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ABSTRACT

High-grade serous ovarian cancer (HGSOC) is an
aggressive disease that typically develops drug re-
sistance, thus novel biomarker-driven strategies are
required. Targeted therapy focuses on synthetic
lethality––pioneered by PARP inhibition of BRCA1/2-
mutant disease. Subsequently, targeting the DNA
replication stress response (RSR) is of clinical inter-
est. However, further mechanistic insight is required
for biomarker discovery, requiring sensitive models
that closely recapitulate HGSOC. We describe an op-
timized proliferation assay that we use to screen 16
patient-derived ovarian cancer models (OCMs) for
response to RSR inhibitors (CHK1i, WEE1i, ATRi,
PARGi). Despite genomic heterogeneity character-
istic of HGSOC, measurement of OCM proliferation
was reproducible and reflected intrinsic tumour-cell
properties. Surprisingly, RSR targeting drugs were
not interchangeable, as sensitivity to the four in-
hibitors was not correlated. Therefore, to overcome
RSR redundancy, we screened the OCMs with all two-
, three- and four-drug combinations in a multiple-low-
dose strategy. We found that low-dose CHK1i-ATRi
had a potent anti-proliferative effect on 15 of the 16
OCMs, and was synergistic with potential to minimise
treatment resistance and toxicity. Low-dose ATRi-
CHK1i induced replication catastrophe followed by
mitotic exit and post-mitotic arrest or death. There-
fore, this study demonstrates the potential of the liv-
ing biobank of OCMs as a drug discovery platform
for HGSOC.

INTRODUCTION

Many established targeted cancer therapies directly inhibit
the gene product of a recurrent, cancer-driving mutation.
In such cases, drug development focuses on inhibitors that
specifically target the driver, the presence of which is itself
the biomarker for identifying the patient sub-populations
most likely to benefit. Indeed, directly targeting HER2 am-
plification, EGFR and BRAF mutations, or the BCR-ABL
fusion kinase, transformed the treatment of breast and lung
cancers, melanoma, and chronic myelogenous leukaemias,
respectively (1–4). However, analogous actionable onco-
genes are not frequent drivers in many other cancers, mak-
ing this directly targeted approach more challenging where
the disease is driven by loss-of-function mutations, for ex-
ample in the case of tumour suppressor genes.

As an alternative, synthetic lethal strategies have
emerged––pioneered by the finding that PARP inhibitors ef-
fectively target tumours lacking functional BRCA1/2 (5,6).
In this case, the development of selective inhibitors pre-
ceded biomarker discovery. Defining predictive biomarkers
for synthetic lethal strategies can be challenging, high-
lighted by the difficulty in defining BRCA1/2-wildtype
disease with homologous recombination deficiency that is
sensitive PARP inhibition (7). Nonetheless, the success of
PARP inhibitors led to the development of novel inhibitors
targeting the DNA replication stress response (RSR), for
which biomarkers related to RSR have been proposed (8).
However, defining biomarkers for these novel agents has
also not been straightforward, with added complexity from
the potential role of biological processes more distal to
the drug target, such as apoptotic responses and cell cycle
control mechanisms (9). Therefore, work is required to
develop unbiased strategies to aid pre-clinical biomarker
discovery.
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One approach to biomarker identification is to screen for
synthetic lethal genes using a resistant cancer cell line and
CRISPR/Cas9 or RNAi technology (10,11). However, this
strategy is predicated on a single gene dictating sensitiv-
ity and will exclude non-genetic sources of synthetic lethal-
ity. An alternative unbiased approach is to identify sources
of intrinsic synthetic lethality by directly comparing dif-
ferentially sensitive cells, and deep phenotyping to deter-
mine the underling mechanisms to guide biomarker discov-
ery. This approach requires a collection of in vitro models
that closely recapitulate the cancer of interest, and a high-
throughput assay to categorize models as sensitive or re-
sistant to the drug(s) under evaluation. Pre-clinical stud-
ies and drug discovery efforts have largely relied on collec-
tions of established cell lines as models because they are
tractable for mechanistic studies and drug-sensitivity profil-
ing. However, cell lines often lack clinical annotation, and
extensive in vitro culture results in loss of heterogeneity and
genetic drift from the original tumour cells (12–14). Living
biobanks have the potential to address many of these limi-
tations; since cells are not extensively cultured in vitro, they
closely reflect the molecular characteristics and heterogene-
ity of the original tumour (15–19). The potential for large
collections of models in living biobanks presents the oppor-
tunity for extensive high-throughput screens to gain insight
into the mechanism of sensitivity to novel inhibitors.

To facilitate mechanistic studies and biomarker devel-
opment, we have established a biopsy pipeline, collect-
ing samples from patients with ovarian cancer treated at
The Christie Hospital, and a workflow to generate puri-
fied tumour fractions with extensive proliferative potential
(15,20,21). This living biobank of ovarian cancer models
(OCMs) has largely focused on high-grade serous ovarian
cancer (HGSOC), an aggressive disease where treatment re-
sistance is common meaning there is significant unmet need
for novel biomarker-driven strategies (22). OCMs are clini-
cally annotated and retain the molecular characteristics of
the primary tumour, including p53 mutation and significant
karyotype heterogeneity, reflecting ongoing chromosomal
instability (15). OCMs can also be studied at early passage,
before extensive genetic drift, and are amenable to mecha-
nistic studies, as well as omics analyses. The OCMs there-
fore provide a platform to identify novel treatment strate-
gies, and associated biomarkers, for patients with HGSOC.
However, a key question is whether OCMs can serve as re-
liable models for drug sensitivity profiling.

We first set out to determine the potential of the OCMs
for evaluating novel therapies by developing and optimiz-
ing a drug-sensitivity profiling assay based on prolifera-
tion. We opted to quantitate cell number directly during
treatment using time-lapse microscopy, by visualizing chro-
matin labelled with GFP. Since the RSR is a known vul-
nerability of HGSOC (23,24), we then utilized this assay
in a high-throughput screen using 16 OCMs to compare
four different inhibitors of the RSR (ATR, CHK1, WEE1,
PARG). Surprisingly our screen finds that sensitivity to
these agents is largely not correlated, suggesting that a com-
mon RSR vulnerability is not driving sensitivity to the indi-
vidual agents. We therefore screened all possible one-, two-,
three- and four-drug combinations of these agents, as part
of a multiple-low-dose (MLD) strategy (25–27). MLD is an

attractive strategy for several reasons (25–27): (i) targeting
multiple nodes of a single signalling pathway with a low
doses can collectively result in complete pathway inhibition;
(ii) use of low doses avoids the focused selective pressure
that may result in treatment resistance; (iii) use of low doses
may be less likely to result in unacceptable toxicity. Our
MLD screen demonstrated that the vast majority of OCMs
were sensitive to low-dose combinations of inhibitors tar-
geting ATR and CHK1 or WEE1 and CHK1. Phenotypic
analysis in turn shows that that low-dose ATR and CHK1
inhibition is highly synergistic when combined, inducing
DNA replication catastrophe, leading to post-mitotic cell
death, cell cycle arrest or senescence.

MATERIALS AND METHODS

Ex vivo ovarian cancer models

Research samples were obtained with informed patient con-
sent from the Manchester Cancer Research Centre (MCRC)
Biobank. The MCRC Biobank is licensed by the Human
Tissue Authority (license number: 30004) and is ethically
approved as a research tissue bank by the South Manchester
Research Ethics Committee (Ref: 18/NW/0092). The role
of the MCRC Biobank is to distribute samples and does not
endorse studies performed or the interpretation of results.
For more information, see https://www.mcrc.manchester.
ac.uk/research/mcrc-biobank. Sixteen ex vivo OCMs were
expanded from ascites samples from 14 patients, as pub-
lished previously (15). Although all patients were ini-
tially diagnosed with HGSOC, four were re-classified upon
histopathological review (Table 1) (20). Mean age at di-
agnosis was 62.5 years (range 25–84). Three samples were
chemo-naı̈ve (patients 38, 87 and 195).

Analysis by exome sequencing for 11 of the OCMs has
been reported and data deposited previously (15). For anal-
ysis of the panel of 11 genes in the present study, reads
were filtered and aligned to the human reference sequence
analysis set (hg38/Dec. 2013/GRCh38) from the UCSC
browser (28), using BWA-MEM v0.7.1566 (29). Single nu-
cleotide variants, indels and copy number variants (includ-
ing in matched tumour and stromal cells) were called us-
ing Varscan 2 (v.2.4.0) (30), using samtools mpileup as in-
put. Variants (SNVs and indels) were classified as: germline
if tumour and stromal sequence match but are different to
reference genome; somatic if tumour and stromal sequence
do not match (but stromal sequences matches reference)
and there is a significant difference in allele frequency; or
loss of heterozygosity if the stromal sequence is heterozy-
gous but the tumour sequence is homozygous. Functional
annotation of genetic variants was performed using AN-
NOVAR (v20191024) (31) with the GENCODE (v40) Ba-
sic set (32). Pathogenicity of germline variants was deter-
mined by cross-referencing with ClinVar (33). However, no
germline variants identified in the 11 OCMs were anno-
tated as ‘pathogenic’ or ‘likely pathogenic.’ Somatic vari-
ants were filtered to those giving rise to changes in the pro-
tein sequence i.e. exonic, splice variants and truncating mu-
tations, or those in regulatory sequences. Varscan 2 identi-
fied copy number changes were further processed as recom-
mended in the user guide. Raw copy number calls were ad-
justed for GC content and preliminary calls made using the
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Table 1. Patient and OCM characteristics

Patient
Anatomical

site Histology
FIGO
stage gBRCAm

Lines of
CTx† OCM

Seeding
density

(96-well) References

33 PP HGSOC 4B Unknown 2 33–2 2000 Nelson et al., Barnes et al.,
Coulson-Gilmer et al.

38 OV/PP HGSOC 3C Unknown 0 38 2000 Nelson et al., Barnes et al.

46 OV/PP HGSOC 3C Unknown 1 46–3 1000 Nelson et al., Barnes et al.,
Coulson-Gilmer et al.

59 OV/PP HGSOC 3C Unknown 2 59–3 4000 Nelson et al., Barnes et al.,
Coulson-Gilmer et al.

64 OV/PP Possible
HGSOC/LGSOC mix*

3C Unknown 2 64–1 1000 Nelson et al., Barnes et al.,
Coulson-Gilmer et al.§

3 64–3- 2000

66 OV/PP HGSOC 3C Unknown 1 66–1 2000 Nelson et al., Barnes et al.,
Coulson-Gilmer et al.§

1 66–5 3000

72 OV Moderately
differentiated MUC

1A Unknown 1 72 2000 Nelson et al., Barnes et al.

79 OV HGSOC 3C Unknown 3 79 2000‡ Nelson et al., Barnes et al.

87 OV Possible CCOC* 3B Unknown 0 87 1000 Nelson et al., Barnes et al.,
Coulson-Gilmer et al.

105 OV/PP HGSOC 3C BRCA1 VUS 3 105 1000 Coulson-Gilmer et al.

109 OV HGSOC 4B Unknown 3 109 5000 Barnes et al.,
Coulson-Gilmer et al.

152 OV Moderately
differentiated serous
adenocarcinoma of
intermediate grade*

3C Unknown 5 152 4000 Barnes et al.,
Coulson-Gilmer et al.

191 OV HGSOC 3A BRCA1 2 191 4000 Barnes et al.,
Coulson-Gilmer et al.

195 PP Possible LGSOC* 4A Unknown 0 195 4000 Barnes et al.,
Coulson-Gilmer et al.

*See Barnes et al., 2021; †at time of research biopsy; ‡150000, 500, 2000, 4000 for 6-well, 12-well (colony formation assay), 24-well (time-lapse), coverslips,
respectively; §Coulson-Gilmer et al., only included 64-1 and 66-1 (and not subsequent OCMs from these patients). CCOC, clear cell ovarian cancer;
CTx=chemotherapy; gBRCAm=patient germline BRCA1/2 mutation; HGSOC=high-grade serous ovarian cancer; LGSOC=low-grade serous ovarian
cancer; MOC=mucinous ovarian cancer; OV=ovary; PP=primary peritoneum; VUS, variant of uncertain clinical significance.
Note that the culture established from the third biopsy from patient 64 was further separated into EpCAM-negative (64-3-) and EpCAM-positive cells,
with only OCM.64-3- included in the current analysis. See also Supplementary Figure S1.

copyCaller function of Varscan2. Copy number data was
then segmented using a circular binary segmentation algo-
rithm in the DNAcopy (v.1.70.0) (34) library from Biocon-
ductor (v.3.15) in R (v.4.1.0). Adjacent segments of similar
copy number were merged using an accessory script pro-
vided with Varscan 2. These segment coordinates were then
aligned with the GENCODE (v40) Basic set to give copy
number state for every gene. SNVs, indels and copy num-
ber state for genes of interest was visualised by oncoprint
(35,36).

Analysis by RNA-sequencing has been reported previ-
ously for the 16 OCMs (15,20,21). For the analysis pre-
sented here, read counts were processed using the deseq2
(37) package from Bioconductor in R and a variance stabil-
ising transformation was performed. The R package Com-
plexHeatmap (38) was then used to visualise gene expres-
sion profiles.

Cell culture

OCMs were cultured in OCMI media (39) as described
previously (15). FNE1 cells (a kind gift from Tan A.
Ince) were cultured in WIT-Fo Culture Media FOMI me-
dia as described previously (40). For long-term storage,
cells were frozen in Bambanker (Wako pure chemical) and
stored in a LN2 storage vessel. Cells were periodically
tested for the presence of mycoplasma by the Molecu-
lar Biology Core Facility at the CRUK Manchester Insti-
tute. PDD00017273 (PARGi; Tocris), AZD6738 (ATRi; As-
traZeneca), AZD7762 (CHK1i; AstraZeneca), AZD1775
(WEE1i; Salleck Chem), EPT46464 (Salleck Chem) and
LY2603618 (Salleck Chem) were all dissolved in DMSO
and stored below -20◦C and used as described in figure leg-
ends. Hydroxyurea (Sigma Aldrich) and gemcitabine (Sal-
leck Chem) were dissolved in water and used as described
in figure legends.
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Lentiviral transduction

AAV293T cells (Agilent Technologies) were transfected
with either pLVX-myc-EmGFP-H2B, or pLVX-myc-H2B-
mCherry, along with psPAX2 and pMD2.G (gifts from Di-
dier Trono via Addgene) using CaCl2 (Promega) in DMEM
supplemented with 10% Hyclone serum (GE Healthcare)
and incubated overnight. Virus was harvested 48 later, cen-
trifuged, filtered then added to OCMs with 10 �g/ml poly-
brene (Sigma Aldrich) and the cells centrifuged at 300 × g,
30 ◦C for 2.5 h followed by overnight incubation. Puromycin
(Sigma Aldrich) (1 �g/ml) was added 48 h after transduc-
tion.

Cell fate profiling

Cells were seeded in black �clear® 96-well plates (Greiner
Bio-One) 24 h prior to drug addition. Plates were imaged us-
ing an IncuCyte® ZOOM (Satorius AG) using an 20× ob-
jective and maintained at 37◦C in a humidified 5% CO2
and 5% O2 atmosphere. Phase images were acquired at 10-
min intervals over 96 h and imaging sequences were ex-
ported in MPEG-4 format and analyzed manually.

Time-lapse microscopy drug profiling assay

Cells expressing fluourescent-H2B were seeded in black,
�clear® 96-well plates (Greiner Bio-One), at densities given
in Table 1, with drugs added 24 h post seeding. Plates were
imaged immediately using an IncuCyte® ZOOM (Satorius
AG), maintained at 37◦C in a humidified 5% CO2 and 5%
O2 atmosphere, with images acquired once every 1–6 h for a
maximum of 144 h. IncuCyte® ZOOM software was used
in real-time to measure fluorescent object count. Fluores-
cent object count was normalised to t = 0 for each drug con-
centration to generate a proliferation curve. The area under
the proliferation curve (AUC) was calculated for each drug
concentration to generate a dose-response curve with non-
linear regression used to determine GI values. To determine
the doubling time for each culture, the following equation
was used:

N (t) = N0 2t/Td

where N(t) = the number of objects at time t, Td = doubling
period (time it takes for object to double in number), N0 =
initial number of objects and t = time. A log2 transforma-
tion was performed on the normalized fluorescent count of
untreated cells. The data were plotted against time and the
inverse gradient of the log-phase portion of the graph cal-
culated to give culture doubling time.

For the first stage of the MLD drug combination screen,
the time-lapse microscopy drug profiling assay was used
to measure the 10% maximal growth inhibition concentra-
tion (GI10) of PDD00017273 (PARGi), AZD6738 (ATRi),
AZD7762 (CHK1i) and AZD1775 (WEE1i) for each OCM.
For the second stage, the GI10 doses from the four drugs
were combined in double-, triple- and four-drug combina-
tions for each OCM. For OCMs where a GI10 could not
be determined, a generic low dose was used (i.e. PARGi =
100 nM, ATRi = 2 �M). As detailed above, the time-lapse
microscopy drug profiling assay was used to image cells for

96 h and the AUC of the normalized fluorescent count de-
termined. The proliferation rate for each drug combination
was calculated by normalization of the AUC to untreated
cells. Due to batch-to-batch variation between commercial
drug supplies and stability when reconstituted, GI10 values
for mechanistic analyses were re-calculated periodically.

Cell viability drug profiling assay

Cells were seeded in black �clear® 96-well plates (Greiner
Bio-One) with the addition of drugs 24 h later. After a 72 h
incubation with drugs, media was replaced with a 1:1 ratio
of media and CellTiter-Glo® 2.0 reagent (Promega). Lumi-
nescent signal was measured using a Varioskan™ LUX mul-
timode microplate reader (Thermo Scientific), with read-
ings normalised to blank wells containing reagent only.

Colony formation assay

Cells were seeded into 12-well plates at 500 cells/well be-
fore addition of drugs 24 h later. Media containing drugs
was replaced at every 3–4 days, with fixation of cells in 1%
(v/v) formaldehyde (Fisher Scientific) occurring when ei-
ther one well on the plate reached confluence, or after 4
weeks treatment. Cells were stained with 0.05% (w/v) crys-
tal violet solution (Sigma-Aldrich), before imaging using a
ChemiDoc™ Touch Imaging System (Bio-Rad). Quantifica-
tion of the colony area was performed using ImageJ soft-
ware (NIH) with the ColonyArea plugin.

Immunoblotting

Protein was extracted by boiling cell pellets in SDS buffer
(0.35 M Tris pH 6.8, 0.1 g/ml sodium dodecyl sulphate,
93 mg/ml dithiothreitol, 30% (v/v) glycerol, 50 �g/ml bro-
mophenol blue; all from Sigma Aldrich) and resolved by
SDS-PAGE using NuPAGE™ 4–12% (v/v) Bis-Tris protein
gels (1.0 mm) (Life Technologies), before electroblotting
onto methanol-soaked Immobilon-P nitrocellulose mem-
branes (Merck Millipore). Membranes were blocked in
either 5% (w/v) dried skimmed milk (Marvel), or for
phospho-specific antibodies, 5% (w/v) bovine serum albu-
min (BSA, Sigma Aldrich) dissolved in TBST (50 mM Tris
pH 7.6, 150 mM NaCl, 0.1% Tween-20), with membranes
incubated overnight at 4◦C with the following primary
antibodies: mouse anti-CDC25A (Santa Cruz Biotechnol-
ogy cat#sc-7389; RRID:AB 62722; 1:200); mouse anti-
CHK1 (Santa Cruz Biotechnology, cat#sc-8408, RRID:
AB 627657, 1:400); rabbit anti-phospho-CHK1 serine-296
(Cell Signalling, cat#2349, RRID:AB 2080323, 1:500);
rabbit anti-phospho-CHK1 serine-345 (Cell Signalling,
cat#2348, RRID:AB 331212, 1:750); sheep anti-Tao1 ((41),
1:1000). Membranes were washed 3 x TBS-T before incu-
bating with the appropriate horseradish-peroxide (HRP)-
conjugated secondary antibodies for a minimum of 2
hours (goat anti-mouse IgG [H + L] HRP, Invitrogen,
cat#G21040 RRID: AB 2536527; goat anti-rabbit IgG
[H+L] HRP, Invitrogen, cat#G21234, RRID: AB 1500696;
rabbit anti-sheep IgG [H+L] HRP, Invitrogen, cat#618620,
RRID: AB 2533942; all 1:2000). Following 3× TBS-T
washes, bound secondary antibodies were detected using
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either EZ-Chemiluminescence Reagent (Geneflow Ltd) or
Luminata™ Forte Western HRP Substrate (Merck Milli-
pore) and a ChemiDoc™ Touch Imaging System (BioRad).
Image Lab software (BioRad) and Adobe Photoshop® CC
2018 (Adobe Systems Inc.) were used to process images.

Immunofluorescence

Cells were seeded 24 h prior to drug treatment onto pre-
coated 19 mm coverslips or 96-well Cell Carrier plates
(PerkinElmer). Cells were fixed with addition of 1% (v/v)
formaldehyde for 5 min, washed in PBS, before quench-
ing in glycine (12.5 mM in PBS) for 5 min. Subsequent
wash steps used PBS-T (PBS, 0.1% (v/v) Triton X-100).
The following primary antibodies were added to cells
for 30 min at room temperature: rabbit anti-Vimentin
(EPR3776) (Abcam, cat#ab92547, RRID: AB 10562134,
1:1000); mouse anti-�H2AX pS139 (Merck Millipore,
cat#05-636, RRID: AB 309864, 1:500); rabbit anti-RPA70
(Abcam, cat#ab79397, RRID: AB 1603759, 1:350). Cells
were washed and incubated with fluorescently conjugated
secondary antibodies for 30 min: donkey anti-mouse Cy3
(Jackson ImmunoResearch Laboratories Inc, cat#715–165-
150, RRID: AB 2340813, 1:500), donkey anti-rabbit Cy5
(Jackson ImmunoResearch Laboratories Inc, cat#711–175-
152, RRID: AB 2340607, 1:500). Cells were washed and
DNA stained with 1 �g/ml Hoechst 33258 for 2 min at
room temperature. Coverslips were mounted onto micro-
scope slides (90% (v/v) glycerol, 20 mM Tris, pH 9.2)
and stored at −20◦C before image acquisition. For high-
throughput immunofluorescence, 96-well plates were stored
in PBS at 4◦C prior to image acquisition.

For coverslips, image acquisition was performed using ei-
ther a 40× or 63× objective on an Axioskop2 (Ziess, Inc.)
microscope fitted with a CoolSNAP HQ camera (Photo-
metrics). MetaMorph Software (Molecular Devices) with
Adobe Photoshop® CC 2018 (Adobe Systems Inc.) used
for image processing. For high-throughput immunofluores-
cence, image acquisition was performed using Operetta®

High Content Imaging System (Perkin Elmer) with im-
age analysis and quantitation using Harmony and Colum-
bus High Content Imaging and Analysis Software (Perkin
Elmer). Analysis software used Hoechst 33258 staining to
calculate intensity thresholds and generate a nuclear mask.
Pixel intensity of the relevant fluorescent antibody could be
quantitated from within the nuclear area and used to calcu-
late mean intensity or number of objects. For quantitation,
a minimum of 1000 cells per condition were analyzed.

DNA fibre assay

Asynchronous cells were incubated with inhibitors for 1
h, before double labelling with nucleoside analogues. Me-
dia containing 5 �M BrdU plus drug(s) was added for
20 min at 37◦C, followed by 3× PBS washes, and addi-
tion of media containing 200 �M IdU plus drug(s) for 20
min at 37◦C, followed by 2 wash steps using ice-cold PBS.
Note, only the IdU track was analyzed for Figure 5. Cells
were then trypsinised and resuspended in ice-cold PBS at
8×105 cells/ml. For DNA spreading, 2 �l of the cell sus-
pension was added to a SuperFrost Plus™ adhesion slide

(Thermo Scientific) and allowed to dry for 5–10 min. 7 �l
of spreading/lysis buffer (200 mM Tris–HCl pH 7.5, 50 mM
EDTA, 0.5% (w/v) SDS) was added to the cell suspension,
gently mixed and incubated for 2–3 min at room temper-
ature. Slides were then tilted at a 3–10◦ angle to allow the
suspension to slowly run down the slide and spread for sev-
eral minutes. The spreads were then allowed to dry before
fixation in methanol/acetic acid (3:1) for 10 min. Once dry,
slides were stored at 4◦C.

Before immunolabeling, slides were washed 2× ddH2O
for 5 min and 1×2.5 M HCl, and denatured in 2.5 M HCl
for 1h. Slides were then washed twice with PBS, 2× block-
ing solution (PBS, 1% (w/v) BSA, 0.1% (v/v) Tween20) and
incubated in blocking solution for 1 h. For immunolabel-
ing, all antibodies were diluted in blocking solution. To de-
tect BrdU, slides were incubated with rat anti-BrdU pri-
mary antibody (Abcam, BU1/75 [ICR], cat#6326, RRID:
AB 305426, 1:500) at room temperature for 1h, and washed
3 x PBS. Slides were fixed for 10 min in 1% (v/v) formalde-
hyde, washed 3× PBS and subsequently quenched in glycine
(12.5 mM in PBS). Slides were washed 3× PBS, 3× blocking
solution for 5 min, before addition of mouse anti-BrdU pri-
mary antibody (BD Biosciences, BU44, cat#347580, RRID:
AB 400326, 1:100) to detect IdU overnight at 4◦C. Post-
incubation, cells were washed 2× PBS, 3× blocking so-
lution for 5 min, before incubation with the following
fluorescently-conjugated secondary antibodies for 2 h: don-
key anti-mouse Cy2 (Jackson ImmunoResearch Labora-
tories Inc., cat#715-225-150, RRID: AB 2340826, 1:500);
donkey anti-rat Cy3 (Jackson ImmunoResearch Laborato-
ries Inc, cat#712-165-153, RRID: AB 2340667, 1:500). Fi-
nal wash steps consist of 2× PBS, 3× blocking solution for 5
min and 2× PBS, before mounting slides to coverslips using
PBS:Glycerol (1:1).

Image acquisition was with a 100× oil immersion objec-
tive on an Axioskop2 (Zeiss) microscope fitted with a Cool-
SNAP HQ camera (Photometrics). Fibre lengths were mea-
sured using ImageJ software (NIH) with a minimum of 300
IdU fibres measured.

High-resolution fluorescence time-lapse microscopy

Cells expressing GFP-H2B were seeded in black �-Plate 24-
well plates (Ibidi) 24 h prior to treatment. Image acquisition
occurred over 72 h using an Axiovert 200 inverted micro-
scope (Zeiss) equipped with a ×40 Plan NEOFLUAR ob-
jective, an PZ-2000 automated stage (Applied Scientific In-
strumentation) and an environmental control chamber (So-
lent Scientific), which maintained cells at 37◦C in a humid-
ified 5% CO2 atmosphere. MetaMorph software (Molecu-
lar Devices) was used to control shutters, filter wheels, and
point visiting and an Evolve® Delta camera (Photometrics)
was used for image capture. Image sequences were analyzed
manually using MetaMorph software and used to identify
mitotic events.

Synergy analysis

Cells were seeded 24 h before addition of drugs, which were
titrated to form a drug concentration matrix. Proliferation

https://scicrunch.org/resolver/RRID:
https://scicrunch.org/resolver/RRID:
https://scicrunch.org/resolver/RRID:
https://scicrunch.org/resolver/RRID:
https://scicrunch.org/resolver/RRID:
https://scicrunch.org/resolver/RRID:
https://scicrunch.org/resolver/RRID:
https://scicrunch.org/resolver/RRID:
https://scicrunch.org/resolver/RRID:
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was measured by either time lapse microscopy drug profil-
ing assay or by cell viability assay at the 72-h time-point,
with proliferation normalised to untreated cells. Combene-
fit software (42) was used to calculate pharmacologic inter-
action using the Loewe additivity model. Synergy matrices
displayed the Loewe synergy value for each combination of
drug concentrations. The ‘drug average synergy’ was also
calculated, which is the concentration of one drug where
synergy appears to be localized.

Quantification and statistical analysis

Statistical analyses were performed using Prism 8 (Graph-
Pad) to calculate doubling time, AUC, Pearson’s r and GI
values. In statistical analysis, ∗ P < 0.05, ∗∗ P < 0.01, ∗∗∗
P < 0.001, ∗∗∗∗ P < 0.0001, ns: P > 0.05. For bar graphs
where sample means are used based on population measure-
ments from a minimum of three experiments, the paramet-
ric one-way ANOVA statistical test is used as indicated in
the figure legend. Error bars are described in the figure leg-
ends. For correlation analysis, a two-tailed P value was de-
termined.

RESULTS

A time-lapse imaging workflow to determine OCM prolifer-
ation rates

We have built a living biobank to evaluate novel therapies
for HGSOC. Starting with ascites, our workflow yields pu-
rified tumour fractions with extensive proliferative poten-
tial that can be maintained in standard 2D cell culture con-
ditions (15). To determine whether these OCMs provide a
tractable drug discovery platform, we set out to develop a
high-throughput drug-sensitivity profiling assay. We elected
to measure proliferation by labelling OCMs with a GFP-
tagged histone to allow visualisation of the chromatin, fol-
lowed by time-lapse microscopy to quantitate fluorescent
objects as a proxy for nuclear count (Figure 1A). Doubling
time was then calculated as the inverse gradient of the linear
portion of a log2 transformation of the fluorescent object
count, normalised to t = 0. To evaluate the reproducibility
of this approach we analysed a cohort of 16 OCMs, many
of which had been analysed previously (Table 1; Supple-
mentary Figure S1) (15). As demonstrated previously, the
culture dynamics of the cohort were highly heterogeneous,
with doubling times ranging from 28 h for OCM.46–3 to 96
h for OCM.59–3 (Figure 1B). Importantly, doubling times
remained largely consistent with our previous analysis gen-
erated over 18 months earlier (Figure 1C).

Because HGSOC have extensive CIN, we reasoned that
the extremely long doubling times of some OCMs may
reflect poor fitness due to highly abnormal genomes. To
test this, we took advantage of available shallow single-cell,
whole-genome sequencing data, and asked whether pro-
liferation rate correlated with metrics of genomic abnor-
malities. We analysed aneuploidy scores, which measure di-
vergence from euploidy, and structural aberration scores,
which measure copy number state transitions (15,43). There
was a significant negative correlation between OCM dou-
bling time and aneuploidy score (r = −0.6909; Figure 1D),

suggesting that deviation from the euploid state confers
a proliferative advantage, a notion that runs counter to
the prevailing view (44–47). However, OCMs 64-3+, 74-
1 and 74-3, which exhibit very long doubling times, have
negative aneuploidy scores because they possess numerous
monosomies (15). This suggests that the correlation may
be dominated by OCMs where chromosome losses have a
negative impact on proliferation. Conversely, the structural
aberration score positively correlated with doubling time
(r = 0.7421), i.e. OCMs with high levels of structural re-
arrangements tend to proliferate more slowly (Figure 1E).
OCM.59-3, for example, has the highest structural score
and doubling time of 105 h. This correlation is more intu-
itive and consistent with the notion that extensive genomic
abnormalities impart a fitness cost. Moreover, it suggests
that the variable proliferation rates reflect intrinsic proper-
ties of the tumour cells. Finally, and most importantly, these
observations show that the measurement of OCM prolifer-
ation rates using time-lapse tracking of nuclei is sufficiently
reproducible, thus providing a suitable assay for drug sensi-
tivity profiling.

Drug-sensitivity profiling using a proliferation assay

Having confirmed that measurement of proliferation us-
ing time-lapse microscopy is reproducible and reflective
of intrinsic tumour cell characteristics, we extended this
methodology into a short-term drug-sensitivity profiling
assay. We first measured the half maximal growth inhibi-
tion concentration of drug (GI50) to reflect the drug sen-
sitivity of the OCMs. GI values were determined using
dose-response curves, generated by measuring the area-
under-the-curve of fluorescent object count over time for
a range of drug concentrations (Figure 2A, B). Quoted
GI values are based on either single technical replicates
or the mean of three technical replicates depending on
the purpose of the experiment––see figure legends for
details.

Our rationale for using fluorescent object count to mea-
sure drug sensitivity was based on experience analysing
an inhibitor of the PAR glycohydrolase, PARG (PARGi;
PDD00017273) (21,48). While many drug screens infer cell
viability based on ATP metabolism, in cases where drugs
have cytostatic effects viability assays can underestimate
drug effects compared with direct cell counting (49). We
confirmed this by comparing imaging- and metabolism-
based assays to analyse the sensitivity of OCM.109 to
PARGi. Treatment of PARGi-sensitive OCM.109 resulted
in fewer cells but with rounded cytoplasms and enlarged
nuclei (Supplementary Figure S2A, B), reminiscent of the
“fried egg” morphology described previously (48). Over-
all, the time-lapse assay captured a reduction in prolifera-
tion of OCM.109 with PARGi treatment (Supplementary
Figure S2C). Conversely, the presence of enlarged cells re-
sulted in an underestimation of the decline in cell number by
the metabolism-based assay (Supplementary Figure S2C).
Thus, direct measurement of proliferation is the optimal ap-
proach for evaluating novel drugs of unknown mechanism,
as it can discriminate between cell growth versus prolifera-
tion.
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Figure 1. Measurement of OCM proliferation rates. (A) OCMs were transduced with a lentivirus expressing a GFP-tagged histone 2B (GFP-H2B) to
generate cells with fluorescent nuclei. Time-lapse microscopy was used to measure fluorescent object count to infer nuclear count, as a proxy for cell
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Optimization of the proliferation assay for OCM drug-
sensitivity profiling

Having established that an imaging-based proliferation as-
say was superior to a metabolism assay, we optimised a
number of assay parameters. Cell seeding density and assay
duration can affect drug-sensitivity profiling when there is
variability in cell cycle duration (50–53). Since the OCMs
exhibit significant heterogeneity in culture dynamics (Fig-
ure 1B), we optimised assay seeding density and assay du-
ration. For this we used paclitaxel and cisplatin as they
have different mechanisms of action and are used for the
treatment of ovarian cancer (54). The GI50 of OCM.46-3
to both drugs increased as seeding density was increased
but was more consistent at lower seeding densities (Fig-
ure 2C). Indeed, proliferation of untreated cells plateaued
earlier as seeding density increased (Supplementary Figure
S2D). Therefore, higher seeding densities likely give insuffi-
cient time for treatment to exert an anti-proliferative effect
and artificially elevate GI50. Consequently, we identified the
optimal seeding density for each of the 16 OCMs to allow a
minimum of 72 hours proliferation (Table 1).

Conversely, as assay duration was increased, the GI50 of
OCM.79 in response to both paclitaxel and cisplatin de-
creased (Figure 2D, Supplementary Figure S2E). For ex-
ample, an increase in cisplatin treatment duration from 48 h
(GI50 = 1.7 �M) to 120 h (GI50 = 1.0 �M) resulted in a 1.7-
fold reduction in GI50. Since GI50 for both drugs decreased
until a treatment duration of ∼96–108 h before stabilising,
a minimum of 96 h was used for subsequent assays.

Profiling the sensitivity of OCMs to inhibitors of the replica-
tion stress response

Upon optimisation of the drug-sensitivity profiling as-
say, we explored a number of inhibitors targeting the
RSR, a known vulnerability in HGSOC (23,24). We
screened the 16 OCMs for sensitivity to inhibitors of ATR
(ATRi; AZD6738) (55), CHK1 (CHK1i; AZD7762) (56),
PARG (PARGi; PDD00017273) (57) and WEE1 (WEE1i;
AZD1775; Figure 3A) (58). The time-lapse microscopy pro-
liferation assay was used to screen the OCMs for sensitivity
to these four agents as monotherapy (Figure 3B). Since the
fallopian tube epithelium is a likely origin for HGSOC, we
also included the hTERT-immortalized non-ciliated fallop-
ian tube epithelial cell line FNE1 (40,59).

Ten of the 16 OCMs and FNE1 cells were highly resis-
tant to PARGi, meaning GI50 could only be calculated for
six OCMs (Figure 3B). These results were largely consistent
with our prior screen, using colony formation assays (CFA),
and collectively we conclude that OCMs 59-3, 72, 109 and
191 are PARGi-sensitive (21). We did however note two ex-
ceptions: OCM.195, which displayed sensitivity in the cur-
rent proliferation analysis, but was resistant by CFA; and
OCM.46-6, which was highly sensitive in the current pro-
liferation analysis but only partially sensitive by CFA (21).
These exceptions may result from the presence of minor
PARGi-resistant clones, which survive treatment to even-
tually form colonies. While OCM.46-3 was also previously
scored as resistant in a proliferation assay, this may reflect
the different drug concentration ranges used (21). However,

overall consistency with prior studies (15,21), in both mea-
surement of proliferation rate (Figure 1C) and in PARGi-
sensitivity (Figure 3B), support use of the proliferation as-
say in drug-sensitivity profiling the OCMs.

In contrast with PARGi-sensitivity, the panel of OCMs
exhibited a more graded response to ATRi, CHK1i and
WEE1i, with only the GI50 of OCM.109 to ATRi not deter-
mined (Figure 3B). FNE1 cells displayed a mid-range GI50
to ATRi, CHK1i and WEE1i (Figure 3B, orange bars), in-
dicating that doses required to target the tumour cells may
also be detrimental to non-transformed cells. Since HG-
SOC organoids with replication stress displayed sensitivity
to inhibition of either CHK1 or ATR (24), we expected to
find a correlation between sensitivity to the four drugs in-
cluded in our screen. Surprisingly however, for five of the six
pairwise comparisons, sensitivity to one drug did not corre-
late with sensitivity to the other (Pearson’s r correlation of
<0.5; Figure 3C). Therefore, sensitivity is not reflective of
a general sensitivity to targeting of the RSR. The one ex-
ception was sensitivity to CHK1i and WEE1i (Pearson’s r
correlation of 0.8001), suggesting that there may be a com-
mon vulnerability in the OCMs that results in sensitivity to
these two agents. Interestingly, GI50 to CHK1i also signif-
icantly correlated with doubling time (Pearson’s r correla-
tion of 0.7941), possibly due to the integral role of CHK1
in cell cycle signalling rendering more rapidly proliferating
cells specifically reliant on CHK1 function (Supplementary
Figure S3). Nevertheless, because responses generally did
not correlate, we conclude that while the RSR may be a fre-
quent vulnerability in HGSOC, drugs targeting the RSR are
not simply interchangeable.

A multiple-low-dose strategy to target the replication stress
response

Since monotherapy only targets a small subset of non-
overlapping OCMs we decided to evaluate combinations of
the RSR inhibitors adopting a multiple-low-dose (MLD)
strategy. MLD is an attractive strategy for complete path-
way inhibition, whilst potentially minimising emergence of
resistance and toxicity to healthy cells (25–27). Indeed, since
the GI50 of FNE1 cells to ATRi, CHK1i and WEE1i was
within the range for the OCMs (Figure 3B), a low-dose com-
bination strategy of these agents may be required clinically
to avoid toxicity.

The MLD screen was conducted in two stages (Figure
4A). Firstly, the 10% maximal growth inhibition dose (GI10)
of each of the four drugs was determined for each of the
16 OCMs and FNE1 cells, using the dose-response curves
generated in the initial screen (Figure 3B). Then, all possible
two-, three-, and four-drug combinations were evaluated us-
ing the GI10 doses. Proliferation was normalised to that of
untreated cells and displayed as a heatmap to allow compar-
ison of each MLD regimen (Figure 4B; Supplementary Fig-
ure S4A). As expected, GI10 doses induced only marginal
effects on OCM proliferation. In stark contrast, for 15 of
the 16 OCMs, the four-drug MLD combination resulted in
a reduction in proliferation of more than 80% versus un-
treated cells. Thus, while components of the RSR may be
redundant, inhibition of the RSR pathway is not tolerated.
Two main exceptions include: FNE1 cells, indicating that
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Figure 3. Drug-sensitivity profiling of OCMs with inhibitors of the replication stress response. (A) Inhibitors of the RSR used in the OCM drug-sensitivity
screen, specifically targeting the replication checkpoint kinases and PARylation. Replication stress activates the ATR-CHK1-WEE1 signalling cascade (93).
Replication stress and DNA damage impact PAR dynamics controlled by PARP and PARG, and PAR chains can also activate CHK1 directly (94,95). (B)
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RSR blockade may be tolerated by non-transformed cells;
and OCM.109, suggesting that, in rare cases, some tumour
cells can evade RSR blockade. Why OCM.109 is resistant to
RSR inhibition remains to be seen (Supplementary Figure
S1).

Next, we asked which combinations were driving the ef-
fect by calculating the mean reduction in proliferation for
each combination across the cohort of OCMs (Supplemen-
tary Figure S4B). Of the three-drug combinations, ATRi-
PARGi-WEE1i had the smallest impact, suggesting that
CHK1i is central in driving the antiproliferative response.
Furthermore, since all two-drug combinations containing
PARGi had minimal impact, low-dose PARGi is unlikely
driving the response. Accordingly, ATRi-CHK1i-WEE1i
was the most potent three-drug combination, confirming
that CHK1i is required for the strong antiproliferative ef-
fect. Indeed, the two-drug combinations of ATRi-CHK1i
and WEE1i-CHKi both impart a strong antiproliferative ef-
fect on the OCMs. Response to ATRi-CHK1i and WEE1i-
CHKi was also strongly correlated (Pearson’s r of 0.722;
Figure 4C), suggesting that sensitivity to both these low-
dose combinations may result from the same intrinsic vul-
nerability. Overall, low-dose combinations of ATRi-CHK1i
and WEE1i-CHK1i are sufficient to achieve complete RSR
inhibition and have a strong antiproliferative effect in the
majority of OCMs.

Low-dose ATRi-CHK1i is synergistic in OCMs

The MLD screen indicated that a wide range of distinct
OCMs are sensitive to ATRi-CHK1i and CHK1i-WEE1i
when combined at GI10 doses. This is consistent with previ-
ous observations in various cancer models (60–65). Whilst
sequential low doses of CHK1i and WEE1i has been ex-
plored in combination with gemcitabine (66), combined low
doses in the absence of chemotherapy are yet to be evaluated
clinically. Since the addition of ATR inhibition to CHK1
inhibition is known to induce DNA replication catastrophe
in cancer cells (65), we decided to further evaluate the im-
pact of ATRi-CHK1i in the ovarian cancer cells, specifically
at low doses. OCM.79 was used as a model, as it had a re-
duction in proliferation with low-dose ATRi-CHK1i that
was representative of the cohort (Figures 4B, 5A). OCM.79
is also from previously treated HGSOC (Stage 3C), in line
with most of the cohort, and has wild-type sequence for
BRCA1/2 (with an amplification including BRCA1 that
does not appear to increase expression; Table 1, Supplemen-
tary Figure S1) (15).

First, we confirmed the activity of low-dose ATRi-
CHK1i in a long-term CFA (Figure 5B). In line with the
short-term proliferation assay, GI10 or GI20 monotherapy
had little effect upon colony formation (Figure 5B, upper
panel). By contrast, in combination, GI10 and GI20 had
profound impact on colony formation (Figure 5B, lower
panel). The low-dose combination proved effective in pre-
venting the long-term appearance of resistance, with only
a few colonies present after four weeks treatment with the
combined GI10 or GI20 doses. By contrast, multiple resis-
tant colonies appear following four weeks treatment with
the GI50 doses of either drug as monotherapy. For CHK1i,
resistant colonies also appear after four weeks treatment

with the GI75 dose. Therefore, CFA confirm the potent ac-
tivity of low-dose ATRi-CHK1i, and the ability of the low-
dose approach to prevent the occurrence of treatment resis-
tance.

To further validate the combination effect, the prolifer-
ation assay was used in a drug-concentration matrix with
72 h treatment of OCM.79 (Figure 5C). The synergy ma-
trix, generated using the Loewe Additivity Model (67,68),
was dominated by synergy with an overall positive score
of 24.8 (Figure 5D). Although more pronounced at higher
doses, synergy is predicted for the combined GI10 doses of
ATRi (2.11 �M) and CHK1i (135.3 nM) for OCM.79. Like-
wise, a matrix of OCM.33–2 viability was also dominated by
synergy (Supplementary Figure S5A, B). We also indepen-
dently validated synergy by targeting ATR and CHK1 with
the alternative inhibitors EPT46464 (69) and LY2603618
(70), respectively. All four possible combinations of ATR
and CHK1 inhibitors reduced the viability of OCM.33–2
(Supplementary Figure S5C). Similarly, a synergy matrix
of OCM.79 treatment combining increasing doses of ATRi
and LY2603618 for 72h resulted in a positive synergy score
(Supplementary Figure S5D, E). Although AZD7762 in-
hibits both CHK1 and CHK2 (56), LY2603618 is a selec-
tive CHK1 inhibitor, meaning synergy is the result of CHK1
inhibition (70). Thus, low-dose ATRi-CHK1i is synergistic
against ovarian tumours cells in short-term proliferation as-
says. Taken together with the impact on colony formation,
this synergy demonstrates that the ATRi-CHK1i combina-
tion induces a potent low-dose combination effect.

Low-dose ATRi-CHK1i results in DNA replication stress and
replication catastrophe

Previous studies have demonstrated that AZD6738 and
AZD7762 inhibit ATR and CHK1 activity, respectively
(55,56,71). We next confirmed on-target inhibition of
ATR and CHK1 in the OCMs, first using OCM.79.
Following induction of replication stress with hydrox-
yurea, ATRi dose-dependently inhibited CHK1 serine-
345 phosphorylation by ATR (72) (Supplementary Fig-
ure S6A). Similarly, with gemcitabine-induced replication
stress, CHK1i dose-dependently inhibited CHK1 serine-
296 auto-phosphorylation (73), and destabilisation of
CDC25A by CHK1 (74) (Supplementary Figure S6B). Both
inhibitors demonstrated activity at dose ranges spanning
the GI10 doses for OCM.79. In the absence of replication
stress induction, the GI10 ATRi alone was not sufficient
to inhibit basal CHK1 serine-345 phosphorylation (Figure
5E). However, since CHK1 inhibition can abrogate negative
feedback on ATR signalling (75), CHK1 serine-345 phos-
phorylation was increased by GI10 CHK1i, or the low-dose
combination. Importantly, whilst the stability of CDC25A
was unaffected by the ATRi GI10 dose, it was stabilised by
the CHK1i GI10 dose, and possibly further stabilised by the
low-dose combination (Figure 5E). Similar results were also
obtained in treating OCM.66-1 with the GI10 doses (Sup-
plementary Figure S7A).

Having confirmed on target activity, we evaluated
whether low-dose ATRi-CHK1i results in DNA damage
and subsequent replication stress. Firstly, we stained cells
for RPA and �H2AX, markers of single-stranded DNA
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Figure 5. Synergistic low-dose ATRi-CHK1i results in DNA replication stress and catastrophe in patient-derived HGSOC tumour cells. (A) Drug-
sensitivity profiling assay of OCM.79 using ATRi and CHK1i at GI10 concentrations. Fluorescent object count of over 96 hours in the presence and
absence of treatment as indicated, normalised to t = 0. Data are reproduced from Figure 4B, with each point representing the mean of three technical
replicates ± SD. (B) Colony formation of OCM.79 following seven days or four weeks treatment with the GI10, GI20, GI50, GI75 or GI90 doses of ATRi and
CHK1i for OCM.79, alone or in combination as indicated. Results are from a single experiment. (C) OCM.79 proliferation in a drug-concentration matrix
of the indicated doses of ATRi and CHK1i for 72 h using the time-lapse proliferation assay. AUC was normalized to untreated cells. Data are from one
technical replicate. (D) Matrix of the synergy-antagonism score generated from (C) using the Loewe additivity model. The drug average synergy scores are
given to show the localisation of the synergy. The integrated weight sum of synergy and antagonism is also given, representing the total synergy/antagonism
measurements across the matrix. (E) Immunoblot for CDC25A, CHK1, and CHK1 serine-345 phosphorylation, in OCM.79, with no treatment or after
2h treatment with the GI10 doses of ATRi and CHK1i alone or in combination. CDC25A is the upper band of approximately 65 kDa. Tao1 is included as
a loading control. Representative immunoblot of two biological replicates. (F) Mean nuclear �H2AX intensity by immunofluorescence staining, following
48h treatment of OCM.79 or FNE1 cells with the GI10 doses of ATRi and CHK1i alone or in combination, normalized to untreated cells. (G) Mean RPA
foci per nucleus by immunofluorescence staining, following 48h treatment of OCM.79 with the GI10 doses of ATRi and CHK1i alone or in combination,
normalized to untreated cells. (H) Median length of IdU-labelled nascent DNA fibre in untreated OCM.79, or OCM.79 pre-treated for 80 min with the
GI10 doses of ATRi and CHK1i alone or in combination (with treatment conditions then continued during 20 min IdU pulse). (F–H) Mean ± SD from
three biological replicates, one-way ANOVA, *P ≤ 0.05, ***P ≤ 0.001, n.s. P > 0.05. GI10, GI20, GI50, GI75 or GI90 doses for OCM.79 and FNE1 cells
were derived using the proliferation assay. See also Supplementary Figures S5–S7.
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and double-strand breaks (DSB) respectively, indicating
replication stress (76,77). Treatment of OCM.79 with the
GI10 doses individually resulted in a small, non-significant,
increase in �H2AX and RPA staining, compared with
untreated cells (Figure 5F, G and Supplementary Figure
S6C–F). However, the low-dose ATRi-CHK1i combination
caused a significant increase in both markers, with pan-
nuclear �H2AX staining indicating prolonged replication
stress and subsequent replication catastrophe (76). Like-
wise, only the low-dose ATRi-CHK1i combination resulted
in significant �H2AX staining of OCM.191 (Supplemen-
tary Figure S7B, C). Conversely, treatment of FNE1 cells
with the GI10 doses alone or in combination did not induce
�H2AX (Figure 5F).

Since the low-dose combination results in features asso-
ciated with replication stress, we next evaluated replication
fork progression directly using a DNA fibre assay. Follow-
ing 80 min pre-treatment, cells were pulsed with IdU for 20
min to label active forks and allow measurement of nascent
DNA fibres, as an indicator of the speed of replication fork
progression (Figure 5H). Compared with untreated cells,
fork speed was significantly reduced when OCM.79 was
treated with low-dose ATRi or CHK1i alone, or in combi-
nation. This slowing of replication fork progression could
result from a reduced polymerization rate, or an increase in
replication fork stalling. We did examine fork asymmetry, as
an indicator of stalling, by labelling origins with BrdU prior
to IdU to allow comparison of cognate left and right fork
length. However, whilst there was a trend towards increased
fork asymmetry with low-dose CHK1i and ATRi-CHK1i,
versus no treatment, it was not statistically significant (Sup-
plementary Figure S6H). Nonetheless, the low-dose ATRi-
CHK1i combination induces persistent DNA replication
stress and eventually replication catastrophe, manifesting
as slowed replication forks and pan-nuclear �H2AX, in
patient-derived HGSOC tumour cells.

Low-dose ATRi–CHK1i combination induces post-mitotic
cell death

Inhibition of the replication checkpoint allows replication
stress to persist eventually leading to replication catastro-
phe (76). However, stabilisation of CDC25A suggests that
low-dose ATRi-CHKi treatment may also allow cells to by-
pass the G1/S checkpoint (Figure 5E, Supplementary Fig-
ure S7A). Therefore, next we examined cell cycle progres-
sion in response to low-dose ATRi-CHK1i in more de-
tail, using time-lapse microscopy over 96 h (Figure 6A)
(78). While the majority of OCM.79 cells underwent mul-
tiple divisions in the absence of inhibitors, or in the pres-
ence of low-dose ATRi or CHK1i alone, only 43% of cells
treated with the low-dose combination completed mitosis,
with very few cells completing more than one normal divi-
sion (Figure 6A, B). Rather, 32% of the cells treated with the
low-dose combination exited their first mitosis without di-
viding. Additional anti-proliferative cell fates then followed,
with almost all cells that exited mitosis subsequently under-
going a second mitotic exit, cytokinesis failure or death in
interphase (Figure 6A). Indeed, post-mitotic death was in-
creased by the low-dose combination, and to a lesser extent
by ATRi alone, versus CHK1i alone or no treatment (Fig-

ure 6C). Conversely, pre-mitotic and mitotic cell death oc-
curred at a similar rate across all conditions, likely reflect-
ing the intrinsic genomic instability of OCM.79 (15). Thus,
post-mitotic cell death is a major contributor to the antipro-
liferative activity of low-dose ATRi-CHK1i.

To further understand the impact on cell cycle progres-
sion, we next focused on cells that survived for the duration
of the experiment (Figure 6D, E). Whilst most surviving un-
treated cells underwent two or three mitotic events during
the analysis (including normal or abnormal mitosis, mitotic
slippage and cytokinesis failure), there was a shift towards
mostly three mitotic events for cells treated with low-dose
ATRi or CHK1i alone (Figure 6D). Thus, low doses of the
drugs may increase the rate of cell cycle progression. How-
ever, most surviving cells treated with the low-dose com-
bination underwent only one or two mitotic events, with
only 16% undergoing three events. Subsequent examina-
tion of interphase duration found that the first interphase
pre-mitosis was shorter in all three treatment groups, ver-
sus untreated cells, in line with an initial increase in the
rate of cell cycle progression (Figure 6E). Conversely, inter-
phase duration following mitosis was longer with the low-
dose combination than with no treatment, but was unaf-
fected by either monotherapy. Therefore, post-mitotic cell
cycle arrest likely contributes to the overall reduction in mi-
totic events with the low-dose combination. Further exami-
nation of the distribution of cells according to the duration
of second interphase revealed a population of cells with a
second interphase of more than 70 h, which may have been
exhibiting permanent arrest or senescence (Supplementary
Figure S8). Thus, although most analyses shown in 6B–E
(derived from two biological replicates) did not reach sta-
tistical significance, there is a clear trend suggesting that
the anti-proliferative activity of the low-dose combination
results from either post-mitotic cell death or induction of
post-mitotic cell cycle arrest or senescence.

DISCUSSION

Acquired resistance to standard-of-care chemotherapy is
the major clinical challenge when treating women with HG-
SOC, and thus there is a pressing need for next-generation,
biomarker-led targeted therapies. Due to the paucity of ac-
tionable oncogenic driver mutations in this disease, substan-
tial effort is focused on exploiting tumour cell vulnerabili-
ties, in particular the genomic instability that arises from de-
fects in DNA damage repair and RSR pathways. To com-
pare different agents targeting the RSR in the context of
HGSOC, we developed and optimized a proliferation-based
drug-sensitivity assay to profile a living biobank of patient-
derived OCMs. Using this assay to test multiple combina-
tions of four agents targeting different nodes of the RSR,
we show that a low-dose two-drug ATRi-CHK1i combi-
nation has a broad and potent anti-proliferative effect that
warrants further evaluation as a next-generation therapy for
HGSOC.

HGSOC displays extensive genomic and phenotypic het-
erogeneity, features retained by OCMs (15). Despite this
heterogeneity, by optimizing several parameters, including
seeding density and assay duration, we were able to repro-
ducibly measure OCM proliferation rates. Indeed, the time-
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lapse imaging-based assay offers several advantages, includ-
ing the ability to capture cytostatic and cytotoxic effects;
high temporal resolution with the ability to interrogate mul-
tiple timepoints; and an automated, micro-well format to
screen multiple OCMs in parallel in response to multiple
drugs. We note however that while fluorescent object count
serves as a robust proxy for cell number, there may be con-
founding issues; for example, bi- or multinucleated cells be-
ing counted as distinct entities. To improve the assay, fu-
ture iterations could explore multiplexing to also measure
apoptosis and/or senescence, and use drug-induced growth-
rate inhibition to account for differing proliferation rates
(49,52,53). Note also that the assay analyses OCMs in ex-
ponential growth phase in a well-defined homogeneous 2D
cell culture system, which is clearly different from the com-
plex heterogenous 3D microenvironments experienced by
tumour cells in vivo. Therefore, an important next step will
be to adapt the assay to measure proliferation in 3D co-
culture systems including stromal cells and matrix com-
ponents. Nevertheless, because our goal is to exploit in-
trinsic tumour-cell vulnerabilities, rather than the tumour-
microenvironment interactions, this assay represents an im-
portant first step in evaluating next-generation therapies.

Screening a panel of OCMs with drugs targeting the RSR
components ATR, CHK1, WEE1 and PARG as monother-
apies did not reveal any wide-ranging opportunities. While
PARGi-sensitivity was bimodal, with six sensitive and 10
highly resistant OCMs, sensitivity to ATRi, CHK1i and
WEE1i was graded, with non-transformed FNE1 cells dis-
playing intermediate sensitivity. If RSR inhibitor sensitiv-
ity reflects a common replication stress vulnerability, then
RSR components may be interchangeable targets (24,76).
And indeed, we observed a correlation between sensitivity
to WEE1i and CHK1i. Beyond that however, monother-
apy sensitivities were not correlated indicating that ATRi,
CHK1i, WEE1i and PARGi are not interchangeable, sug-
gesting that RSR inhibitor sensitivity does not reflect a
common replication stress vulnerability, but rather inde-
pendent, context-dependent vulnerabilities particular to a
given HGSOC. This poses a tremendous challenge; identi-
fying the cohort of patients likely to benefit from any given
RSR inhibitor will require developing a distinct biomarker
for each target, rather than an all-purpose RSR signature.
Taken together with the observation that only a small sub-
set of OCMs exhibit sensitivity to any given monotherapy,
we decided to screen the RSR inhibitors in various combi-
nations on the basis that multi-nodal inhibition might have
a broader effect. However, RSR inhibitors have been as-
sociated with considerable toxicity in clinical studies, es-
pecially in combination with chemotherapy (79). And in-
deed, as mentioned above FNE1 cells display intermediate
sensitivity. Therefore, combinations of RSR inhibitors may
yield unacceptable toxicities. To tackle this issue head on,
we opted for a MLD approach, with the hypothesis that
it would still drive multi-nodal inhibition while also min-
imizing toxicity as well as the potential for development
of resistance. This approach was inspired by two previous
low-dose strategies, which showed that targeting four nodes
of MAPK pathway in EGFR-mutant lung cancer cells, or
combining PI3K, mTOR and MEK inhibitors in clear cell
ovarian cancer cells, enabled penetrant pathway inhibition

at drug doses that were well-tolerated in animal models
(25,26).

This approach was productive: by screening all possible
two-, three- and four-drug combinations at their GI10 values
across a panel of 16 diverse OCMs, we identified two two-
drug low-dose combinations, namely ATRi-CHK1i and
WEE1i-CHK1i, which potently suppressed proliferation of
15 different OCMs. Importantly, these combinations had
minimal effect on non-transformed FNE1 cells. Moreover,
OCM.109 was resistant to all the two-, three- and four-drug
low-dose combinations, indicating that combination sen-
sitivity is less likely to be a non-specific effect, but rather
as result of tumour-cell specific RSR defect. Indeed, sensi-
tivity to low-dose ATRi-CHK1i was accompanied by hall-
marks of persistent replication stress, including accumula-
tion of single-stranded DNA, replication fork slowing and
DNA damage. Consistent with replication checkpoint over-
ride, the first interphase post-drug exposure was acceler-
ated, then often followed by abnormal mitoses, a protracted
second interphase, then further abnormal cell divisions or
apoptosis. We were intrigued by the rapid mitotic exit of
cells treated with the low-dose combination, presumably de-
spite genetic damage that might otherwise be expected to
activate the spindle assembly checkpoint (SAC). Whether
this reflects a role of CHK1 and/or ATR in the SAC re-
mains to be seen (80–83).

The interaction between ATRi and CHK1i has been
demonstrated previously using established cell lines (64,65).
In addition, the ATRi-WEE1i combination is synergis-
tic in acute myeloid leukemia, breast, and biliary tract
cancer models (84–87). We extend these findings, show-
ing that these two-drug combinations are synergistic in
patient-derived models of ovarian cancer, and that they
are effective at relatively low concentrations. The obser-
vation that ATR activity increases in response to CHK
inhibition (Figure 5E, Supplementary Figure S7A) ex-
plains why many cancer cells can tolerate CHK1 monother-
apy, possibly reflecting the ability of ATR to regulate ori-
gin firing, homologous-recombination repair, and/or nu-
cleotide availability (77,88,89). However, in the absence of
ATR-dependent compensation, accurate DNA replication
is severely compromised. The correlation between ATRi-
CHK1i and CHK1i-WEE1i suggests that one or more func-
tions common to ATR and WEE1 can buffer CHK1 inhibi-
tion, for example the protection of stalled replication forks
via regulation of fork remodeling (90–92). While the mecha-
nism responsible for the synergy between ATRi-CHK1i and
CHK1i-WEE1i remains to be fully elucidated, OCM.109
provides an interesting exception to the rule. Future ef-
forts comparing multi-omic and cell biology parameters in
OCM.109 with models that are sensitive to the two-drug
combination could be informative. In the meantime, it is
encouraging that 15 out of 16 OCMs are sensitive to the
two two-drug combinations, meaning that these approaches
may have broad reach therapeutically. Moreover, if the vast
majority of HGSOC are sensitive to MLD RSR inhibi-
tion due to the high prevalence of replication stress (23,24),
the search for a relevant biomarker may be simplified or
even bypassed. Note that sensitive OCMs included ones
that were both BRCA-mutant and wildtype (Supplemen-
tary Figure S1); as such these low-dose combinations may
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be an option for HGSOC that are intrinsically PARPi resis-
tant or those that acquire PARPi resistance. Another ad-
vantage of the low-dose approach is that multi-node in-
hibition may block evolutionary escape routes, thus mini-
mizing the potential for drug-resistant subclones to emerge
(25), a notion supported by the marked reduction in long-
term colonies forming in the low-dose ATRi-CHK1i com-
bination, compared with the high-dose monotherapies (Fig-
ure 5B). Whether the low dose approach alleviates toxi-
city remains to be seen although we note that an ATRi-
CHK1i combination was well tolerated in a lung cancer
xenograft model (65). An important next step will be to ex-
amine low-dose ATRi-CHK1i in vivo; importantly, several
of the OCMs described here do engraft in mice (unpub-
lished data), so testing this concept in vivo will be possible
in the future.
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