
BICOSS: Bayesian iterative conditional 
stochastic search for GWAS
Jacob Williams1*, Marco A. R. Ferreira1 and Tieming Ji2 

Background
Genome wide association studies (GWAS) have been used successfully to identify genes 
involved with complex traits in a wide variety of species. To identify these genes a sta-
tistical analysis is performed to identify which single nucleotide polymorphisms (SNPs) 
are associated with a trait. The most common form of statistical analysis is single marker 
analysis (SMA) performed under the mixed model framework [1]. Algorithms such as 
EMMA [2] (which uses spectral decomposition of the covariance matrix for fast com-
putation), population parameters previously determined (P3D) [3] (which speeds up 
computation by using the estimates of the variance components from a null model), and 
EMMAX [4] (which further speeds up computations of EMMA by using the estimate of 
the heritability from a null model) have led to widespread adoption of the mixed model 
framework. However, SMA has drawbacks due to not taking into account the correlation 
structure among SNPs, which leads to high false discovery rate (FDR) and low recall of 
true causal SNPs [5].
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To increase recall and decrease FDR in GWAS, we propose the Bayesian Iterative Con-
ditional Stochastic Search (BICOSS) method. Under a mixed effects model, BICOSS 
combines Bayesian SMA and Bayesian model selection in an iterative procedure. Each 
BICOSS iteration has two steps: screening and model selection. BICOSS is initialized 
with the residuals from a base model that is a linear mixed model with no SNPs. Then 
the screening step fits as many models as the number of available SNPs, where each 
model has only one additional SNP and is regressed against the residuals of the base 
model. This screening step provides a set of candidate SNPs. The second step of BICOSS 
performs a model search where the possible models contain the base model and any 
number of SNPs from the set of candidate SNPs. When the model space is too large for 
complete enumeration, BICOSS performs model selection using Bayesian model selec-
tion implemented with a genetic algorithm (GA). The best model found in the model 
selection step becomes the base model. The next iteration of BICOSS then uses this base 
model to perform the screening and selection steps. BICOSS iterates between these 
steps until convergence of the best model. Further details as well as a graphical repre-
sentation of BICOSS are provided in the “Methods” section. In the "Results" section, a 
simulation study shows that, when compared to SMA, BICOSS reduces false discovery 
rate and allows for SNPs with smaller effects sizes to be discovered.

Each iteration of BICOSS conditions on a base model found as the best model in the 
previous iteration. A key insight gained from our simulation study is that, when com-
pared to SMA, conditioning on SNPs of high importance reduces the error variance thus 
allowing SNPs with smaller effect sizes to be detected. Other previous works have also 
used conditional models to find causal SNPs with smaller effect sizes [6–10]. Therefore, 
by conditioning on SNPs with larger effect sizes found in previous iterations, BICOSS 
can identify SNPs with smaller effect sizes.

A critical contribution of BICOSS is to combine model selection and screening with 
conditional models in an iterative procedure. This is important because model selection 
alone has better FDR control than single marker tests but it tends to have smaller recall. 
By combining the screening and model selection steps in an iterative procedure, BICOSS 
consistently increases recall and decreases FDR. To the best of our knowledge, there 
are only two other GWAS iterative procedures: GWASelect [11] and GWASinlps [12]. 
Both GWASinlps and GWASelect operate under the simple linear regression framework 
while BICOSS uses mixed effect regression. GWASelect applies SMA to a large number 
of bootstrap datasets followed by a LASSO procedure to identify SNPs of interest from 
conditional models. GWASinlps selects SNPs under a linear regression model using R2 . 
From the set of SNPs, GWASinlps uses Bayesian model selection with nonlocal priors to 
identify a best SNP model. The two main differences between BICOSS and GWASinlps 
are that BICOSS uses Bayesian model selection to identify candidate SNPs instead of R2 
and BICOSS uses mixed effect models instead of a linear regression models. With the 
publicly available code for GWASinlps, we compare GWASinlps to BICOSS in the simu-
lation study.

Methods
BICOSS assumes the general linear mixed model ([1, 2]),
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where Y is a n-dimensional vector of observed phenotypes, X is an n× p matrix with 
columns including SNPs, intercept, and fixed effects, β is a p-dimensional vector of 
regression coefficients, Z is an n× t incidence matrix mapping each observed pheno-
type to one of t inbred strains, u is a t-dimensional vector of random effects accounting 
for population structure, and ǫ is an error term. In addition, σ 2 is the variance of the 
unstructured error and τ a kinship dependence parameter. Finally, K is the realized rela-
tionship matrix or kinship matrix assumed to be a known positive semi-definite matrix.

Figure 1 presents a graphical representation of BICOSS. BICOSS is an iterative pro-
cedure where each iteration is comprised of two steps: a screening and a model selec-
tion step. BICOSS is initialized with a base model fitted as a linear mixed model with no 
SNPs in the model. Then the screening step fits as many models as there are SNPs, each 
model containing one SNP and regressed against the residuals of the base model. The 
screening step identifies a set of candidate SNPs using Bayesian FDR control applied to 
the posterior probabilities of the SNPs. Then, the model selection step of BICOSS per-
forms Bayesian model selection where the possible models contain any combination of 
the base model and SNPs from the candidate set. If the model space is too large to per-
form complete enumeration, a genetic algorithm is used to perform stochastic model 
search. The model with the highest posterior probability is the best model. This best 
model becomes the base model for the next iteration which proceeds with the screening 
and model selection steps. BICOSS iterates these two steps until convergence of the best 
model.

(1)Y = Xβ + Zu + ǫ, with ǫ ∼ N (0, σ 2I) and u ∼ N (0, σ 2τK ),

Fig. 1  Graphical representation of BICOSS
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We cast both the screening step and model selection step within a Bayesian model selec-
tion framework. We briefly highlight Bayesian model selection and the priors on the model 
space before providing the full derivation for the screening and model selection steps.

Bayesian model selection

Bayesian model selection assumes m possible models M1, . . . ,Mm . Let P(Mi) be the prior 
model probability for model Mi . In addition, assume that the unknown parameters in model 
Mi are collected in parameter vector θi ∈ �i and have prior density π(θi) . Let the dimen-
sion of θi be di . Finally, assume the likelihood function under model Mi is L(Y | θi,Mi) . 
Thus, an important quantity in Bayesian model selection is the marginal likelihood under 
model Mi , i = 1, . . . , n , given by

Hence, by Bayes Theorem the posterior probability of model Mi given the data Y is

Assuming a base model Mb , the Bayes factor of model Mi with respect to Mb is defined 
as BFib = mi(Y)/mb(Y) . Hence, the posterior probability of model Mi given the data Y 
can be computed as

Now, let the BIC of model Mi be

where θ̂i is the maximum likelihood estimate of θi . The Bayes factor BFib can be approxi-
mated by using the BIC ([13, 14]). Specifically, if the information contained in each prior 
π(θi) is equivalent to one observation, then the Bayes factor BFib can be approximated 
with

with error O(n−1/2) [15]. With this approximation, we do not need to explicitly specify 
the prior densities π(θi) . BICOSS uses this approximation combined with Eq. 4 to com-
pute the posterior probabilities of the competing models.

Prior model probabilities in BICOSS

Consider a model with s possible SNPs. Following standard practice in modern Bayesian 
model selection, we treat the inclusion of each of the possible s SNPs as independent Ber-
noulli trials with success probability (1− π0) . As a result, the prior probability of model Mi 
is

(2)mi(Y) =
�i

L(Y | θi,Mi)π(θi)dθi.

(3)P(Mi|Y) =
P(Mi)mi(Y)∑m
j=1 P(Mj)mj(Y)

.

(4)P(Mi|Y) =
P(Mi)BFib∑m
j=1 P(Mj)BFjb

.

(5)BICi = −2 log
(
L(Y | θ̂i,Mi)

)
+ di log(n),

(6)BFib ≈ exp{−0.5(BICi − BICb)},
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where pi is the number of SNPs in model Mi . Here, we estimate the true rate of null 
hypothesis π0 using the procedure proposed in [16] which uses the p values of each SNP 
from a SMA to calculate the estimated proportion of true null SNPs. When this proce-
dure conservatively estimates π0 = 1 , BICOSS sets π0 = 1− 100L−1 where L is the total 
number of SNPs. The p values are calculated at every screening step, therefore the esti-
mate of π0 is updated at every iteration of the screening step of BICOSS. The model 
selection step uses the same π0 estimated at the first screening, which allows SNPs that 
were detected in the first screening to be competitive in the model selection compared 
to SNPs found in subsequent iterations.

Screening step

The screening step starts by fitting the base model which is obtained from Eq.  1 with 
the matrix X containing the SNPs from the base model of the previous iteration of 
BICOSS. From this base model fit, we obtain estimates β̂ and τ̂ . Let Ŷ = Y − X β̂ and let 
�(τ̂ ) = (I − P)(I + τ̂K )(I − P) where P = X(X⊤(I + τ̂K )−1X)−1X⊤ is a projection 
matrix. Recall that L is the total number of SNPs. Then the screening step fits for each SNP 
l, l = 1, . . . , L , the linear mixed model

where Xl is an n× 1 vector for SNP l.
In the screening step, for each SNP l we compare only two models: the base model, and 

the base model with the added SNP l. In that context, Eq. 4 in the “Bayesian model selec-
tion” section is used to compute the posterior probability of SNP l being a causal SNP con-
ditional on the base model. The screening step then scans through all SNPs computing 
these posterior probabilities.

To control the false discovery rate, BICOSS uses Bayesian FDR control ([17–20]). Let 
rl = 1 if SNP l is a true causal SNP and rl = 0 otherwise. Let pl = P(rl = 1|Y) which is 
computed as described in the above paragraph using the Bayes factor comparing the model 
with SNP l versus the model without SNP l. Then a possible decision rule is to flag SNP l as 
significant if pl is greater than or equal to a threshold p0 . The resulting FDR is then equal to

where 1 denotes the indicator function. Further, because the true value of rl is unknown 
the posterior expected value of the FDR given the data can be estimated as

A more desired decision rule would be to control for the desired nominal FDR level 
denoted as q0 rather than an arbitrary predetermined threshold p0 . Specifically, we first 
rank the SNPs in decreasing order of pl . Denote the ordered estimates of the posterior 

(7)P(Mi) = (π0)
s−pi(1− π0)

pi ,

(8)Ŷ = Xlβl + ǫ∗, ǫ∗ ∼ N
(
0, σ 2�(τ̂ )

)
,

(9)FDR =

∑L
l=1(1− rl)1pl≥p0∑L

l=1 1pl≥p0

,

(10)F̂DR =

∑L
l=1(1− pl)1pl≥p0∑L

l=1 1pl≥p0

.
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model probabilities as {p(1), p(2), . . . , p(L)} . Thus, denoting d ∈ {1, . . . , L} , the posterior 
expected FDR of selecting the first d ordered SNPs as significant is

The decision rule for detecting causal SNPs is to flag all SNPs with F̂DRd < q0 . This pro-
vides a list of candidate SNPs for the BICOSS selection step. The simulation study and 
the real data analyses use q0 = 0.05.

Model selection step

With the list of candidate SNPs from the screening step, the model selection step per-
forms a model search where the possible models include any combination of SNPs in 
the base model and the candidate SNPs identified in the latest screening. Each possi-
ble model is evaluated using the Bayesian model selection procedure described in the 
“Bayesian model selection” section with prior model probability given in Eq.  7. To 
accelerate computation, we take a P3D approach and estimate the kinship dependence 
parameter τ only once based on the full model that includes the SNPs from the base 
model as well as the candidate SNPs. This parameter τ is kept fixed at this estimate when 
fitting all other models.

Depending on the number of SNPs identified in the screening step, one of two differ-
ent algorithms are used to search the model space. When the dimensionality is low, a 
complete enumeration is used to compute posterior model probabilities for every possi-
ble model. When the number of SNPs is high such that complete enumeration would be 
computationally expensive (16 or more), a genetic algorithm is used to search the model 
space.

BICOSS uses a genetic algorithm implemented in the R package GA [21] that iterates 
mutation, crossover, and selection steps. The genetic algorithm starts with a population 
of 100 models. One of these models has just the intercept. Another set of models in this 
initial population has only one SNP per model, where the SNPs are either from the base 
model or are candidate SNPs. If there are more than 99 of these SNPs, then the 99 SNPs 
with the highest posterior probabilities are used to initialize the initial population. If 
there are less than 99 of these SNPs, then the remaining models in the initial population 
are chosen at random. The mutation, crossover, and selection steps then operate on the 
population to create subsequent populations. The mutation step creates a new model 
from an existing model by changing the status of a SNP in that model, e.g. if a SNP is 
present in the existing model it will become absent in the new model. The crossover 
step creates two models by combining two existing models. Finally, the selection step 
samples models to be passed to the next population with probabilities proportional to 
exp (−0.5BICi) for model Mi.

We consider two different convergence criteria, 400 maximum iterations or 40 con-
secutive iterations with the same best model, whatever happens first. We also considered 
convergence criteria with 4000 maximum iterations and 400 iterations with the same 
best model, but the results were about the same. We report the results for the latter set of 
convergence criteria in the Additional file 1. If the best model identified in the selection 

(11)F̂DRd =

∑L
l=1(1− pl)1pl>p(d)∑L

l=1 1pl>p(d)

=

∑d
l=1(1− p(l))

d
.
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step matches the current base model, BICOSS converges. Otherwise, the base model is 
updated to be the best model found, and another iteration of BICOSS is performed.

Results
Simulation study

We have performed a simulation study to compare BICOSS to other competing meth-
ods. In addition, we present two smaller simulation studies to evaluate the robustness 
of BICOSS, when there are no causal SNPs and when there is no kinship dependence 
structure. For all three simulation studies, we compare BICOSS to SMA methods with 
the Bonferroni correction and GWASinlps. We consider two SMA methods based 
on the linear mixed model from Eq.  1: a method we call SMA-Exact that similarly to 
EMMA uses the spectral decomposition of the kinship dependence structure; and a 
method we call SMA-Approx. that similarly to EMMAX fixes the variance parameters 
at their estimates for a model without SNPs. For direct comparison of computation time, 
all methods are implemented in R. Both BICOSS and SMA methods use a FDR nomi-
nal level of 0.05. The genotype data used for all three simulation studies is from 328 A. 
Thaliana accessions from the TAIR9 sequence [22]. In this simulation study n = 328 and 
Z = In×n . Specifically, we consider a set of 60,000 SNPs. To obtain these 60,000 SNPs, 
we obtained 10 blocks of 6000 SNPs each with minor allele frequency above 0.01 from 
A. Thaliana, where each block was separated from the subsequent block by 15,000 SNPs. 
Additional file 1: Fig. S1 presents a heatmap of the correlation matrix of the first block 
with 6000 SNPs for the 328 A. Thaliana accessions. For the general simulation study and 
the case when there is no kinship dependence structure, we placed the causal SNPs in 
positions 3000, 9000, 15,000, 21,000, 27,000, 33,000, 39,000, 45,000, 51,000, and 57,000 
of the 60,000 SNPs. The kinship matrix used in the case of no causal SNPs and the gen-
eral simulation study was built from the entire TAIR9 SNP array for the 328 ascensions 
of A. Thaliana using the function A.mat from the R package rrBLUP [23].

We compare the competing methods with four different criteria: recall, also known as 
true positive rate, FDR, False positive rate, and the F1 score. We also report computation 
time. Recall is defined as the number of identified true causal SNPs divided by the total 
number of causal SNPs. The FDR is defined as the number of false positives identified as 
significant divided by the number of SNPs identified as significant. The false positive rate 
is the number of false positives divided by the number of false positives plus the number 
of true negatives. The F1 score is the number of true positives divided by the number 
of true positives plus half the sum of false positives and false negatives. We report the 
computation time in seconds for each procedure using 12 cores of a 2 × 12 core Intel 
Xeon 2.5 GHz 12-core with 256 GB of memory running OpenBlas for optimized matrix 
algebra. The results presented here are for GWASinlps version 2.0 with tuning param-
eters k0 = 1 , nskip = 3 , rxx = 0.2 , m = 500 , and τ = 0.022 as recommended in both the 
GWASinlps documentation and in [12]. For accurate comparison of methods, the results 
for each simulation setting are based on 100 simulated datasets.

General simulation study

A general simulation study to compare BICOSS to other competing methods is con-
ducted under the linear mixed model:
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where u ∼ N (0, σ 2τK ) , ǫ ∼ N (0, σ 2I) , and α is 1.
We consider 10 causal SNPs with six different settings of β vectors. Seven coefficients 

remained fixed at 0.4 while the other three coefficients were equal to each other and 
assumed values of 0.05, 0.1, 0.2, 0.4, 0.8, and 1.6. Thus, the fourth setting had equal coef-
ficients across the entire set of causal SNPs. For every simulated Y , the values of τ and 
σ 2 were equal to 0.1 and 0.2 respectively, which are similar to the estimates of τ and σ 2 
obtained in the case study on salt stress in A. Thaliana.

Table 1 displays results averaged over the 100 datasets under each setting. SMA proce-
dures typically discover about 3 of the 10 true causal SNPs, BICOSS typically discovers 

(12)Y = α1+ Xβ + Zu + ǫ,

Table 1  Results of simulation study with linear mixed model

Regression coefficients of causal SNPs β = (β(1) , 0.4, 0.4, 0.4, β(1) , 0.4, 0.4, 0.4, β(1) , 0.4)⊤

Average Performance of each method over 100 datasets for each setting

Recall True Positive Rate, FDR False Discovery Rate, FPR False Positive Rate, F1 F1 score

Setting Measure Method

SMA-exact SMA-approx. BICOSS GWASinlps

Recall 0.36 0.35 0.49 0.55

Setting 1 FDR 0.61 0.60 0.27 0.62

β(1) = 0.05 FPR ×105 12.70 12.30 3.95 17.44

F1 0.35 0.35 0.57 0.44

Time (s) 197 2 22 85

Recall 0.33 0.33 0.49 0.54

Setting 2 FDR 0.57 0.56 0.28 0.61

β(1) = 0.1 FPR ×105 11.22 10.90 4.10 16.45

F1 0.35 0.35 0.57 0.44

Time (s) 203 2 46 122

Recall 0.31 0.31 0.49 0.55

Setting 3 FDR 0.61 0.61 0.34 0.63

β(1) = 0.2 FPR ×105 11.17 10.87 5.02 19.02

F1 0.33 0.33 0.55 0.42

Time (s) 201 2 47 117

Recall 0.34 0.33 0.58 0.65

Setting 4 FDR 0.59 0.58 0.34 0.62

β(1) = 0.4 FPR ×105 10.47 10.22 5.50 20.14

F1 0.35 0.35 0.61 0.47

Time (s) 203 2 50 130

Recall 0.29 0.28 0.73 0.79

Setting 5 FDR 0.79 0.79 0.33 0.60

β(1) = 0.8 FPR ×105 21.60 21.35 6.93 22.25

F1 0.23 0.23 0.69 0.52

Time (s) 186 1 44 148

Recall 0.30 0.30 0.70 0.78

Setting 6 FDR 0.92 0.92 0.30 0.65

β(1) = 1.6 FPR ×105 61.23 60.49 5.70 25.99

F1 0.12 0.12 0.69 0.48

Time (s) 176 1 45 147



Page 9 of 14Williams et al. BMC Bioinformatics          (2022) 23:475 	

about 5–7 causal SNPs. Therefore, while SMA methods typically discover only the SNPs 
with large effect sizes, BICOSS is able to discover SNPs with smaller effect sizes. In addi-
tion, BICOSS maintains a substantially lower FDR, lower FPR, and higher F1 score in 
all settings compared to SMA. The massive improvement in these measures is due to 
the model selection step. Specifically, by allowing multiple SNPs to compete in the best 
model, BICOSS model selection step better controls FDR.

Compared to GWASinlps, BICOSS provides a similar recall while yielding a much 
lower FDR, lower FPR, and higher F1 score. BICOSS is more conservative overall than 
GWASinlps, but the F1 score (that is, the harmonic mean of precision and recall) high-
lights the improved combined performance in terms of recall and FDR of BICOSS com-
pared to GWASinlps. The better performance of BICOSS when compared to GWASinlps 
may be explained by two main reasons. First, BICOSS uses a Bayesian screening step 
while GWASinlps uses a R2-based screening. Second, BICOSS assumes a linear mixed 
model whereas GWASinlps assumes a linear model with independent errors. In par-
ticular, the linear mixed model assumed by BICOSS is more realistic in the context of 
GWAS analysis.

Our simulation study also shows that when some few SNPs have very large effect sizes 
as in Settings 5 and 6, SMA methods have difficulty identifying SNPs with medium effect 
sizes and produce very large FDR. Specifically, Table 1 shows that, in Settings 5 and 6, 
SMA methods can only find 30% of the true causal SNPs and has FDR of 0.79 and 0.92 
respectively. In contrast, in these settings BICOSS has recall at or above 70% and much 
better FDR control.

Robustness to lack of signal

To examine the robustness of BICOSS when applied to datasets with no causal SNPs, we 
simulate 100 datasets from the model:

where u ∼ N (0, σ 2τK ) , ǫ ∼ N (0, σ 2I) , and α = 1 . Similarly, for every simulated Y , the 
values of τ and σ 2 were equal to 0.1 and 0.2 respectively, which are similar to the esti-
mates of τ and σ 2 obtained in the case study on salt stress in A. Thaliana. As there are no 
true causal SNPs in Eq. 13, we only examine the number of false positives.

Table  2 presents the results for the 100 simulated datasets under this scenario. In 
this case, SMA methods have a stricter control of false positives compared to the two 
iterative procedures. BICOSS performs significantly better than GWASinlps but is not 
as conservative as SMA. Therefore, one limitation of BICOSS is that it has on average 

(13)Y = α1+ Zu + ǫ,

Table 2  Results of simulation study with no causal SNPs

Average Performance of each method over 100 datasets

FP the number of false positives

Setting Measure Method

SMA-exact SMA-approx. BICOSS GWASinlps

No causal SNPs FP 0.05 0.04 1.33 8.13

Time (s) 197 2 22 85
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a slightly larger number of false positives then SMA when applied to datasets with no 
causal SNPs.

Robustness to lack of kinship dependence structure

To check how BICOSS performs when the data are from a linear model without kinship 
dependence, we simulated 100 datasets from the linear model:

where ǫ ∼ N (0, σ 2I) , α = 1 , and σ 2 = 0.2 . Note that BICOSS has been built using the 
mixed model framework. Meanwhile, GWASinlps was built assuming a linear model. 
Thus, in principle, data simulated from Eq. 14 should favor GWASinlps. We explore one 
setting of β , all causal coefficients equal to 0.4. Thus, this simulation has identical X and 
β as setting 4 of the general simulation. p values are calculated for SMA using the classic 
T statistic for simple linear regression models. Therefore as this is an exact procedure we 
show results labeled as SMA-Exact.

Table 3 presents the results of the linear model simulation study. Similar to the simula-
tion with linear mixed models, BICOSS has the lowest FDR, lowest FPR, and highest F1. 
This is not completely surprising because for datasets simulated from Eq. 14, the kinship 
dependence parameter τ is usually estimated as very small. In the limit when τ is esti-
mated to be 0, the linear mixed model in Eq. 1 becomes a linear model. Therefore, even 
when there is no kinship structure, BICOSS is able to automatically adapt and perform 
better than competing methods.

Case studies

To demonstrate the utility and flexibility of BICOSS, we present two case studies with 
real data analyses. First, BICOSS is implemented on data from a published study of salt 
stress on the selfing species A. Thaliana [24]. Second, BICOSS is applied to a study of 
alcohol dependency in humans.

Salt stress in A. thaliana

This study considers three different settings of soil salt stress to evaluate which genes 
are potentially impactful [24]. The three settings considered were a control setting, 

(14)Y = α1+ Xβ + ǫ,

Table 3  Results of simulation study with linear model

Regression coefficients of causal SNPs β = (0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4)⊤

Average Performance of each method over 100 datasets for each setting

Recall True Positive Rate, FDR False Discovery Rate, FPR False Positive Rate, F1 F1 score

Setting Measure Method

SMA-exact BICOSS GWASinlps

Linear model Recall 0.38 0.61 0.66

FDR 0.62 0.38 0.62

FPR ×105 12.00 6.95 20.34

F1 0.37 0.60 0.47

Time (s) 6 55 169
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75 mM of NaCl, and 125 mM of NaCl. Different measures of the root structure were 
taken to gauge how salt stress impacted the plants. In this case study, we analyze the 
average length of lateral root per main root length for 328 A. Thaliana accessions 
under 75 mM NaCl salt stress. Genotype data was obtained from TAIR9 [22]. Only 
SNPs with minor allele frequency greater than 0.01 were included, thus the analysis 
presented here considers approximately 213,000 SNPs.

Table 4 presents the number of SNPs found by SMA, BICOSS, and GWASinlps as 
well as the computational time. For A. Thaliana, both SMA methods found 22 SNPs, 
GWASinlps found 37 SNPs, and BICOSS identified just 5 SNPs. Similar to the simu-
lation study, we see a large difference in the total number of SNPs found by BICOSS 
when compared to SMA and GWASinlps. Surprisingly, we note a large increase of the 
total number of SNPs found by GWASinlps compared to SMA. Given the results of 
the simulation study, we expect the majority of SNPs found by GWASinlps and SMA 
methods to be false positives. Based on the simulation study, BICOSS has a much bet-
ter control of FDR than the other methods. Thus, for purpose of discussion we will 
focus on the results from BICOSS. Of the five SNPs identified by BICOSS, one SNP is 
perfectly correlated to two other SNPs, implying seven identified SNPs.

The seven SNPs are in genes AT1G62500, AT2G38970, AT3G60370, AT4G14305, 
AT4G39955, AT4G39970, and AT4G40000. Previous literature relates two of these 
genes to response to salt stress. Specifically, AT1G62500 is a differentially expressed 
gene which has been shown to activate in the event of salt stress [25]. In addition; 
AT4G39955 is an α/β-Hydrolases superfamily protein. α/β-Hydrolases superfamily 
proteins have been shown to enhance salt tolerance in the sweet potato family [26].

Alcohol use disorder in humans

In this case study, we use publicly available data from The Collaborative Study on the 
Genetics of Alcoholism (COGA) that was performed to identify novel genetic fac-
tors associated with alcohol use disorder (AUD) [27]. Specifically, in this case study 
we analyze the response variable “age of first drink”, for 1738 people of European 
ancestry with approximately 1 million sequenced SNPs. To normalize and variance-
stabilize the data, the logarithm transformation was applied to age of first drink. Only 
SNPs with minor allele frequency larger than 0.01 were investigated for this analysis. 
Further, any SNP that did not have an rsID or was located in chromosome X or Y was 
removed from the analysis. Thus, this analysis considers approximately 840,000 SNPs.

Table 4  The number of SNPs identified by method for each case study

Multiple comparison corrections use nominal level 0.05 and are based on the number of SNPs in a given genotype dataset

Method Salt stress in A. thaliana AUD in humans

Number of SNPs Time (s) Number of SNPs Time (m)

SMA-exact 22 555 15 82

SMA-approx. 22 8 15 4

BICOSS 5 142 6 38

GWASinlps 37 544 499 792
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Table 4 presents the number of SNPs found by SMA, BICOSS and GWASinlps and the 
timing of each method. Similarly to the simulation study and the A. Thaliana case study, 
SMA and GWASinlps identified large numbers of SNPs. Specifically for the AUD case 
study, both SMA methods found 15 SNPs, GWASinlps found 499 SNPs, and BICOSS 
found just 6 SNPs. Because BICOSS has a much better FDR control than the other meth-
ods, here we investigate the genes found by BICOSS. BICOSS identified six SNPs, which are 
in the following genes: KCNMA1, ZYG11A, TPTE2, ABCF1, ANKS1B, and LINC02237. 
LINC02237 is a long intergenic non-protein coding RNA and the other genes are all protein 
coding genes.

Of the five protein coding genes found by BICOSS, two have published associations with 
AUD and two have been linked to liver diseases. Specifically, KCNMA1 is known as a gene 
associated with alcohol dependency [28]. In addition, in a study with people of Chinese Han 
ethnicity, ANKS1B has been found to be associated with alcoholism [29]. Further, TPTE2 
has been shown to be related to hepatic fibrogenesis and fibrosis [30]; alchohol abuse is one 
of the main causes of liver fibrosis [31]. Furthermore, ABCF1 has been shown to be over-
expressed in hepatocellular carcinoma [32]. These results indicate possibly important genes 
for further potential investigation for a better understanding of alcohol use disorder.

Discussion
We have presented BICOSS, a novel Bayesian method for the analysis of GWAS data. To 
take into account the correlation structure among SNPs, BICOSS iterates a screening step 
and a model selection step. Simulation studies show that, while when there are no true 
SNPs BICOSS tends to identify a slightly larger number of SNPs than SMA methods, when 
there are true causal SNPs, BICOSS performs much better than SMA. In the latter case 
when compared to SMA, BICOSS has greater recall of true causal SNPs while maintain-
ing a much lower FDR. In addition, when there are SNPs with large effect sizes, BICOSS 
has increased recall of true causal SNPs with small and medium effect sizes. Further, when 
compared to the Bayesian iterative method GWASinlps, BICOSS maintains comparable 
recall while having a much lower FDR.

While here we have implemented BICOSS within the EMMAX [4] methodology, we note 
that BICOSS can be easily adapted to work with other GWAS frameworks such as GCTA 
[33]. Applying BICOSS should be relatively straightforward when the model and the likeli-
hood can be explicitly written.

There are many possible avenues for future research. For example, a potentially useful 
avenue is to extend BICOSS to use explicit prior distributions for the parameters. Such 
extension would allow the incorporation of substantive prior information in the GWAS 
analysis. Another possible area of research would be to extend BICOSS to BioBank scale 
data. Finally, another possible area of research would be to extend BICOSS for the analysis 
of non-Gaussian data such as the number of lateral roots in A. Thaliana or the indicator of 
alcohol dependency for families with members suffering alcohol use disorder.
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Conclusion
We propose BICOSS, a novel iterative Bayesian procedure for GWAS analysis. Com-
pared to SMA, BICOSS increases recall of true causal SNPs while dramatically reduc-
ing FDR. Upon publication of this article, BICOSS will be made available in the R 
package GWAS.BAYES that is available of Bioconductor.
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