss the advantages and disadvan-
tages of both methods. Our work provides an excellent 
overview of different single cell sequencing approaches 
when accessibility to tissue samples is limited.

Results and discussion
Tissue dissociation for scRNAseq with low amount of input 
material
For RNA sequencing of single cells (scRNAseq), heter-
ogenous tissue samples need to be dissociated into live 
and intact cells. Since about 10,000 cells can be analyzed 
using the 10 × Genomics Chromium System and about 
50% of input cells are lost throughout the preparatory 
steps, we first tested different dissociation protocols to 
obtain about 20,000 cells from entire larval organs or 
about 30 late third instar eye-antennal imaginal discs.

The success of different tissue dissociation protocols 
was evaluated by estimating the ratio of dead and live 
cells, as well as the final number of live cells. A dead cell 
staining with Trypan blue is well-established in homo-
geneous cell suspensions obtained from cell culture [68, 
69]. However, we experienced unreliable dead/live cell 
ratios with our complex cell suspensions, which was most 
likely due to Trypan blue positive debris. Therefore, we 

applied a live-dead assay based on propidium iodide (PI) 
and Calcein green/violet to identify dead and live cells, 
respectively. This method allows enrichment of live cells 
via fluorescence activated cell sorting (FACS), which 
efficiently also removed debris (Additional file  1: Fig. 
S1A). Note that the combination of PI and Calcein violet 
resulted in the most efficient separation of live and dead 
cells due to a lower spectral overlap of both dyes during 
FACS. Sorted cells were examined by fluorescent micros-
copy to confirm that they were mostly Calcein positive 
and PI negative.

First, we tested purely enzymatic or mechanical disso-
ciation protocols, respectively. Incubation of eye-anten-
nal discs in 10 × TrypLE and 2.5 mg/ml Collagenase even 
for 2  h did not result in single cell solutions based on 
visual assessment. Imaginal discs ground with a Dounce 
homogenizer showed a high proportion of debris and 
what appeared to be single-nuclei suspensions. Addition-
ally, different attempts resulted in inconsistent dissocia-
tion because the low amount of input tissue was barely 
visible and due to the manual component, it was difficult 
to balance complete dissociation with the destruction of 
cells. Based on these observations we reasoned that effi-
cient tissue dissociation required a combination of enzy-
matic dissociation with gentle mechanical force.

The basic protocol was based on treatment of the tis-
sue with TrypLE and Collagenase on a shaker at 300 rpm 
with pipet strokes (1000  µl pipet tips) during and after 
the incubation. We varied the following parameters 
(see Additional file  1: Table  S1): enzyme concentration 
(1 × and 10 × TrypLE; 2.5  mg/ml and 10  mg/ml Colla-
genase), incubation time (10–60  min), incubation tem-
perature (37  °C and 30  °C), number of pipet strokes (5 
strokes during the incubation and 17–20 strokes after 
the incubation) and filtration of the cell suspension (no 
filter, 20  µm and 35  µm filters). 1 × TrypLE was insuffi-
cient to achieve complete dissociation in a timely man-
ner and the addition of 10 mg/ml Collagenase resulted in 
an increased yield, as well as fewer cell aggregates (visual 
assessment). Incubation for up to 60 min at 30 °C resulted 
in comparable or slightly more live cells compared to a 
digestion at 37 °C. Filtration with a filter of 35 µm mesh 
size did not drastically reduce the proportion of live 
cells but decreased the amount of debris. The number of 
pipet strokes after incubation had the highest impact on 
cell survival with significantly reduced cell survival after 
more than 17 strokes. We obtained the best results with 
16,208 live cells (58% survival rate) from 28 eye-antennal 
discs after 60 min incubation at 30 °C in 10 × TrypLE and 
10 mg/ml Collagenase and 5 pipet strokes during and 17 
pipet strokes after the incubation (Additional file 1: Fig. 
S1B). RNA extracted from this sample was of high quality 

photoreceptors (PhR), interommatidial cells
(Interom), Glia

Dorsal, Ocelli

Morphogenetic furrow (MFurrow), Preproneural zone (PPN),
Second mitotic wave (SMW)

Antenna

Ventral periopodial epithelium (Ventral PE)

Eye-antennal border (EAB)

Fig. 1  Schematic overview of major cell types of the late third instar 
D. melanogaster eye-antennal disc
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(Additional file 1: Fig. S2) and suitable for 10X Genomics 
scRNAseq.

In summary, for low amount of input material, such 
as < 50 late L3 eye-antennal discs we propose a protocol 
that combines enzymatic dissociation in conjunction 
with slight mechanical disruption.

scRNAseq reveals relevant cells and a major impact of heat 
shock and ribosomal genes
We subjected cells obtained after FACS to a 10X Genom-
ics Chromium run to test if the established dissociation 
protocol resulted in representative cell types expected 
in the eye-antennal disc. After droplet-based isolation 
of RNA from individual cells and subsequent Illumina 
sequencing, we obtained almost 200 million reads from 
about 14,500 cells with 13,303 reads and 537 genes per 
cell (Table  1). 12,000 cells showed less than 10% mito-
chondrial gene expression (Additional file  1: Fig. S3A) 
confirming that we mostly isolated live cells. Many reads 
of the scRNAseq dataset mapped to genes coding for heat 
shock proteins (Fig.  2A) and among the top ten genes 
with most variable expression across cells, we found two 
heat shock related genes (Hsp23 and lncRNA:Hsromega, 
Fig.  2B). To evaluate whether our rather high dissocia-
tion temperature of 30 °C may impose stress on the cells, 
we re-evaluated a previously published scRNAseq data-
set for eye-antennal discs that is based on dissociation 
at room temperature [66] (personal communication). As 
the list of genes expressed in different cell types contains 
19 heat shock related genes of which three (Hsp27, Hsp26 
and Hsp83) show moderate to high expression in almost 
all cell types [66 Supplementary Data 2], we suggest that 

other steps of the dissociation protocol may be respon-
sible for the observed stress response. The distribution 
of reads also showed a high expression of cytoplasmic 
genes, such as eEF1alpha1 and eukaryotic elongation fac-
tors (Fig. 2A). Additionally, a lot of genes coding for ribo-
somal proteins were expressed in our dataset (Fig.  2A). 
The high content of ribosomal genes is expected for 
scRNAseq because cytoplasmic mRNA is extracted and 
ribosomal mRNAs are known to be very stable [70, 71]. 
However, they are often considered uninformative.

We performed an unbiased cluster analysis based 
on variable gene expression and performed dimen-
sion reduction using Uniform Manifold Approximation 
and Projection (UMAP) [72]. We obtained 22 cell clus-
ters which we annotated based on marker genes used in 
previous scRNAseq analyses [66, 67] and based on prior 
knowledge from the literature (see Materials and Meth-
ods for details, Additional files 2, 3, and 4: Tables S2 and 
S3 and Fig. S4). Gene ontology (GO) term enrichment 
analyses for marker genes defining each of these 22 clus-
ters (Additional file 4: Table S4) suggest that cells in each 
cluster expressed genes involved in relevant biological 
processes (Additional file 5: Table S5).

For the sake of comparability (see below), we manu-
ally combined similar cell types (see Additional file  3: 
Table  S3) to obtain 11 clusters (Fig.  3A) representing 
most cell types that have been previously described in 
scRNAseq data for eye-antennal discs [66, 67] (Fig.  1). 
To validate our automatic cluster annotation, we tested 
whether relevant genes were among the top four genes 
that define a certain cluster. For instance, cut (ct) [73, 
74] and homothorax (hth) [73] have been shown to be 

Table 1  Summary statistics for the cell- and nuclei dataset

a Assuming that a late third instar eye-antennal disc is composed of about 44,000 cells[49]

Dataset scRNAseq snRNAseq

Estimated number of cells (# of discs) 14,487 (28) 9048 (41)

Number of cells per disc (% of expected number of cellsa) 517 (1.1) 221 (0.5)

Median genes per cell 537 812

Mean reads per cell 13,303 13,334

Valid barcodes 96.10% 97.10%

Number of reads 192,731,871 120,649,741

Fraction of reads in cells 38.20% 73.50%

Total genes detected 11,062 12,296

Median UMI counts per cell 1249 1383

Reads mapped to genome 93.20% 85.70%

Reads mapped confidently to genome 86.40% 84.50%

Reads mapped confidently to intronic regions 2.10% 14.70%

Reads mapped confidently to intergenic regions 9.00% 0.80%

Reads mapped confidently to exonic regions 75.20% 69.00%

Percentage of cells with high mitochondrial read count (> 10%) 14.00% 0.02%



Page 5 of 18Wiegleb et al. Frontiers in Zoology           (2022) 19:27 	

involved in antennal development and they are among 
the top four genes expressed in antennal and eye-anten-
nal border (“EAB”) clusters (Fig. 3B). In line with previ-
ously reported roles in photoreceptor differentiation 
[75, 76], we found amyloid protein precursor-like (Appl) 
and scratch (scrt) among the top four genes in photo-
receptors (“PhR”) (Fig.  3B). And in the morphogenetic 
furrow (“MFurrow”) cluster, we observed a member 
of the enhancer of split gene complex (E(spl)m4-BFM) 
(Fig. 3B), which are broadly expressed in this tissue [77, 
78]. Besides these relevant biological findings, the poten-
tial stress response of the cells was also evident in our 
cluster analysis because three heat shock genes (Hsp23, 

Hsp26 and Hsp68) were among the top four cluster defin-
ing genes in the “MFurrow” cluster and those three genes 
were expressed in most cells of all clusters (Fig. 3B). Note 
that the “Other” cluster was composed of diverse cell 
types, such as antennal, dorsal and second mitotic wave 
(“SMW”) cells (see Fig.  4E, left panel) and accordingly, 
this cluster was not clearly defined by a set of marker 
genes (Fig. 3B).

In summary, our tissue dissociation protocol success-
fully resulted in a cell suspension containing major cell 
types of the eye-antennal disc but may pose stress on the 
cells which is detectible through high expression of heat 
shock genes. Additionally, the high level of ribosomal 
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(See figure on next page.)
Fig. 4  Direct comparison of scRNAseq and snRNAseq datasets on the level of major cell types. A Dot plot showing the expression of all genes 
used as cell type markers (Additional file 2: Table S2) in scRNA (red lanes) and snRNA data (blue lanes) split by cell type. The color intensity of the 
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annotation of all clusters prior to cluster merging. D Proportion of cell or nuclei contribution to each cluster by dataset. The total number of cells in 
each cluster is provided for each cell type at the top of the bar plot. E Alluvial plots depicting changes of cell identities between separately analyzed 
scRNAseq (left) and snRNAseq (right) data and integrated data. The Y-axes indicate the number of cells (left) and nuclei (right) of the separately 
analyzed datasets
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genes may introduce a bias during further analysis of 
such data.

Cryo‑preservation of imaginal discs for efficient isolation 
of single nuclei
Our scRNAseq data suggested that the applied dissocia-
tion conditions were still stressful for the cells. Addition-
ally, the protocol relies on the processing of fresh tissue 
samples hampering the analysis of even smaller tissue 
samples. For instance, eye-antennal discs at the late L3 
larval stage contain 44,000–60,000 cells, while discs at the 
transition from the L2 to the L3 stage are only composed 
of about 5000 cells [79]. Therefore, about 12 times more 
discs are needed to obtain sufficiently high cell numbers 
for scRNAseq applying our single cell dissociation proto-
col. As tissue growth is an integral part of developmental 
processes, more efficient protocols are needed to harness 
the full potential of single cell sequencing methods for 
developmental biology. To this end, we tested two main 
approaches: First, we evaluated the use of single nuclei 
for RNA sequencing (i.e. snRNAseq) as snRNAseq has 
been shown to result in comparable data, especially for 
tissue samples that are difficult to dissociate into single 
cells [80–83]. Second, we tested the effect of cryo-pres-
ervation on the subsequent isolation of single nuclei and 
RNA integrity as this step allows collecting small tissue 
samples over time.

For the isolation of single nuclei, we tested two main 
protocols: One protocol suggested by 10X Genomics is 
based on NP40 as detergent and a small number of cen-
trifugation and pipetting steps [84]. The other protocol 
had been established for human heart tissue and is based 
on using Triton X-100 as a detergent and a variety of 
RNAse inhibitors to preserve RNA in single nuclei [85]. 
When 30–50 freshly dissected eye-antennal discs at late 
L3 stage were used for nuclei isolation, both protocols 
resulted in more than 20,000 nuclei and extracted RNA 
was of high quality suitable for snRNAseq (Additional 
file 1: Fig. S5).

We next dissected imaginal discs, snap-froze them in 
liquid nitrogen and stored them at − 80 °C for at least one 
day, or up to four weeks. All applied protocols allowed us 
to isolate more than 20,000 intact nuclei from about 30 
cryo-preserved eye-antennal discs. RNA extracted from 
nuclei isolated with the 10X Genomics protocol resulted 
in low RNA quality, suggesting a high level of RNA deg-
radation (Additional file  1: Fig. S6, lanes 7 and 8). The 
addition of Citric acid to the dissociation buffer has 
been shown to preserve RNA integrity in human pan-
creatic cells [86]. However, the use of Citric acid in the 
10X Genomics protocol did only marginally improve the 
quality of RNA extracted from cryo-preseved samples 
(Additional file  1: Fig. S6, lanes 10 and 11). In contrast, 

we observed almost no RNA degradation and high RNA 
quality when we used the protocol that employs RNAse 
inhibitors (Additional file 1: Fig. S6, lanes 1, 2, 4 and 5). 
RNA integrity was preserved even when eye-antennal 
discs were thawed for 3.5  h and frozen again prior to 
nuclei isolation and RNA extraction (Additional file  1: 
Fig. S5), showing that the use of RNAse inhibitors are 
highly efficient to prevent RNA degradation when pro-
cessing of cryo-preserved tissue samples. Based on the 
high yield and the high RNA quality, we conclude that the 
combination of cryo-preservation and nuclei isolation 
employing RNAse inhibitors is highly efficient to process 
low input material for snRNAseq.

snRNAseq identifies eye‑antennal disc gene expression 
and reduces technical biases
To test if the nuclei obtained after cryo-preservation are 
suitable for snRNAseq and represent main cell types of 
the eye-antennal disc, we subjected the nuclei to a 10X 
Genomics run to obtain 120  million reads from about 
9000 cells with 13,334 reads and 812 genes per cell 
(Table  1). For the analysis of the data, we applied the 
same pipeline and settings as for the scRNAseq data-
set, with the exception that intronic reads were included 
because pre-mRNA is expected in nuclei [83]. Among 
the 10 genes with most variable expression in the data-
set (Fig. 2C), we found some with known functions and 
expression in late L3 eye-antennal discs. For instance, 
the homophilic cell adhesion molecule Klingon (Klg) is 
strongly expressed during R7 photoreceptor develop-
ment [87] and rotund (rn) that codes for a Kruppel zinc-
finger transcription factor is expressed in large parts of 
the antennal field [88]. Importantly, we did not observe 
genes associated with heat shock response among the top 
10 variable genes (Fig. 2C) and no bias of reads originat-
ing from heat shock genes was observed (Fig.  2A), sug-
gesting that they will not impact subsequent clustering 
analyses as observed for the scRNAseq data. As expected 
for snRNAseq data [80, 82, 89, 90], we found only two 
cells with more than 10% mitochondrial gene expression 
(Additional file  1: Fig. S3B) and 28% fewer reads origi-
nating from ribosomal genes (Fig. 2A) compared to scR-
NAseq, suggesting lower impact of such uninformative 
reads on the entire dataset.

An unbiased clustering of the snRNAseq data using the 
same resolution as for scRNAseq (see above) resulted in 
24 unique clusters, which we annotated using the same 
pipeline as described for the scRNAseq data (Additional 
file 1: Fig. S7). GO term enrichment analyses for marker 
genes defining each of these 24 cell clusters (Additional 
file 6: Table S6) revealed biological processes relevant for 
eye-antennal disc cells (Additional file 7: Table S7).
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To improve comparability of the snRNAseq and scR-
NAseq data (see below), we combined similar clusters 
(see above & Additional file 3: Table S3), and we obtained 
the same clusters as for scRNAseq data (Fig. 3B). Addi-
tionally, we found clearly assigned clusters for second 
mitotic wave (“SMW”) and preproneural (“PPN”) cells, 
which were missing from the scRNAseq data (com-
pare Fig. 3A to C). A closer examination of the top four 
genes that define a certain cluster revealed for instance 
Sp1 [91], disco-related (disco-r) [92], Distalless (Dll) 
[93] and spineless (ss) [94] in the antennal cell cluster 
(Fig. 3D) and indeed all four genes have been implicated 
in antennal development. In line with their role in reti-
nal differentiation and their expression in retinal pro-
genitors we found optix/six3 [95] and twin of eyeless 
(toy) [96] among the top four genes in the preproneural 
(“PPN”) cell cluster. glass (gl) [97–99], scratch (scrt) [76] 
and anterior open (aop) [100–102] have been implicated 
in late retinal differentiation processes and accordingly, 
we observed highly specific expression in cells poste-
rior of the morphogenetic furrow (i.e. second mitotic 
wave, “SMW”; photoreceptors, “PhR” and interomma-
tidial cells, “Interom”). Note that the “Other” cluster was 
largely defined by ribosomal gene expression (Fig.  3D). 
As ribosomal mRNAs are more stable in the cytoplasm, 
we hypothesize that all nuclei that still had remnants 
of cytoplasm attached show higher levels of ribosomal 
mRNAs compared to pure nuclei and thus lead to the 
distinct expression profile and clustering result.

Overall, we conclude that the snRNAseq dataset cap-
tured gene expression profiles of eye-antennal disc cells 
and at the same time, technical artifacts, such as heat 
shock gene expression and an excess of reads from ribo-
somal genes were diminished.

scRNAseq and snRNAseq show largely overlapping gene 
expression profiles
Besides the reduced expression of mitochondrial, ribo-
somal and heat shock genes in the snRNAseq dataset, 
we wanted to compare the snRNAseq and scRNAseq 
datasets more thoroughly. The comparison of the top 
four genes defining comparable cell clusters in the scR-
NAseq and snRNAseq datasets revealed five shared 
genes (arrows in Fig.  3B, D), suggesting that cell-type 
specific expression is variable in our two datasets. To 
characterize the overlap of gene expression profiles fur-
ther, we first asked to what extent the most variable genes 
overlapped in both datasets. Most of the top ten varia-
ble genes in the scRNAseq dataset were also among the 
most variable genes in the snRNAseq dataset and vice 
versa (Fig. 2B, C; Additional file 8: Table S8). Among the 
top 3000 most variable genes, 1480 were present in both 
datasets, while 1520 genes were unique for the scRNAseq 

or the snRNAseq dataset, respectively (Fig.  2D; Addi-
tional file  9: Table  S9). The genes unique for scRNAseq 
or snRNAseq predominantly represented general cel-
lular and metabolic processes (Additional files 1 and 9: 
Fig. S8A, B, Table S9), while the shared genes were highly 
enriched for developmental processes relevant for lar-
val eye-antennal discs (Additional files 1 and 9: Fig. S8C, 
Table  S9). This finding suggests that cell  type specific 
genes may largely be shared between datasets. To con-
firm this, we compared two types of gene sets.

First, a direct comparison of the manually curated 
marker genes used for automatic cluster annotation 
(Additional file  2: Table  S2) showed similar expression 
in comparable clusters between both datasets (Fig.  4A). 
Exceptions were the antennal marker genes Dll, ss, salr, 
salm, zfh2, ct and disco-r, which were highly expressed 
in the antennal (“Antenna”) and eye-antennal boarder 
(“EAB”) clusters in the snRNAseq and scRNAseq data-
set, respectively (Fig. 4A). This observation suggests that 
these two cell types were not clearly distinguishable in 
the scRNAseq data.

Second, we asked for each of the comparable clusters 
(i.e. clusters defined in Fig. 3A and C) how many of the 
differentially expressed genes (FDR 0.05 and log2-fold 
change > 0.25) were shared between datasets. Depending 
on the cell type, we found 6% (e.g. “Antenna” and “Ven-
tral PE”) to 26% (e.g. “PhR” and “Hemocytes”) overlap 
(Additional files 1 and 10: Fig. S9, Table S10). Among the 
genes that were shared between datasets, we observed 
factors with well-established functions in the respective 
cell types, such as glass (gl) [97–99], scratch (scrt) [76] 
and amyloid protein precursor-like (Appl) [75] in photo-
receptors, cut (ct) [73, 74] and homothorax (hth) [73] in 
antennal and eye-antennal border cells and members of 
the enhancer of split gene complex [77, 78] in the mor-
phogenetic furrow. Our observation is well in line with 
a comparison of scRNAseq and snRNAseq data in het-
erogeneous human liver tissue that also showed cell type 
specific correlation coefficients in log2-fold changes 
among the two datasets (coefficients ranging from 0.06 
to 0.66) [103]. Therefore, despite fundamental differences 
in the two applied sequencing approaches, we found that 
global and cluster-specific gene expression was consider-
ably comparable between our scRNAseq and snRNAseq 
datasets.

scRNAseq and snRNAseq show differences cell type 
composition
To directly compare the snRNAseq and the scRNAseq 
datasets, we combined both datasets by clustering 
cells and nuclei based on expression profiles and per-
forming dimension reduction. The obtained 21 clusters 
were annotated based on our manually curated marker 
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gene list (Additional files 1, 2 and 3: Fig. S10, Table S2 
and Table  S3) and similar clusters were combined as 
described above for the individual datasets (Fig.  4B; 
Additional file  3: Table  S3). Based on our cluster (i.e. 
cell type) annotation, we found that the combined data-
set contained all major cell types that have been pre-
viously described in scRNAseq data for eye-antennal 
discs [66, 67] (Fig. 4B, Fig. 1).

The UMAP of the integrated data with cells color-
coded by the dataset suggested that all major cell types 
were represented in both datasets and that the differ-
ent datasets contributed unequally to some cell types 
(Fig. 4C). Therefore, we quantified the number of cells 
of each cluster originating from scRNAseq and snR-
NAseq data, respectively (Fig.  4D). This analysis con-
firmed the biases in the data composition as 8 of the 13 
clusters were predominantly defined by snRNAseq data 
and 5 clusters were defined by scRNAseq data (Fig. 4D). 
Clusters with a strong scRNAseq-bias were the ones 
with ambiguous cell type assignment (“Other”), sec-
ond mitotic wave (“SMW”) and photoreceptors (“PhR”) 
(Fig. 4D). The significant contribution of the scRNAseq 
dataset to second mitotic wave (“SMW”) cells was par-
ticularly unexpected as we were unable to unequivo-
cally identify this cell type in the individual scRNAseq 
dataset (Fig.  3A). To test, which other cell type in the 
scRNAseq data may contribute to the “SMW” cluster 
in the integrated dataset, we used the cell identifiers 
to compare the cluster assignment of each cell in the 
individual scRNAseq dataset to the integrated dataset 
(Fig.  4E, left panel). This analysis revealed that cells 
defined as second mitotic wave (“SMW”) cells in the 
integrated dataset were part of the large “Other” cluster 
in the scRNAseq data. Moreover, this analysis showed 
that the “Other” cluster also contained preproneural 
(“PPN”) cells (Fig.  4E, left panel), which we could not 
find in the individual scRNAseq dataset (Fig. 3A). This 
observation suggests that the scRNAseq data did not 
contain sufficient information to clearly define these 
two cell types.

Since we were unable to identify a clear “Dorsal” cluster 
in our snRNAseq data, we used the specific nuclei iden-
tifiers to track individual nuclei between the snRNAseq 
data and the integrated data (Fig.  4E, right panel). The 
alluvial plot showed that “Dorsal|Ocelli”, ventral peripo-
dial epithelium (“Ventral PE”), preproneural (“PPN”) 
and almost all “Other” nuclei contributed to the “Dor-
sal” cluster in the integrated dataset. This heterogeneous 
contribution is expected as we combined multiple clus-
ters containing different cell types with dorsal identity for 
the comparative analysis (Additional file 3: Table S3). For 
instance, the peripodial epithelium covers the entire eye-
antennal disc [104] and preproneural cells are present 

along the entire dorsal–ventral axis [105]. Accordingly, 
both cell types may contribute to dorsal cells.

Generally, the alluvial plots showed that some cell types 
could be clearly defined in the two different datasets. For 
instance, photoreceptors (“PhR”) and ventral peripodial 
epithelium (“Ventral PE”) cells of the scRNAseq dataset, 
eye-antennal border (“EAB”) and antennal cells of the 
snRNAseq dataset and interommatidial cells (“Interom”) 
of both datasets were almost fully recovered as such in 
the integrated data. For other clusters the cell type assign-
ment in the individual datasets was less clear, which may 
be caused by the observed differences in cluster-specific 
gene expression (see above).

In summary, our direct comparison of scRNAseq and 
snRNAseq data showed that both methods identified 
major cell types present in the eye-antennal disc, but 
we observed differences in the relative contribution of 
the datasets to different cell types. While previous com-
parisons of scRNAseq and snRNAseq also showed such 
biases [80, 103, 106, 107], the observed discrepancy 
between our two datasets could partially be explained by 
experimental difference. Specifically, larvae for scRNAseq 
were staged based on morphology and behavior (i.e. late 
wandering larvae at the transition to white prepupae) and 
discs for snRNAseq were dissected from larvae staged by 
developmental time (120  h after egg laying). Therefore, 
we assume that the larvae used for scRNAseq had been 
slightly older than those obtained for snRNAseq.

Conclusion
Assessing genome wide gene expression for individual 
cells has proven powerful to describe the heterogene-
ity of complex tissues, identify novel cell types and to 
study biological processes, such as immunity and cell–
cell interactions at unprecedented detail. Despite the 
technological advances, single-cell RNA sequencing 
(scRNAseq) methods still require many cells as starting 
material. Therefore, we evaluated different dissociation 
protocols and compared scRNAseq to single-nuclei 
RNA sequencing (snRNAseq) with special emphasis 
on low-input material. Based on data obtained for eye-
antennal imaginal discs of Drosophila melanogaster, we 
found snRNAseq superior to scRNAseq for the follow-
ing reasons: (1) The isolation of nuclei requires fewer 
experimental steps compared to tissue dissociation into 
live cells, increasing reproducibility across experiments. 
This feature is especially relevant if gene expression 
comparisons are needed on the level of individual cells, 
for example to assess the effect of experimental manip-
ulations, to study different developmental stages or to 
compare species/populations. (2) We observed signifi-
cantly reduced stress-related expression responses and 
in line with a previous report in human liver data [103] 
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we found reduced ribosomal and mitochondrial gene 
expression in snRNAseq data, suggesting that more 
informative reads contribute to biological insights. (3) 
We showed highly efficient nuclei isolation and high-
quality RNA extraction from frozen tissue [see also 
e.g. 108]. It is a major advantage to have the oppor-
tunity to collect tissue over time and process samples 
simultaneously, especially for low-input material. (4) 
In line with previous reports [80, 82, 83, 89, 90, 107, 
109, 110], our snRNAseq dataset contained sufficient 
expression information to unravel almost all major cell 
types expected in eye-antennal imaginal discs. We only 
lacked a clearly defined cluster of dorsal cells in our 
snRNAseq data, while we were unable to unequivocally 
identify important second mitotic wave (“SMW”) and 
preproneural (“PPN”) cells in our scRNAseq. (5) While 
scRNAseq has been shown to result in biased cell com-
position, due to different cell sizes, shapes, and survival 
rate upon dissociation [111], the more streamlined 
nuclei isolation procedure should ensure a more repre-
sentative assessment for snRNAseq, especially for com-
plex organs, such as nervous tissue [81]. For instance, 
we found indications that snRNAseq may be more effi-
cient in capturing rather complicated cell types, such 
as the large polyploid cells of the peripodial epithelium 
(“Ventral PE” in Fig. 4D).

It is important to consider major differences in the anal-
ysis and interpretation of scRNAseq and snRNAseq data. 
For instance, snRNAseq data contains intronic reads 
originating from immature nuclear RNA [83]. Accord-
ingly, well-annotated genome resources are advantageous 
and analyses pipelines need to be adjusted to also include 
reads mapped to introns in subsequent read quantifi-
cation. snRNAseq data captures only rather transient 
nuclear RNA, while scRNAseq also includes cytoplasmic 
mature mRNA. Hence, gene regulation events acting on 
the level of nuclear export [112, 113], splicing [114] or 
mRNA maturation [115, 116] may contribute to differ-
ences in expression information derived from nuclei and 
cells, respectively. If cytoplasmic RNA molecules are of 
special interest and thus single cells need to be isolated, 
we strongly suggest a dissociation protocol combining 
chemical and mechanical treatment of tissue samples in 
conjunction with FACS-aided life cell selection based on 
fluorescent life-dead cell staining. Our direct comparison 
of scRNAseq and snRNAseq data showed that the differ-
ent datasets contributed differently to the obtained cell 
types. While some of these differences can be explained 
by slightly different larval staging procedures in our 
experiments, it remains to be established, which exact 
cellular or molecular features influence the more effi-
cient recovery of certain cell types in sc/snRNAseq. In 
the light of our findings, it will be important to stick to 

either scRNAseq or snRNAseq if comparative questions 
are tackled.

In summary, based on a thorough evaluation of dif-
ferent dissociation and sequencing protocols we suggest 
a highly efficient snRNAseq procedure to obtain high-
quality expression data for individual nuclei. Our proce-
dure is specifically tested for low-input material and will 
therefore be perfectly suited for future studies with lim-
ited access to tissue samples.

Methods
Fly stock keeping and tissue dissection
Flies of the Oregon R strain of Drosophila melanogaster 
were kept in fly food vials (400  g of malt extract, 400  g 
of corn flour, 50 g of soy flour, 110 g of sugar beet syrup, 
51  g of agar, 90  g of yeast extract, 31.5  ml of propionic 
acid, and 7.5  g of Nipagin dissolved in 40  ml of Etha-
nol, water up to 5 L) in incubators at 25  °C prior to the 
experiment for at least one generation. The incubators 
maintain 12 h light and dark cycles. For single-cell RNA 
sequencing (scRNAseq), eye-antennal discs were dis-
sected from late wandering L3 larvae. For single-nuclei 
RNA sequencing (snRNAseq), eye-antennal discs were 
dissected from late L3 larvae at 120 h after egg laying. To 
control for larval density, eggs were deposited on yeast-
coated apple agar plates for 1–2 h and incubated for 24 h 
before 40 first instar larvae were transferred to food vials 
for further incubation.

For each dissociation experiment, at least 15 larvae 
were dissected for no more than 1  h in 400  µl ice-cold 
1 × PBS. When larval tissue was used for tests, the lar-
vae were everted, and a mix of inner organs (e.g. imaginal 
discs, gut, brain etc.) was isolated. When eye-antennal 
discs were used, ~ 30 eye-antennal discs were dissected 
(generally from about 15 larvae). All organs were trans-
ferred into a microcentrifuge tube containing Storage 
Buffer (4% BSA, 0.2U Protector RNAse inhibitor (Merck; 
3,335,399,001) in PBS). If the sample was to be frozen for 
later nuclei extraction, the tube was submerged in liquid 
nitrogen for 2  min and stored at −  80  °C until further 
processing.

Recommended dissociation protocol to obtain single‑cell 
suspensions for scRNAseq
In the following, the dissociation protocol is described 
that was used to obtain the live cells used for scRNAseq. 
Additional file 1: Table S1 contains detailed information 
about the protocol steps that had been varied and tested 
to achieve efficient dissociation.

 About 30 eye-antennal discs were dissociated in 
10 × TrypLE (Thermo Fisher Scientific; A1217701) con-
taining 2.5  mg/ml Collagenase (Invitrogen; 17,100,017) 
for 30  min on the shaker at 30  °C and 300  rpm. Every 
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15  min, or, if the digestion time was only 15  min, once 
after 7.5  min, the discs were pipetted up-and-down 5 
times using a 1000 µl pipet tip to dissociate cell clumps 
efficiently. The reaction was stopped using Schneider’s 
supplemented medium (SSM, 0.02 mg/ml Insulin in Sch-
neiders Medium (Thermofisher/Gibco; 21,720-024)). The 
suspension was gently pipetted up and down ~ 17 × with 
a 1000  µl pipet tip and passed through a 35  µm cell 
strainer (Corning; 352,235). The suspension was centri-
fuged for 5 min at 1000 rcf. For low amounts of tissue, the 
pellet might be small and barely visible on the side wall 
of the tube. Therefore, it is advantageous to use a swing 
bucket centrifuge to ensure that the pellet accumulates in 
the center at the bottom of the tube. The supernatant was 
removed, and the pellet was resuspended in 1 × PBS. The 
suspension was centrifuged again (see above), the super-
natant was removed, and the pellet was resuspended in 
0.04% BSA (Invitrogen; 17,100,017) and 0.2 U/µl Protec-
tor RNAse Inhibitor (Sigma-Aldrich; 3,335,402,001) in 
1 × PBS.

The cells were stained depending on the application: 
For testing non-fluorescent live-dead assays, 10  µl of a 
cell suspension were mixed with 10 µl Trypan Blue (Inv-
itrogen; 15,250,061). 10  µl of this solution were trans-
ferred onto a counting chamber and cells were counted 
using a Zeiss Telaval 31. For fluorescence-based assays, 
Calcein-AM (green: Sigma-Aldrich; 56,496 or violet: 
Sigma-Aldrich; ThermoFisher Scientific; C34858) was 
used to stain live cells at a final concentration of 0.5 µg/
ml. The suspension was incubated for 30  min to 1  h in 
the dark at room temperature on a shaker. Either DAPI or 
Propidium Iodide were used to stain nuclei at a final con-
centration of 1 μg/ml each and incubated for 10–30 min. 
The cell suspension was then immediately processed by 
Fluorescence Activated Cell Sorting (FACS) at the Uni-
versitätsmedizin Göttingen or at the Center for Molecu-
lar and Cellular Bioengineering Dresden using a Becton 
Dickinson BD FACSAria™ II Cell Sorter or BD FAC-
SAria™ III Cell Sorter. In consecutive gating steps, liv-
ing cells were selected out from debris, damaged cells, 
and doublets. Events which were positive for Calcein, as 
well as negative for Propidium Iodide were interpreted 
as live, undamaged cells. After FACS, cells were visually 
inspected under the microscope, counted and the volume 
of the suspension was adjusted with PBS and 0.04% BSA 
to achieve a concentration of ~ 1,000 cells per µl to match 
the optimal requirements for 10X Genomics scRNAseq.

Recommended dissociation protocol to obtain single 
nuclei for snRNAseq
Frozen tissue was thawed at 4 °C and kept on ice for the 
following steps unless specified otherwise. The tissue 
was transferred into a precooled Dounce homogenizer 

(2 ml) and 500 µl of Homogenization Buffer (HB) (0.4 U/
µl RiboLock RNase Inhibitor (ThermoFisher Scientific; 
EO0381), 0.2 U/µl SUPERase In™ RNase Inhibitor (Ther-
moFisher Scientific; AM2694), 0.10% (v/v) Triton X-100 
in NIM2; Nuclei isolation buffer 2 (NIM2): 1  µM DTT, 
1 × Protease Inhibitor (Promega; G6521) in NIM1; Nuclei 
isolation buffer 1 (NIM1): 250 mM Sucrose, 25 mM KCl, 
5  mM MgCl2, 10  mM Tris HCl, ph 8 in nuclease free 
water) was added. The tissue was homogenized with 8 
strokes of the tight pestle and kept on ice whenever pos-
sible. If the homogenization seemed incomplete after 
visual inspection, 1 stroke was added at a time up to a 
maximum of 11 strokes. The homogenized tissue was fil-
tered through a 30  µm MACS SmartStrainer (Miltenyi; 
130-098-458) to exclude larger debris. The homogenizer 
was furthermore washed with 2 × 500 µl of HB to trans-
fer as much of the tissue as possible to the cell strainer. 
The nuclei suspension was centrifuged at 500 g for 5 min 
at 4  °C in a swing bucket centrifuge to obtain a nuclei 
pellet. The supernatant was removed, and the pellet was 
resuspended in 500 µl Storage Buffer.

For subsequent FACS either 5 µl of a 100 μg/ml DAPI 
solution (Carl Roth; 6335.1) or 1 drop of NucBlue™ (Hoe-
chst 33,342; Invitrogen Live ReadyProbes™; R37605) 
was added and the nuclei were incubated for 10–20 min 
for the staining to occur. During the exposure time of 
the staining, the sample was immediately transferred 
to FACS (Becton Dickinson (BD™) FACS Aria III Flow 
Cytometry Cell Sorter) to collect intact nuclei into a 
1.5 ml microcentrifuge tube pre-coated with 1% BSA con-
taining 0.04% BSA in 5 µl PBS. The concentration should 
be ~ 1,000 nuclei per µl to match the optimal require-
ments for 10X Genomics snRNAseq. The gates were set 
to select for DAPI positive nuclei. Particles smaller than 
1 µm were excluded to remove small debris and damaged 
nuclei. Doublets and irregular shaped debris were also fil-
tered out through gating as much as possible. Nozzle size 
was 100  µm. FACS was performed at the Universitäts-
medizin Göttingen or at the Dresden Concept Genome 
center using a Becton Dickinson BD FACSAria™ II Cell 
Sorter or BD FACSAria™ III Cell Sorter. The settings 
were adjusted using unstained and stained samples.

Library preparation and 10 × genomics sequencing
scRNAseq and snRNAseq were performed at the Dres-
den Concept Genome Center on a 10 × Genomics Chro-
mium sequencing system. The viability of the sorted cells 
or quality of nuclei were visually inspected under a light 
microscope (with 200 × magnification) from a small ali-
quot of cells or nuclei stained with Trypan blue.

Up to 20,000 cells/nuclei were carefully mixed with 
reverse transcription mix using the Chromium Single 
Cell 3’ Library & Gel beads chemistry v3 (10X Genomics, 
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PN 1,000,075) and loaded into a Chromium Single Cell B 
Chip (10X Genomics, PN 1,000,073) on the 10X Genom-
ics Chromium system [117].

Following the guidelines of the 10X Genomics user 
manual, the droplets were directly subjected to reverse 
transcription, the emulsion was broken, and cDNA was 
purified using Dynabeads MyOne Silane (10X Genom-
ics). After cDNA amplification (11 cycles for cells, 12 
cycles for nuclei), the sample was purified and underwent 
a quality control check on the Fragment Analyzer.

Preparation of single-cell or -nuclei RNA-seq librar-
ies (fragmentation, dA-Tailing, adapter ligation and an 
indexing PCR step with 12 cycles (cells) or 15 cycles 
(nuclei)) followed the manufacture’s recommendations. 
After quantification, the libraries were sequenced on an 
Illumina NextSeq 500 using a high-output flowcell in PE 
mode (R1: 28 cycles; I1: 8 cycles; R2: 56 cycles) or on the 
Illumina Novaseq 6000 system with a S2 flowcell in PE 
mode (R1: 28 cycles; I1: 8 cycles; R2: 94 cycles). An aver-
age of 13,000 fragments per cell were sequenced.

Data analysis
The obtained sequencing data from scRNAseq/snR-
NAseq were mapped to a genome of the D. mela-
nogaster strain Oregon-R (OreR) (FBsn0000276) and 
reads mapped to individual genes were counted using 
10 × Genomics Cellranger 5 using default settings for 
mapping single-cell data. For mapping single-nuclei 
data, the option –include-introns was added. The OreR 
genome was annotated by transferring the annotation of 
D. melanogaster genome r6.37 to a previously sequenced 
genome of Oregon-R [64, 118] using Liftoff [119].

Further data analyses were performed using R ver-
sion 4.1.1 (2021-08-10). Specifically, the package Seurat 
[120] was used for single-cell specific applications. This 
includes quality control steps such as calculating the 
percentage of mitochondrial, ribosomal and heat shock 
related genes and removing doublets and cells or nuclei 
of poor quality. Cells of poor quality were defined as 
expressing more than 3000 or less than 300 genes. Nuclei 
of poor quality were defined as the top 1% of nuclei 
expressing the highest number of genes or less than 300 
genes. As a threshold of 5–10% of mitochondrial reads 
per cell resulted in a single cluster defined by mito-
chondrial genes (in scRNAseq, none in snRNAseq), we 
decided to exclude cells and nuclei with more than 10% 
of mitochondrial reads to include as much data as pos-
sible for further analyses. Genes were kept if they were 
expressed in at least 5 cells (for scRNAseq) or 3 nuclei 
(for snRNAseq). Normalization was performed using 
the SCTransform method [121]. Unbiased clustering was 
performed in Seurat [122] and marker genes enriched in 
each cell cluster were identified by differential expression 

analyses (i.e. genes expressed in a cluster vs. all other 
clusters) followed by a cutoff of log2-fold change > 0.25 
and an adjusted p-value < 0.05 (list of cell cluster markers 
for scRNAseq: Additional file 4: Table S4; list of cell clus-
ter markers for snRANseq: Additional file  6: Table  S6). 
Marker genes for each cell cluster were used to test for 
enrichment of gene ontology (GO) terms (i.e. Biological 
Process) using the R package gprofiler2 [123, 124] (GO 
enrichment for scRNAseq: Additional file 5: Table S5; GO 
enrichment for snRNAseq: Additional file  7: Table  S7). 
The top four genes defining each cell cluster were chosen 
by the lowest adjusted p-value.

To compare the most variable genes between scR-
NAseq and snRNAseq, the top 3000 variable genes for 
both datasets were obtained based on the differential 
expression analysis (see above). Both lists were compared 
to identify those genes that were unique for each dataset 
and those that were shared. A gene ontology enrichment 
analysis was performed for the two lists of unique genes 
and the list of shared genes, respectively, using Gene 
Ontology. Gene ontology enrichment plots were created 
using ShinyGO (version 0.76) [125]. Radar plots were 
generated using Excel.

For the analysis of integrated data from both single 
cells and single nuclei, we applied the standard workflow 
in Seurat [126]. We used 3000 integration features and 
used FindIntegrationAnchors and IntegrateData adapted 
for datasets normalized using SCtransform. Barplots of 
dataset-specific celltype proportions were created using 
the R package dittoSeq [127]. The percentages of cells or 
nuclei in these plots were corrected for absolute number 
by multiplying the percentages in cells by 0.74, the ratio 
of filtered nuclei to filtered cells. UMAP plots were cre-
ated using Seurat. Each dot represents a single cell or 
nucleus. They are positioned based on their relative tran-
scriptional similarity to each other. Clusters were iden-
tified using a nearest neighbor clustering algorithm and 
the resolution for the depicted number of clusters was 
chosen based on visual inspection using the R package 
clustree [128]. Clusters were annotated by performing a 
differential gene expression analysis and scoring the over-
expressed differentially expressed genes using a matrix 
of marker genes (Additional file  2: Table  S2). To obtain 
comparable clusters across datasets, similar clusters were 
manually merged (Additional file  3: Table  S3). Variable 
genes were obtained from the Seurat object and plotted 
using ggvenn (version 0.1.9.) [129]. Alluvial plots were 
created using the R package ggalluvial (version 0.12.3) 
[130].

The ggplot2 package was used to create plots if not oth-
erwise stated. Note that all scripts and the entire analysis 
pipeline are available online (https://​doi.​org/​10.​25625/​
YHG4ET).

https://doi.org/10.25625/YHG4ET
https://doi.org/10.25625/YHG4ET


Page 14 of 18Wiegleb et al. Frontiers in Zoology           (2022) 19:27 

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12983-​022-​00472-x.

Additional file 1: Fig. S1. FACS-plot of D. melanogaster eye-antennal 
disc cells after live/dead cell staining. (A) Counterstaining of Propidium 
Iodide to label dead cells (y-axis, Q1) and Calcein violet to label live 
cells (x-axis, Q4). Double positive signals might indicate dying cells or 
incompletely separated cells (Q2). This method allows removing debris 
(Q3) efficiently. (B) The cell population P4 (i.e. 16,208 living cells) were 
isolated and used for the scRNAseq run using 10x Genomics. Fig. S2. 
Quality and quantity of cDNA after reverse transcription of mRNA fraction 
(polyA-based enrichment) and full-length cDNA amplification from cell 
lysate of 30 cells sorted from cell suspension of eye-antennal discs run 
on Fragment Analyzer (Agilent). Size distribution of all fragments shows 
little impact on degradation (almost no cDNA detectable below 400 bp). 
Fig. S3. Contribution of mitochondrial gene expression to scRNAseq and 
snRNAseq datasets. (A) Total amount of genes (features) over percent-
age of mitochondrial reads, per cell each. The dashed line indicates a 
threshold of 10% of reads attributed to mitochondrial genes. In scRNAseq 
data, approximately 14% of cells show a high (>10%) proportion of 
mitochondrial gene reads on the total number of reads. (B) Total amount 
of genes (features) over Percentage of mitochondrial reads, per cell each 
in snRNAseq data. The dashed line indicates a threshold of 10% of reads 
attributed to mitochondrial genes. In most nuclei, only a low percent-
age of reads is attributed to mitochondrial genes. Fig. S4. Clustering and 
cluster annotation for scRNAseq data. (A) The heatmap shows the score 
for each potential cell type (Y-axis) in each cluster (X-axis). The cell types 
are annotated based on the highest scoring identity in the heatmap. The 
clusters are grouped based on their transcriptional similarity to each other. 
For clusters which express an equal number of marker genes for two dif-
ferent identities both identities were assigned (e.g. cluster 3:Antenna|EAB). 
Clusters with unresolved identities (i.e. more than two equal assignments) 
are called “Other”. The colors of the cluster names correspond to the colors 
in UMAP in (B). The marker score is calculated using a matrix of published 
marker genes (see Additional file Table S2). (B) UMAP of scRNAseq data. 
The clusters were annotated based on the heatmap in (A). This UMAP 
is identical to the UMAP with combined cluster annotation shown in 
Fig. 3A. Note that the color code is not comparable to the one used in 
Additional file Figs. S7 and S10. Fig. S5. Fluorescence intensity curves 
from Bioanalyzer for fresh- and cryopreserved nuclei obtained by different 
nuclei extraction protocols. (A) The RNA was extracted directly from a 
fresh sample (36 eye-antennal discs), which was dissociated using the 10x 
Genomics protocol with 0.1% IGEPAL as a detergent. (B) RNA isolated from 
a cryopreserved sample, which was dissociated using a protocol based on 
Triton X-100 as a detergent and a variety of RNAse inhibitors [1]. Note that 
the sample was thawed for 3.5h before being frozen again. Both curves 
are close to the expectation of RNA isolated from D. melanogaster [2]. Fig. 
S6. BioAnalyzer results comparing different nuclei isolation protocols for 
frozen samples. Samples 1, 2, 4 and 5 were dissociated using the protocol 
based on Triton X-100 as a detergent and a variety of RNAse inhibitors [1]. 
Samples 1 and 2 were dissociated by pipetting up and down and samples 
4 and 5 were dissociated using a Dounce homogenizer. Samples 7 and 8 
were dissociated using the protocol “10x Genomics® Isolation of Nuclei for 
Single Cell RNA Sequencing” [3]. Samples 7 and 8 were dissociated using 
only citric acid buffer and samples 10 und 11 were dissociated using only 
a detergent. Note that for D. melanogaster, intense bands are expected at 
about 40s and weaker bands at 25s and 45-50s [2]. Each run was repeated 
once. Fig. S7. Clustering and cluster annotation for snRNAseq data. (A) 
The heatmap shows the score for each potential cell type (Y-axis) in each 
cluster (X-axis). The cell types are annotated based on the highest scoring 
identity in the heatmap. The clusters are grouped based on their transcrip-
tional similarity to each other. For clusters which express an equal number 
of marker genes for two different identities both identities were assigned 
(e.g. cluster 15:MFurrow|SMW). Clusters with unresolved identities (i.e. 
more than two equal assignments) are called “Other”. The colors of the 
cluster names correspond to the colors in UMAP in (B). The marker score 
is calculated using a matrix of published marker genes (see Additional file 
Table S2). (B) UMAP of snRNAseq data. The clusters were annotated based 

on the heatmap in (A). This UMAP is identical to the UMAP with combined 
cluster annotation shown in Fig. 3C. Note that the color code is not com-
parable to the one used in Additional file Figs. S4 and S10. Fig. S8. Gene 
ontology enrichment analysis for genes with most variable expression. (A) 
Top 3000 genes unique to scRNAseq (i.e. 1520 genes). (B) Top 3000 genes 
unique to snRNAseq (i.e. 1520 genes). (C) Top 3000 genes shared between 
scRNAseq and snRNAseq (i.e. 1480 genes). See also Supplementary 
Table S9 for a full list of enriched GO terms. Fig. S9. Comparison of dataset 
specific and shared differentially expressed genes for each cell type. The 
radar plot shows for each cell type the percentage of cluster specific dif-
ferentially expressed genes unique for the scRNAseq and snRNAseq data, 
respectively (red and blue lines), as well as the percentage of differentially 
expressed genes shared between both datasets (black line). The total 
number of genes fulfilling the differential expression criteria (FDR 0.05 and 
log2-fold change > 0.25) for each cell type is shown in brackets. Fig. S10. 
Clustering and cluster annotation of integrated scRNAseq and snRNAseq 
dataset. (A) The heatmap shows the score for each potential cell type 
(Y-axis) in each cluster (X-axis). The cell types are annotated based on the 
highest scoring identity in the heatmap. The clusters are grouped based 
on their transcriptional similarity to each other. For clusters which express 
an equal number of marker genes for two different identities both identi-
ties were assigned (e.g. cluster 14:Dorsal|Ocelli). Clusters with unresolved 
identities (i.e. more than two equal assignments) are called “Other”. The 
colors of the cluster names correspond to the colors in the UMAP in (B). 
The marker score is calculated using a matrix of published marker genes 
(see Additional file Table S2). (B) UMAP of integrated scRNAseq and 
snRNAseq data. Cells are colored by clusters identified based on the (A). 
Note that the color code in A and B is not comparable to the one used in 
Additional file Figs. S4 and S7. Table S1. Overview of different dissociation 
conditions. Samples within blocks (highlighted in grey and white) were 
prepared in parallel. The Flow Cytometer only provides percentages of sur-
vival because it stops after a defined number of events (i.e. ~50,000 cells) 
and therefore absolute numbers are not meaningful. “Pipetting” refers to 
the number of strokes during and after incubation. The cells obtained by 
experiment/block 12 were subjected to 10X Genomics scRNAseq.

Additional file 2: Table S2. Score Matrix used to annotate cell types and 
list of references for individual marker genes used for cluster/cell type 
annotation.

Additional file 3: Table S3. Results of automatic cluster annotation and 
assignment to combined clusters.

Additional file 4: Table S4. List of marker genes for each cluster in 
scRNAseq analysis.

Additional file 5: Table S5. GO analysis of cell clusters identified in 
scRNAseq.

Additional file 6: Table S6. List of marker genes for each cluster in 
snRNAseq analysis.

Additional file 7: Table S7. GO analysis of cell clusters identified in 
snRNAseq.

Additional file 8: Table S8. List of top 3000 variable genes for scRNAseq 
and snRNAseq data, respectively.

Additional file 9: Table S9. Top 3000 variable genes and GO enrichment 
results for scRNAseq, snRNAseq and shared.

Additional file 10: Table S10. Comparison of differentially expressed 
genes for each comparable cluster between scRNAseq and snRNAseq 
data.
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