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Abstract

During tumorigenesis, DNA mutations in protein coding sequences can alter amino acid sequences 

which can change the structures of proteins. While the 3D structure of mutated proteins has 

been studied with atomic resolution, the precise impact of somatic mutations on the 3D proteome 

during malignant transformation remains unknown because methods to reveal in vivo protein 

structures in high through put are limited. Here, we measured the accessibility of the lysine 

ε-amine for chemical modification across proteomes using covalent protein painting (CPP) to 

indirectly determine alterations in the 3D proteome. CPP is a novel, high throughput quantitative 

mass spectrometric method that surveyed a total of 8,052 lysine sites across the 60 cell lines of the 

well-studied anti-cancer cell line panel (NCI60). Overall, 5.2 structural alterations differentiated 

any cancer cell line from the other 59. Structural aberrations in 98 effector proteins correlated 

with the select presence of 90 commonly mutated proteins in the NCI60 cell line panel, suggesting 

that different tumor genotypes reshape a limited set of effector proteins. We searched our dataset 

for druggable conformational aberrations and identified 49 changes in the cancer conformational 

landscape that correlated with the growth inhibition profiles of 300 drug candidates out of 50,000 

small molecules. We found that alterations in heat shock proteins are key predictors of anti-cancer 

drug efficacy, which implies that the proteostasis network may have a general but hitherto 

unrecognized role in maintaining malignancy. Individual lysine sites may serve as biomarkers 

to guide drug selection or may be directly targeted for anti-cancer drug development.
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Introduction

Somatic mutations drive tumorigenesis by altering gene expression or protein function1, 2. 

Tumorigenic cells face the daunting challenge of propagating mutated proteins that are 

altered in 3D structure and that remodel protein-protein and protein-biomolecule interactions 

of non-mutated proteins. Today, cancer-specific abnormalities in protein abundance have 

been extensively studied with large scale proteomics3, 4 which revealed that heat shock 

factor 1 (HSF1) is often overexpressed in aggressive cancers5, 6. HSF1 is a master regulator 

of the proteostasis network that oversees protein folding and degradation. Its upregulation in 

aggressive cancers is likely due to the increasing number of proteins that might misfold as 

a result of the mutation burden. However, the extent of structural alteration in a proteome 

of transformed cells is not well understood. To gain a deeper understanding of the role of 

protein conformational changes in tumorigenesis, we surveyed the conformational landscape 

of the proteome in living cells7 (aka, the 3D proteome) with a novel high throughput 

chemical footprinting technique.

Protein structure determination is typically performed ex vivo and often requires highly 

purified proteins or protein complexes; consequently, these methods are not suitable 

for measuring conformational aberrations on a proteome scale. Recently, we developed 

Covalent Protein Painting (CPP), a method to measure conformational states of proteins in 

living cells8. CPP uses chemical methylation in living cells to quantify and compare the 

relative accessibility of the lysine ε-amine in proteins. Similar approaches have been used 

to measure protein unfolding9 or to determine lysine site accessibility of purified proteins 

and protein complexes in vitro10, 11. Unlike methods that rely on biophysical properties of 

proteins (like thermostability12), CPP uses a small covalent modification (dimethylation) to 

measure alterations in protein surface accessibility in the 3D proteome of living cells. Most 

lysine sites in a 3D proteome are accessible for chemical labeling. However, the chemical 

reactivity of the ε-amine of a lysine can be sterically limited by protein conformation or 

by the proximity of interacting proteins. While CPP quantifies the chemical reactivity of 
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a lysine site and compares it between experimental conditions or cell lines, CPP remains 

agnostic about the molecular cause for the 3D rearrangements. Thus, CPP measures and 

quantifies a 3D proteome efficiently but does not reveal the reason for alterations in 

chemical accessibility.

In this study, we used CPP to quantify structural changes in the 3D proteome of different 

cancer cell lines. We measured the conformational landscapes of 60 different cancer cell 

lines and showed that mutations in cancer driver genes matched a limited number of 

conformational aberrations in the 3D proteome. In addition, conformational aberrations 

were correlated with the growth inhibitory effect of small molecules, demonstrating that 

the differential accessibility of distinct lysine sites for covalent modification may indicate 

potential target sites for anti-cancer drug development.

Materials and Methods

CPP labeling of cell lines

In the CPP strategy, solvent exposed ε-amines of lysine residues in proteins are 

dimethylated. Lysine residues that are sterically inaccessible due to protein-protein or 

biomolecule-protein interactions or altered protein conformation remain unmodified8. After 

denaturation and protein digestion, lysine residues that were initially inaccessible are 

exposed and are tagged with isotopically distinct dimethyl groups in a second labeling 

reaction. Isotope-tagged peptides are subsequently identified and quantified in an unbiased 

and high-throughput bottom-up proteomic experiment13. The intensity ratio of the isotope 

labeled lysine sites reports the relative proportion of molecules in which a lysine site 

was inaccessible for covalent modification, and the differences in relative inaccessibility 

of lysine sites in different tumors indicate structural changes in the 3D proteome that 

may be tumor specific. Cell culture dishes with adherent cells were placed on ice (3 °C) 

and cells were washed once in phosphate buffered saline (PBS, +Mg2+, +Ca2+) and then 

incubated in PBS with labeling reagents for 15 min at 3 °C as previously described8. 

Alternatively, in biological triplicate experiments, cryopreserved cell pellets of 107 cells 

(NCI60 cell line panel) were thawed on ice in phosphate buffered saline (PBS) in the 

presence of labeling reagents. Thawing cells were carefully resuspended in labeling buffer 

by repeated aspiration followed by periodic mixing during a 15 min incubation (3 °C). 

Samples were further processed as described in8. Surface accessible ε-amines of lysine sites 

were heavy-labeled with 13CD2O and NaBD3CN. Following digestion with Chymotrypsin, 

peptide N-termini and newly accessible lysine residues were dimethylated with CH2O and 

NaBD3CN. In the second reaction, the Schiff base that is formed between a lysine site 

and formaldehyde was reduced with deuteride anions (NaBD3CN) in order to differentiate 

chemically introduced dimethyl labels that include deuterium from natural dimethylation 

groups that predominantly contain hydrogen.

Liquid Chromatography and Mass Spectrometry

Peptide samples were loaded on EVPOSEP tips according to the manufacturer’s 

recommendations. Peptides were reversed-phase separated (Reprosil C18, 3 μm, 120 Å, 

15 cm, i.d. 100 μm, PepSep) on an EVOSEP UHPLC system with a 45 min gradient 
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(buffer B, 0 % to 50 % acetonitrile, 0.1 % formic acid) prior to electrospray ionization. 

Survey mass spectra and fragment ion spectra were acquired on an Orbitrap Lumos mass 

spectrometer (ThermoFisher Scientific) in data dependent mode and parallelizable time for 

ion injections. Survey mass spectra were recorded in the orbitrap with R = 120,000 at m/z = 

200 with an automatic gain control (AGC) of 4*105 counts. Precursors were selected with a 

10 ppm mass window (excluding isotopes) and a minimal abundance of 5*103 counts, and 

precursor ions were isolated with the quadrupole at a mass window of 1.6 m/z based on a 

charge +2 to +7 with an AGC of 2*104 ions. Isolated precursor ions were fragmented with 

collision-induced ionization at 35 % collisional energy, Q = 0.25, and 10 ms fragmentation 

time, and fragment ions were detected in the linear ion trap (LTQ). Mass spectrometric 

data was analyzed with IP2 (Integrated Proteomics). Fragment ion spectra were searched 

with the human curated Uniprot database (release 1.2018) assuming no enzyme specificity, 

and subsequently filtered for peptide identifications with at least one Chymotrypsin-specific 

endoproteolytic cleavage and one lysine in the peptide sequence. The ratio of light over 

heavy dimethylated peptide isomers was determined with Census (Integrated Proteomics) 

and the final surface accessibility for each lysine site was calculated in ProteinClusterQuant 

(PCQ)13.

Pearson correlation of protein sites within the NCI60 cell line panel

Surface accessibility ratios from 8,066 different protein sites acquired in 60 different cell 

lines were analyzed. When calculating Pearson correlations, ratio values of ±Infinity were 

converted to the maximum or minimum non-infinity values in the whole dataset and 

modified with a randomly selected offset value between 0 and 0.001 to avoid divisions 

by zero. Pairwise comparisons displayed in Figure 1 were assembled in a comparison 

matrix that included only protein sites that correlated with at least 4 other protein sites 

(Pearson’s correlation, |p| > 0.5), and the matrix of protein sites was hierarchically clustered 

using Euclidean distance and “complete linkage”. STRING functional proteome analysis of 

protein clusters in the comparison matrix was used to call significantly enriched GO terms.

Pearson correlation to drug growth inhibition

Using standard Pearson’s correlation, sites identified and quantified with at least 10 different 

measurements in at least 10 different cell lines were correlated with the LC50 values of small 

molecules reported in the chemical library screen of the DCTD at NCI (>50,000 compounds 

in total). The minimal variance of drug measurements was set to 0.5, and ±infinity values 

(fully accessible or inaccessible) were shifted to the minimal non-infinity value across all 

cell lines (Rmin = −0.5 or Rmax = +0.5). All drug-site correlations with |p| ≥ 0.6 were 

retained.

Results

Cancer Conformational Landscapes

We applied CPP to the 60 cell lines of the NCI60 cell line panel (NCI DCTD) to identify 

cancer specific alterations in the 3D proteome across a wide range of different types of 

cancers. A total of 275,536 peptide spectrum matches (PSM) were quantified, covering 

8,052 lysine sites in 8,493 peptides and 3,308 protein groups with at least one peptide 
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per site (Figure S1). When comparing individual cancer cell lines pairwise, an average 

of 5.2 significant changes in lysine site accessibility distinguished one cell line from any 

other single cell line (Student’s t-test, Benjamini-Hochberg (BH) corrected, q ≤ 0.05, Table 

S1). An average of 312 alterations differentiated one cell line from the other 59, and the 

average number of lysine sites that were identified in any two cell lines simultaneously 

was 162.5±14.8 lysine sites (average overlap). On average, 264.2 of 312 (85 %) lysine site 

alterations uniquely set any cancer cell line apart from all others. Overall, 15 % of the 

significantly altered lysine sites differed in more than one of the 59 pairwise comparisons 

per cell line. While the average overlap of detected lysine sites between cell lines was 

constant (162.5±14.8 overall), HCT-15 cells differed the most (847 lysine sites), followed by 

SK-MEL-5 melanoma (647) and HS-578T breast cancer cells (552) from the other 59 cell 

lines, respectively.

The 60 cancer cell lines of the NCI60 cell line panel originated from 9 different tissues and 

cell types (renal, non-small cells of the lung, breast, bone marrow, colon, ovary, melanocyte, 

prostate, and central nervous system (CNS)). When cell lines were pooled by tissue of origin 

and compared, conformational alterations were characteristic of the tissue of origin (Table 

S1). Non-adherent leukemia differed the most from any solid tissue tumor, with an average 

change in accessibility for covalent modification of 13.6 lysine sites. Breast, CNS, colon, 

melanoma, lung, ovarian, prostate, and renal tissue-derived tumors were distinguishable by 

alterations in accessibility of 4.25 lysine sites, on average. Tumor of prostate origin included 

the fewest lysine sites with differentially altered accessibility. Prostate, ovarian and lung 

tumors were all of epithelial cell origin and were indistinguishable by tissue origin.

Alterations in accessibility for covalent modification were covariant in a subset of lysine 

sites across several cancer cell lines. We found 88 lysine sites that differed in accessibility 

for covalent modification in ≥ 30 cell lines. When hierarchically clustered, these sites 

segregated into 8 groups with up to 13 lysine sites per group (Pearson’s correlation, |p| 

≥ 0.5, Figure 1). Each group weakly associated with different Gene Ontology terms (GO, 

p < 0.05) which indicated that the functions of proteins within one group only partially 

overlapped. The lysine site ACTB#K359 in β-actin was an exception. ACTB#K359 was 

covariant with 23 of the 88 proteins that differed in ≥ 30 cell lines. The functional annotation 

of the 23 proteins was enriched for organonitrogen compound metabolism and regulation of 

apoptosis (average node degree ⟨k⟩ = 6.7). While the analysis might include pairs of lysine 

sites that occurred by chance, proteins with covariant alterations in lysine site accessibility 

clustered in small groups across all 60 cancer cell lines but displayed only limited functional 

connectivity.

Tumorigenesis Shapes the 3D Proteome

Conformational changes in the 3D proteome of cancer cells are a consequence of the pattern 

and time of acquisition of individual somatic mutations that do not result in lethal loss 

of function. Each of the NCI60 cancer cell lines evolved independently and comprises a 

distinct pattern of somatic mutations that alter the protein coding sequences in a total of 

461 genes (COSMIC transcriptome analysis, excluding gene amplifications or deletions14). 

A proteogenomic study identified 4,771 protein sequence variants in the NCI60 cell lines, 
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of which > 250 sequence variations were annotated in protein databases. This indicates 

a high level of proteoform variation in the cell lines that remains unexplained15. CPP 

data provides a measurement of altered protein conformation taking somatic mutations and 

other protein sequence variations indirectly into account. Out of 461 somatically mutated 

genes, only the protein product Calreticulin (of the gene CALR) was altered in lysine site 

accessibility and somatically mutated in the same cancer cell line. Lysine site CALR#K185 

was significantly increased in accessibility in D244G-mutated Calreticulin (P27797) in 

HCT-116 cells. However, it remains to be shown that the altered lysine site accessibility 

is a caused by the point mutation D244G in Calreticulin, and simiar high accessibility of 

CALR#K185 was observed in additional cell lines in the absence of somatic mutations to 

the Calreticulin protein. We quantified lysine sites in an additional 132 protein products of 

the 461 somatically mutated genes, and 6 of the 132 proteins harbored at least one lysine 

site with an altered accessibility for covalent labeling in at least one of the 60 cell lines 

(Table S2). However, except for mutated Calreticulin, altered lysine site accessibility did not 

coincide with a somatic mutation. While the depth of 3D proteomic analysis with CPP is 

limited by incomplete coverage of the estimated 25,000 lysine sites (5,000 different proteins 

assumed) in the cellular proteome, only Calreticulin in one cell line was determined to have 

altered protein conformation and was also somatically mutated.

Next we explored the hypothesis that somatically mutated proteins might impinge on and 

alter protein conformations of non-mutated proteins to drive tumorigenesis. Somatically 

mutated proteins might harness non-mutated effector proteins with crucial biological 

functions during malignant transformation. Overall, lysine site coverage of common cellular 

proteins was better than the lysine site coverage of somatic mutated proteins. To find 

non-mutated proteins that harbor lysine sites that are altered in the presence of a mutated 

cancer driver gene, we searched our data for proteins with altered lysine site accessibility 

that coincided with a somatically mutated gene in ≥ 3 cancer cell lines. There are 103 out 

of 461 mutated genes that are mutated in ≥ 3 of the 60 cancer cell lines. A rank ordered 

list of the mutated genes is led by the tumor suppressor p53, which was mutated most 

frequently (31 cell lines), followed by PTEN (16 cell lines), FAT4, and KRAS (15 cell 

lines each). We found that 110 out of 8,052 (1.4 %) lysine sites in 98 non-mutated proteins 

correlated with the presence of somatic mutations in 90 different cancer driver genes (Figure 

2). 40 out of the 110 lysine sites changed in accessibility for chemical modification by Δ 

> 20 %. A gene ontology analysis of all 98 proteins with altered lysine site accessibility 

indicated low interconnectivity (⟨k⟩ = 3.5) and a preference for effector protein functions 

in carbohydrate and RNA metabolism and in GTP-driven signal transduction. In contrast, 

the 103 somatically mutated proteins were highly interconnected (⟨k⟩ = 9.04) and were 

regulators rather than effectors of different cellular processes. Thus, somatic mutation of 

proteins with regulatory function induced distinct changes in lysine site accessibility in a 

small number of non-mutated, effector proteins.

The 98 effector proteins matched the 90 somatically mutated proteins 606 times in the 

bipartite network (⟨k⟩ = 6.2). On average, 7.7 different mutated proteins associated with a 

conformational change in the same effector protein, suggesting that mutations in different 

genes may cause the same structural changes in the 3D proteome and thus impinge on the 

same cellular pathways. However, mutated and structurally altered proteins were not part 
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of the same cellular pathway. Only 22 of the 606 (3.8 %) edges in the network connected 

two proteins that are known to interact directly (Table S3). These proteins are members of 

protein folding and phosphorylation-mediated signal transduction pathways, which are often 

derailed upon malignant transformation (Material S1).

Protein nodes with a single edge were rare in the bipartite network. 19 of the 110 lysine 

sites associated with only one mutated protein (Material S1), and 8 of the 90 mutated 

proteins each correlated with a single lysine site that was altered in its accessibility (Table 

S4). Undiscovered lysine sites might correlate with additional somatic mutations which will 

increase the size and complexity of the bipartite network. Only 8 of the 110 lysine sites 

displayed a Δ > 50 % change in lysine site accessibility (Material S1, Figure S2, Table S5). 

These 8 lysine sites might serve as markers to differentiate tumors of colon, bone marrow, 

lung, breast, or ovary origin; however, the high redundancy in the bipartite network suggests 

that measuring alterations in a limited set of 110 lysine sites might be sufficient to show 

evidence of malignancy regardless of tumor origin.

Each cancer cell line displays a unique pattern of somatic mutations but somatic mutations 

in 90 proteins impacted the accessibility of lysine sites for covalent modification in 98 

effector proteins. For example, 10 of the 60 cancer cell lines acquired oncogenic mutations 

in the catalytic subunit of the phosphatidyl inositol kinase p110α, PIK3CA, which is a 

known cancer driver gene16, 17. We found altered accessibility of 7 different lysine sites in 7 

different proteins that correlated with the presence of oncogenic PIK3CA in the 10 cell lines 

(Figure 3A). Notably, a change in accessibility for covalent labeling in any of the 7 lysine 

sites was associated with at least one other somatically mutated protein besides mutated 

PIK3CA (p ≤ 0.05, Figure 3B).

In the absence of single, reciprocal associations between one mutated protein and one 

structural alteration in the 3D proteome of cancer cells, we decided to determine whether 

the complement of existing acquired somatic mutations determines which 3D proteome 

alterations arise from the introduction of a single de novo somatic mutation, H1047R in 

PIK3CA. Tumorigenic MCF10A-H1047R cells were clonally derived from parental, non-

tumorigenic MCF10A cells18 and differ only by the oncogenic point mutation H1047R in 

PIK3CA, PIK3CAH1047R 19. We analyzed the 3D proteome of MCF10A breast epithelial 

cells with PIK3CAwt and MCF10A-H1047R cells with PIK3CAH1047R in biological 

triplicate experiments using multidimensional protein identification technology (MudPIT20), 

and identified 4,744 and 4,392 distinct lysine sites (14,401 and 18,377 peptide spectrum 

matches) in 2,391 and 2,284 proteins, respectively (Figure S3). 24 lysine sites in 24 proteins 

were altered in accessibility for covalent labeling upon oncogenic mutation of PIK3CA. 

Relative accessibility for chemical modification decreased in 20 and increased in 4 of the 

lysine sites (q ≤ 0.01, BH corrected, Figure 3C, Figure S4 and Table S6). Thus, introduction 

of the single oncogenic point mutation H1047R in PIK3CA altered the accessibility for 

covalent modification in only 0.8% of all lysine sites.

The molecular function of the 24 proteins with altered lysine accessibility revealed several 

distinct molecular pathways that might directly contribute to the malignant transformation of 

MCF10A cells upon H1047R mutation in PIK3CA. Specifically, lysine site GSN#K390 
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in gelsolin (P06396) shifted from predominantly accessible to partially inaccessible in 

the presence of elevated levels of the more highly phosphorylated phosphatidyl-inositol 

phosphates (PIP), PIP2 and PIP3 (Figure 3D). PIP3 suppresses gelsolin21, and PIP2 inhibits 

gelsolin’s ability to sever and cap actin filaments22. The lysine site ACTB#K359 in actin 

is accessible for covalent modification in soluble G-actin monomers, and we observed that 

the homeostatic equilibrium between free G-actin and fibrillar F-actin was shifted towards 

G-actin in the presence of PIK3CAH1047R. Most likely, constitutively active PIK3CAH1047R 

alters the equilibrium of gelsolin that severs actin filaments and thereby increases the relative 

amount of F-actin in MCF10A-H1047R cells.

Moreover, PIK3CAH1047R increased the accessibility of lysine site TUBB#K336 in 30 

% of tubulin-β molecules (Figure 3E). In effect, it pushed the equilibrium of tubulin 

molecules polymerized in microtubules versus unbound tubulin-α and −β heterodimers 

towards an increased disassembly of microtubules and elevated levels of monomeric or 

heterodimeric tubulin-β23, 24. In addition, lysine site TBCB#K225 of the tubulin folding 

cofactor B protein (TBCB) displayed decreased accessibility in MCF10A-H1047R cells. 

TBCB binds and disassembles tubulin-α and −β heterodimers25 and altered accessibility of 

TBCB#K225 may reflect an altered homeostatic equilibrium in microtubule treadmilling. 

Microtubule treadmilling is directly targeted by the anti-cancer drug Taxol. Taxol prevents 

microtubule depolymerization but requires a narrow dosing regimen to control for its general 

toxicity26, 27. Taxol might critically interfere with an accelerated microtubule disassembly 

and thus preferentially inhibit cell growth and division of tumorigenic cells with malignant 

increased microtubule treadmilling.

Finally, oncogenic PIK3CAH1047R modulated the accessibility of a lysine residue in the 

proto-oncogene c-Src (P12931). Lysine site SRC#K62 increased in accessibility in 71 

% of c-Src molecules, potentially activating its kinase. Activation of the c-Src kinase 

in the absence of a somatic mutation of the c-Src gene was previously observed28. 

C-Src influences survival, growth, and division of cells through its kinase activity at 

transmembrane protein complexes that assemble into cell-cell adhesion contacts29. Hart, 

et al.18 previously observed that mutating PIK3CAH1047R remodeled the proteome and 

transcriptome of the MCF10A cells. Here, we observed conformational alterations to the 

cytoskeleton that suggest specific alterations in the cytoskeletal homeostasis as a molecular 

mechanism by which malignant transformation is put into action in MCF10A-H1047R cells.

Mutating PIK3CAwt to PIK3CAH1047R in MCF10A cells enabled malignant transformation 

of MCF10A-H1047R cells through 3D changes in a small subset of proteins in the 3D 

proteome. However, the conformational changes and proteins differed from the 3D proteome 

alterations in the 10 NCI60 cell lines that already harbor mutated PIK3CA. 15 lysine 

sites were measured and quantified in both experiments but none of the conformational 

changes observed upon mutation of PIK3CAwt to PIK3CAH1047R in MCF10A cells were 

recapitulated in the 10 cancer cell lines of the NCI60 cell line panel that harbor mutated 

PIK3CA (Figure 3F). Therefore, we conclude that the tumor cell line specific, pre-existing 

somatic mutation patterns guide which conformational alterations in effector proteins 

accompany newly introduced somatic mutations during tumorigenesis.
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Conformational Alterations Predict Anti-Cancer Drug Efficacy

Observing a common set of 98 conformational alterations in cancer cells suggests that 3D 

alterations might predict drug efficacy30. To test this hypothesis, we correlated the LC50 

profiles of > 50,000 compounds with altered lysine site accessibility across all 60 cancer cell 

lines. LC50 profiles were previously reported by the Developmental Therapeutic Program 

at NCI31. Overall, the LC50 profiles of 300 small molecules correlated with the surface 

accessibility profiles of 49 lysine sites in 46 proteins 415 times (Pearson’s correlation 

|p| > 0.6, Figure 4A). 249 out of 415 correlations (edges) were positive, indicating that 

growth inhibition was more pronounced when lysine sites were less accessible for covalent 

modification. The remaining 166 correlations were negative, indicating that cell growth 

inhibition correlated with an increase in lysine site accessibility. 12 of 49 lysine sites (24.5 

%) correlated with the LC50 profiles of a single drug, whereas 37 lysine sites (75.5 %) 

correlated with two or more small molecules. All edges were either positive or negative for 

30 of the 37 lysine sites (82 %), whereas 7 lysine sites had both positive and negative edges. 

When the mechanism of action was known, small molecules did not directly bind to the 

proteins with altered lysine site accessibility (Material S1).

The 49 effector proteins were present in cellular pathways that were either directly 

or indirectly targeted by the growth inhibitory action of the small molecules. The 

majority of the 300 small molecules correlated with 3 lysine sites in 3 proteins that are 

part of the proteostasis network. Heat shock proteins HSP90AA1/HSP90AB1 (P07900, 

P08238) and HSP90B1 (P14625, Endoplasmin, GRP94) at lysine sites HSP90AA1#K327/

HSP90AB1#K319 and HSP90B1#K493, respectively, and the peptidyl-prolyl cis-trans 

isomerase FKBP4 (FKBP4#K354, P02790) formed a large cluster with 156 different small 

molecules in the bipartite network (Figure 4B). HSP90 proteins and FKBP4 support folding 

or re-folding of nascent or misfolded proteins. The LC50 profile of 33 out of the 156 

small molecules matched the relative accessibility of lysine sites in two of the three 

proteins, and one small molecule (NSC-673805) correlated with the relative accessibility 

of all three lysine sites. Increased inaccessibility of FKBP4#K354 and HSP90AA1#K327/

HSP90AB1#K319 aligned positively with 118 and 38 growth inhibitors, respectively. In 

contrast, HSP90B1#K493 aligned negatively with the cytotoxicity of 41 small molecules. 

Thus, the relative accessibility of three distinct lysine sites in heat shock proteins of the 

HSP90 family and FKBP4 were sufficient to predict the growth inhibition efficacy of more 

than half of the 300 small molecules that were identified here. Overall, proteostasis may be 

more broadly derailed during tumorigenesis than previously recognized.

The mechanisms of action of the 156 small molecules are diverse and encompass 

DNA intercalation and translation inhibition, both of which broadly perturb proteome 

homeostasis. For example, the cytotoxicity patterns of Estramustine, Morpholinoadriamycin, 

Dactinomycin, Saframycin A, and Saframycin AR1 matched at least three of the four 

most connected lysine sites and proteins in the network including HSP90AA1/HSP90AB1, 

HSP90B1 and FKBP4. All three proteins participate in direct protein-protein interactions, 

and an altered lysine site accessibility might indicate a rise in client proteins that require 

re-folding through the proteostasis network in select tumor cell lines (Material S1). Thus, 

the results emphasize the importance of the proteostasis network for upholding malignant 
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transformation. Most likely, the proteostasis network directly buffers the 3D proteome 

against an otherwise lethal increase in loss of function protein misfolding that might 

accompany tumorigenesis.

Furthermore, proteins RBBP4 and RBBP7 in the Nucleosome Remodeling Deacetylase 

(NuRD) protein complex showed overlapping associations with small molecules that 

correlated with heat shock proteins. RBBP4 and RBBP7 interchange in the NuRD complex 

and correlate positively and negatively with the growth inhibition of small molecules, 

respectively. Further, the histone deacetylase HDAC1 (Q13547) is part of the NuRD 

complex. Lysine site HDAC1#K123 correlated both positively and negatively with small 

molecules that inhibit cell growth (Material S1). Thus, lysine site accessibility and growth 

inhibition by small molecules interacting with the NuRD complex may indicate a hierarchy 

in conformational aberrations. However, the presence of both positive and negative drug 

correlations with a lysine site were rare (7 out of 49 lysine sites).

Decreased surface accessibility of phosphoglycerate kinase 1 site PGK1#K332 (P0058), 

of ATP-citrate synthase site ACLY#K944 (P53396), and of ATP5F1A#K194 in the 

mitochondrial ATP synthase-α (P25705) correlated with an increased cytotoxicity 

of several different small molecules. 3D alterations in these three proteins might 

contribute to the Warburg effect of tumor cells to produce adenosine triphosphate (ATP) 

through glycolysis rather than via aerobic respiration even though sufficient oxygen is 

available32, 33. Furthermore, lysine site-to-drug correlations highlighted hormone processing 

and signaling proteins. For example, Retinal dehydrogenase 1 sites ALDH1A1#K194 and 

ALDH1A1#K138 (P00352) matched the growth inhibitory effect of 13 and 7 different small 

molecules, respectively. The accessibility of Erbin#K63 (Q96RT1) in the adaptor protein 

for the tyrosine kinase receptor ERBB2 correlated with the growth inhibition exerted by 10 

different small molecules.

Finally, infection of cells with retroviruses that integrate into the genome can drive 

malignant transformation. The interleukin enhancer-binding factor 3, ILF3 (Q12906), binds 

to viral dsRNA and inhibits translation of retroviral mRNAs34 as part of an innate anti-viral 

response. Lysine site ILF3#K419 correlated negatively with 6 different small molecules that 

have been described in part as DNA intercalators, whereas ILF3#K565 correlated positively 

with HDAC inhibitor analogues Romidepsin and NSC-709238, which reverse human 

immunodeficiency virus (HIV) latency in T cells35 (Figure S5). ILF3#K565 accessibility 

for chemical modification correlated negatively with HIV and SIV latency, reversing the 

effects of AZD5582 (NSC-787048) which binds and blocks the inhibitor of Apoptosis 

protein IAP36. Thus, differential lysine site accessibilities in the two distinct dsRNA binding 

domains of ILF3 indicated the sensitivity of cells to small molecules that interfere with 

the retrovirus activity and thus may block retrovirus-associated neoplastic transformation of 

infected cells.

Discussion

Here, we showed that tumorigenic mutations alter the surface accessibility of proteins 

that may shape the protein conformational landscape in cancer cells. In tumorigenesis, 
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cells maximize their proliferation by defying extracellular clues to self-restrain. Even 

though tumorigenesis is stereotypic, each tumor exhibits a unique somatic mutation pattern. 

CPP analysis yielded a limited set of conformational alterations that correlated with the 

presence of select somatic mutated proteins. These conformational changes might be 

the result of altered protein-protein or protein-biomolecule interactions, post translational 

modifications, selective protein degradation, or other factors. Here, we showed that the 

individual patterns of somatic mutation impinge on a small number of effector proteins that 

are conformationally altered in tumorigenesis. Because conformational changes in effector 

proteins were stereotypic across the NCI60 cell line panel, it suggests that tumorigenesis 

relies on altering a limited set of effector proteins.

Furthermore, we looked for causative associations between somatic mutation and 

conformational change. De novo mutation of PIK3CA in MCF10A cells altered the 

accessibility of lysine sites for covalent modification in a few proteins. These alterations 

differed from those observed in the 10 cancer cell lines that had acquired oncogenic 

PIK3CA mutations during tumorigenesis. Thus, we suggest that the background of somatic 

mutations rather than the de novo acquired genetic aberration determines which specific 

conformational changes are induced in the 3D proteome, possibly because new genomic 

aberrations are tested against a unique genetic background for added growth advantage in 

tumor evolution.

Here, we used CPP to identify altered protein conformations and we correlated them with 

the efficacy of small molecules to inhibit cell growth. This proteomic approach to drug 

identification is fundamentally different than determining protein abundance in response 

to drug treatment37. By retrospectively correlating the growth inhibitory effect of small 

molecules with alterations in lysine site accessibility, we found that 49 conformational 

rearrangements in select effector proteins may predict the growth inhibition efficacy of 300 

small molecules. The cancer conformational landscape suggests that tumorigenic mutations 

in regulatory proteins derail protein conformations, protein biomolecule associations or 

protein-protein interactions in non-mutated effector proteins and pathways. According to our 

results, at least 156 out of 300 cell growth-inhibiting small molecules are more effective 

in case the proteostasis network upholds malignant transformation. Further, we observed 

that oncogenic activation of PIK3CA alters the homeostatic equilibrium of microtubule 

treadmilling, likely increasing the load of the tubulin-β specific chaperone TBCB with 

tubulin-β molecules. Thus, our results imply that proteostasis might actively support 

malignant transformation.

By using CPP to quantify protein conformation in the proteostasis network, we might be 

able to target cancer more effectively during anti-cancer therapy. Non-tumorigenic cells are 

in a homeostatic optimum that evolved to minimize the overall load on the proteostasis 

network, but tumor cells gain somatic mutations that allow uncontrolled cell proliferation. 

However, this gain comes at the cost of a non-optimal activation or partial inactivation of 

cellular pathways. Because somatic mutations may cause cell physiological alterations that 

are suboptimal, the overall load on the proteostasis network will increase to compensate for 

a tumor-induced disequilibrium in the cellular proteome. In line with this interpretation, we 

found that alterations in the proteostasis network are almost independent of tumor type and 
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mutational background. These alterations are therefore highly predictive for more than 150 

small molecules that are known to limit cell proliferation. Notably, these small molecules are 

highly diversified in their mechanism of action.

The 49 protein rearrangements that indicate growth inhibition of small molecules may also 

be used as a diagnostic or sentinel to scout tumor cells for additional vulnerabilities. Indeed, 

most proteins with sentinel lysine sites are part of cellular networks that are pivotal for cell 

survival, such as proteostasis, chromatin remodeling, and metabolism. While our current 

knowledge of the 3D proteome is limited, it may soon be possible to design new drugs by 

selecting lysine sites. For example, a direct interruption of protein-protein interactions of 

FKBP4 or CHIP with HSP90 with novel small molecules might enhance the efficacy of 

existing anticancer therapies.
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Figure 1: Alterations in lysine site accessibility in different proteins that were observed 
simultaneously in the NCI60 cell line panel.
The heat map displays Pearson’s correlations between 88 lysine sites across all 60 cell lines. 

Sites were clustered by Euclidian distance based on the absolute value of the Pearson’s 

correlation. Red indicates positive and blue negative correlation. Protein names are listed on 

the right whereas the dendrogram based on the Euclidian distance is shown on the left and 

top of the diagram. GO terms for each group included protein folding and unfolded protein 

response (group 1, average node degree ⟨k⟩ = 6.4), oxidoreductase activity (group 2, ⟨k⟩ = 

1.0), epithelial cell differentiation (group 3, ⟨k⟩ = 0.7), RNA helicase activity and ssDNA 

binding (group 4, ⟨k⟩ = 0.5) and mRNA metabolic processes (group 5, ⟨k⟩ = 1.2), cellular 

response to stress (group 6, ⟨k⟩ = 4.0), and mRNA metabolism (group 7, ⟨k⟩ = 2.8). Group 

8 included a subset of proteins that were part of group 1 and 7 and matched GO terms 

localization to organelle, transmembrane transport, and chaperone-mediated protein folding 

(⟨k⟩ = 1.8).
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Figure 2: CPP revealed correlations between 3D alterations and somatic mutations.
The bipartite network shows the correlation of somatic mutated proteins (oncogens and 

tumor suppressor genes, blue diamonds) to non-mutated effector proteins (rectangles) in 

which at least one lysine site is significantly altered in accessibility. The size of nodes scales 

with connectivity (effector proteins) or number of cell lines in which the protein is mutated 

(mutated proteins). Edges are colored green in case a decrease in surface accessibility was 

detected and red in case surface accessibility of the lysine site increased. The line thickness 

reflects the difference in lysine site accessibility (Δ) between cell lines with and without 

mutation in the somatically mutated protein.
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Figure 3: Comparison of 3D proteome alterations that correlate with oncogenic PIK3CA 
mutation in the NCI60 cell line panel and that were identified upon de novo mutating PIK3CA in 
MCF10A cells.
(A) Lysine site accessibilities for each effector protein that correlated with mutated 

and wt PIK3CA are indicated in red and black, respectively (error bars are standard 

deviation). (B) The bipartite network highlights interactions of PIK3CA in Figure 1C 

(identical figure annotation). Lysine site accessibility in six proteins differed significantly 

between 10 cell lines that harbored somatic mutations for PIK3CA (mutPIK3CA) and 50 

cell lines with wtPIK3CA. (C) The scatterplot includes all lysine sites measured upon 

oncogenic activation of PIK3CA in MCF10A cells. Each dot represents an individual lysine 

site. Each lysine site was plotted with error of measurement (standard deviation) for its 

relative surface accessibility in MCF10A and MCF10A-H1047R cells (log2 converted value, 

inaccessible: accessible). The units “accessible” and “inaccessible” indicate that the lysine 

site was completely accessible or inaccessible. Lysine sites that were significantly altered 

in accessibility (q < 1%) are highlighted in red. Measurements obtained for Chymotrypsin 

site CRBT1#K54 (green dot) represent a positive control for “completely inaccessible” 

because Chymotrypsin was exogenously added following the initial labeling of the sample 

in CPP. The schematics (D) and (E) map changes in lysine site accessibility of proteins 

involved in actin and microtubule homeostasis. Protein-protein interactions and turnover 
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of actin filaments and microtubules were altered upon oncogenic activation of PIK3CA in 

MCF10A cells. Red dots on protein surfaces pinpoint lysine sites accessible for CPP. Arrows 

indicate the homeostatic relationship between individual proteins and protein complexes. 

The thickness of the arrows show the relative change in the equilibrium upon mutation of 

PIK3CA according to the lysine site. (F) Comparison of significantly altered sites upon 

introduction of PIK3CA mutation in MCF10A cells (red) and presence of PIK3CA mutation 

in 10 out of 60 cancer cell lines (blue). Each measurement in lysine site accessibility is 

indicated and dark coloring refers to oncogenic PIK3CA, whereas light coloring represents 

the reference. Stars indicate lysine sites that were measured in both experiments.
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Figure 4: Correlation network between lysine site accessibility and small molecule-induced 
growth inhibition.
(A) The thickness of edges indicates the Pearson’s correlation of |p| > 0.6 in the bipartite 

network of lysine sites (rectangles) and small molecules (triangles). Proteins might harbor 

different lysine sites that correlated with small molecule activity, and thus the corresponding 

protein nodes are depicted several times in the network. Red edges refer to a positive 

correlation in which growth inhibition matched a reduced accessibility of a lysine site 

whereas blue edges denote a negative correlation in which growth inhibition matched 

increased accessibility of a lysine site. Node colors group small molecules with known 

mechanisms of action (lavender, antibiotic action; blue, DNA binding or intercalation 

or topoisomerase I or II inhibition; turquoise, V-ATPase inhibition; pink, Tubulin or 

Actin or Cofilin inhibition; dark green, hormone inhibition; light green, interaction with 

lipids, proteasome inhibition; yellow, HDAC, mitochondrion or proteasome inhibition; rosé, 

other mechanism of inhibition including amino acid biosynthesis, Akt, Stat3, Caspase 

2,7,9, dinucleotide methyltransferase, inhibition of apoptosis (IAP), exportin). (B) The 

subnetwork depicts heat shock proteins HSP90A, HSP90B, and peptide isomerase FKBP4 

which together correlated with the greatest number of small molecules. When known, 

non-scientific names of small molecules are indicated.
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